Morphotectonic Features in the Middle Biferno River Valley: The Case of Ponte Liscione Dam (Central Italy)
Abstract
:1. Introduction
2. Regional Geological, Structural, and Seismic Settings
Historical and Recent Seismicity
3. Materials and Methods
3.1. DEM-Based Morphometric Analyses
3.2. Morphotectonic and Structural-Geomorphological Analysis
4. Results
4.1. Morphometric Indices and Markers
4.2. Morphological Field Evidence of Tectonics
4.3. Structural-Geomorphological Features of Ponte Liscione Dam
4.4. Morphotectonic Features
- F1: NW-SE-oriented;
- F2: NE-SW-oriented;
- F3: E-W- and WNW-ESE-oriented.
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Struth, L.; Garcia-Castellanos, D.; Viaplana-Muzas, M.; Vergés, J. Drainage network dynamics and knickpoint evolution in the Ebro and Duero basins: From endorheism to exorheism. Geomorphology 2019, 327, 554–571. [Google Scholar] [CrossRef]
- Bhat, M.A.; Dar, T.; Bali, B.S. Morphotectonic analysis of Aripal Basin in the North-Western Himalayas (India): An evaluation of tectonics derived from geomorphic indices. Quat. Int. 2020, 568, 103–115. [Google Scholar] [CrossRef]
- Whittaker, A.C. How do landscapes record tectonics and climate? Lithosphere 2012, 4, 160–164. [Google Scholar] [CrossRef] [Green Version]
- Menier, D.; Mathew, M.; Pubellier, M.; Sapin, F.; Delcaillau, B.; Siddiqui, N.; Ramkumar, M.; Santosh, M. Landscape response to progressive tectonic and climatic forcing in NW Borneo: Implications for geological and geomorphic controls on flood hazard. Sci. Rep. 2017, 7, 457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molin, P.; Fubelli, G. Morphometric evidence of the topographic growth of the Central Apennines. Geogr. Fis. Dinam. Quat. 2005, 28, 47–61. [Google Scholar]
- Vijith, H.; Prasannakumar, V.; Pratheesh, P.; Ninu Krishnan, M.V.; Sharath Mohan, M.A. Evaluation of geomorphic expressions of bedrock Channels in the Western Ghats of southern Kerala, India, through quantitative analysis. Arab J. Geosci. 2016, 9, 393. [Google Scholar] [CrossRef]
- Bull, W.B.; McFadden, L.D. Tectonic geomorphology north and south of the Garlock fault, California. In Proceedings of the 8th Symposium in Geomorphology, Binghamton, NY, USA, 23–24 September 1977; pp. 115–138. [Google Scholar] [CrossRef]
- Ribolini, A.; Spagnolo, M. Drainage network geometry versus tectonics in the Argentera Massif (French–Italian Alps). Geomorphology 2008, 93, 253–266. [Google Scholar] [CrossRef]
- Reddy, G.P.O.; Maji, A.K.; Gajbhiye, K.S. Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India—A remote sensing and GIS approach. Int. J. Appl. Earth Obs. Geoinf. 2004, 6, 1–16. [Google Scholar] [CrossRef]
- Marra, F.; Frepoli, A.; Gioia, D.; Schiattarella, M.; Tertulliani, A.; Bini, M.; De Luca, G.; Luppichini, M. A morphotectonic approach to the study of earthquakes in Rome. Nat. Hazards Earth Syst. Sci. 2022, 22, 2445–2457. [Google Scholar] [CrossRef]
- Saber, R.; Caglayan, A.; Isik, V. Landscape response to deformation in the Sabalan area, NW Iran: Inferred from quantitative morphological and structural analysis. Earth Environ. Sci. Trans. R. Soc. Edinb. 2022, 113, 227–252. [Google Scholar] [CrossRef]
- Kycl, P.; Rapprich, V.; Verner, K.; Novotný, J.; Hroch, T.; Mišurec, J.; Eshetu, H.; Haile, E.T.; Alemayehu, L.; Goslar, T. Tectonic control of complex slope failures in the Ameka River Valley (Lower Gibe Area, central Ethiopia): Implications for landslide formation. Geomorphology 2017, 288, 175–187. [Google Scholar] [CrossRef]
- Pazzaglia, F.J. Fluvial terraces. In Treatise on Geomorphology; Academic Press: Cambridge, MA, USA, 2013; Volume 9, pp. 379–412. [Google Scholar]
- Rodríguez-Rodríguez, L.; Antón, L.; Rodés, A.; Pallàs, R.; García-Castellanos, D.; Jiménez-Munt, I.; Struth, L.; Leanni, L.; ASTER Team. Dates and rates of endo-exorheic drainage development: Insights from fluvial terraces (Duero River, Iberian Peninsula). Glob. Planet. Change 2020, 193, 103271. [Google Scholar] [CrossRef]
- Schumm, S.A. Evolution of Drainage Systems and Slopes Amboy, New Jersey. Geol. Soc. Am. Bull. 1956, 67, 597–646. [Google Scholar] [CrossRef]
- Willett, S.D.; McCoy, S.W.; Perron, J.T.; Goren, L.; Chen, C.-Y. Dynamic Reorganization of River Basins. Science 2014, 343, 1248765. [Google Scholar] [CrossRef] [PubMed]
- Bernard, T.; Sinclair, H.D.; Gailleton, B.; Mudd, S.M.; Ford, M. Lithological control on the post-orogenic topography and erosion history of the Pyrenees. Earth Planet. Sci. Lett. 2019, 518, 53–66. [Google Scholar]
- Kirby, E.; Whipple, K.X. Expression of active tectonics in erosional landscapes. J. Struct. Geol. 2012, 44, 54–75. [Google Scholar] [CrossRef]
- Pavano, F.; Pazzaglia, F.J.; Catalano, S. Knickpoints as geomorphic markers of active tectonics: A case study from northeastern Sicily (southern Italy). Lithosphere 2016, 8, 633–648. [Google Scholar] [CrossRef] [Green Version]
- Cantalice, J.R.B.; da Silva Souza, W.L.; Agra Bezerra Silva, Y.J.; Guerra, S.M.S.; Araújo, A.M.; Monteiro Cavalcante, D.; Cordeiro Atanazio Cruz Silva, C.M. Bedload and Suspended Sediment of a Watershed Impacted by Dams. Eff. Sediment Transp. Hydraul. Struct. 2015, 19–40. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Hoque, M.d.M.; Deep Saha, U.; Islam, A. Assessment of Dam-Induced Changes in Ecogeomorphological Behaviour and Fluvial Functionality in the Damodar River, West Bengal, India. AQUA—Water Infrastruct. Ecosyst. Soc. 2022, 71, 722–750. [Google Scholar] [CrossRef]
- Centamore, E.; Ciccacci, S.; Del Monte, M.; Fredi, P.; Lupia Palmieri, E. Morphological and morphometric approach to the study of the structural arrangement of northeastern Abruzzo (central Italy). Geomorphology 1996, 16, 127–137. [Google Scholar]
- Currado, C.; Fredi, P. Morphometric parameter of drainage basin and morphotectonic setting of eastern Abruzzo. Mem. Della Soc. Geol. Ital. 2000, 55, 411–420. [Google Scholar]
- Della Seta, M.; Del Monte, M.; Fredi, P.; Lupia Palmieri, E. Quantitative morphotectonic analysis as a tool for detecting deformation patterns in soft-rock terrains: A case study from the southern Marches, Italy/Analyse morphotectonique quantitative dans une province lithologique enregistrant mal les déformations: Les Marches méridionales, Italie. Géomorphologie Relief Process. Environ. 2004, 10, 267–284. [Google Scholar]
- Ferraris, F.; Firpo, M.; Pazzaglia, F.J. DEM analyses and morphotectonic interpretation: The Plio-Quaternary evolution of the eastern Ligurian Alps, Italy. Geomorphology 2012, 149–150, 27–40. [Google Scholar] [CrossRef]
- Sanakhan, A.; Solgi, A.; Sorbi, A.; Arian, M. Survey of active tectonic: The influence of river morphotectonic in Aras Basin. Arab. J. Geosci. 2020, 13, 633. [Google Scholar] [CrossRef]
- Horton, R. Erosional Development of Streams and Their Drainage Basins; Hydrophysical Approach to Quantitative Morphology. Geol. Soc. Am. Bull. 1945, 56, 275–370. [Google Scholar] [CrossRef] [Green Version]
- Keller, E.A.; Pinter, N. Active Tectonics: Earthquakes, Uplift, and Landscape, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Andreani, L.; Stanek, K.P.; Gloaguen, R.; Krentz, O.; Domínguez-González, L. DEM-Based Analysis of Interactions between Tectonics and Landscapes in the Ore Mountains and Eger Rift (East Germany and NW Czech Republic). Remote Sens. 2014, 6, 7971–8001. [Google Scholar] [CrossRef] [Green Version]
- Knight, J.; Grab, S.W. Drainage network morphometry and evolution in the eastern Lesotho highlands, southern Africa. Quat. Int. 2018, 470, 4–17. [Google Scholar] [CrossRef]
- Gioia, D.; Schiattarella, M.; Giano, S.I. Right-angle pattern of minor fluvial networks from the ionian terraced belt, southern Italy: Passive structural control or foreland bending? Geosciences 2018, 8, 331. [Google Scholar] [CrossRef] [Green Version]
- Giona Bucci, M.; Schoenbohm, L.M. Tectono-Geomorphic Analysis in Low Relief, Low Tectonic Activity Areas: Case Study of the Temiskaming Region in the Western Quebec Seismic Zone (WQSZ), Eastern Canada. Remote Sens. 2022, 14, 3587. [Google Scholar] [CrossRef]
- Gupta, L.; Agrawal, N.; Dixit, J.; Dutta, S. A GIS-based assessment of active tectonics from morphometric parameters and geomorphic indices of Assam Region, India. J. Asian Earth Sci. 2022, X, 100115. [Google Scholar] [CrossRef]
- Alipoor, R.; Poorkermani, M.; Zare, M.; El Hamdouni, R. Active tectonic assessment around Rudbar Lorestan dam site, High Zagros Belt (SW of Iran). Geomorphology 2011, 128, 1–14. [Google Scholar] [CrossRef]
- Ozdemir, H.; Bird, D. Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods. Environ. Geol. 2009, 56, 1405–1415. [Google Scholar] [CrossRef]
- Venkatesan, A.; Jothibasu, A.; Anbazhagan, S. GIS Based Quantitative Geomorphic Analysis of Fluvial System and Implications on the Effectiveness of River Basin Environmental Management. In Environmental Management of River Basin Ecosystems; Ramkumar, M., Kumaraswamy, K., Mohanraj, R., Eds.; Springer Earth System Sciences: Cham, Switzerland, 2015; pp. 201–225. [Google Scholar]
- Amato, V.; Aucelli, P.P.C.; Bracone, V.; Cesarano, M.; Rosskopf, C.M. Long-term landscape evolution of the Molise sector of the central-southern Apennines, Italy. Geol. Carphatica 2017, 68, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Baratta, M. I Terremoti D’italia. Saggio di Storia, Geografia e Bibliografia Sismica Italiana; Fratelli Bocca Editori: Torino, Italy, 1901; 950p. [Google Scholar]
- Valensise, G.; Vannoli, P.; Burrato, P.; Fracassi, U. From Historical Seismology to seismogenic source models, 20 years on: Excerpts from the Italian experience. Tectonophysics 2020, 774, 228189. [Google Scholar] [CrossRef]
- ISIDe Working Group Italian Seismological Instrumental and Parametric Database (ISIDe). 2007. Available online: http://terremoti.ingv.it/iside (accessed on 3 April 2023).
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P.; Antonucci, A. The Italian Earthquake Catalogue CPTI15-Version 4.0. 2022. Available online: https://emidius.mi.ingv.it/CPTI15-DBMI15/description_CPTI15_en.htm (accessed on 19 April 2022).
- Di Bucci, D.; Ravaglia, A.; Seno, S.; Toscani, G.; Fracassi, U.; Valensise, G. Seismotectonics of the southern Apennines and Adriatic foreland: Insights on active regional E-W shear zones from analogue modeling. Tectonics 2006, 25, TC4015. [Google Scholar] [CrossRef] [Green Version]
- Kastelic, V.; Vannoli, P.; Burrato, P.; Fracassi, U.; Tiberti, M.M.; Valensise, G. Seismogenic sources in the Adriatic Domain. Mar. Pet. Geol. 2013, 42, 191–213. [Google Scholar] [CrossRef] [Green Version]
- Basili, R.; Valensise, G.; Vannoli, P.; Burrato, P.; Fracassi, U.; Mariano, S.; Tiberti, M.M.; Boschi, E. The Database of Individual Seismogenic Sources (DISS), version 3: Summarising 20 years of research on Italy’s earthquake geology. Tectonophysics 2008, 453, 20–43. [Google Scholar] [CrossRef]
- DISS Working Group. Database of Individual Seismogenic Sources (DISS), Version 3.3.0.: A Compilation of Potential Sources for Earthquakes Larger than M 5.5 in Italy and Surrounding Areas. Istituto Nazionale di Geofisica e Vulcanologia. 2021. Available online: https://diss.ingv.it/diss330/dissmap.html (accessed on 24 March 2023).
- De Vincenzo, A.; Molino, A.J.; Molino, B.; Scorpio, V. Reservoir rehabilitation: The new methodological approach of Economic Environmental Defence. Int. J. Sediment Res. 2017, 32, 288–294. [Google Scholar] [CrossRef]
- Bagarani, M.; De Vincenzo, A.; Ievoli, C.; Molino, B. The Reuse of Sediments Dredged from Artificial Reservoirs for Beach Nourishment: Technical and Economic Feasibility. Sustainability 2020, 12, 6820. [Google Scholar] [CrossRef]
- Ascione, A.; Cinque, A.; Miccadei, E.; Villani, F.; Berti, C. The Plio-Quaternary uplift of the Apennine chain: New data from the analysis of topography and river valleys in Central Italy. Geomorphology 2008, 102, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Rapisardi, L. Tratti di neotettonica al confine molisano-abruzzese. Geol. Appl. Idrogeol. 1978, 13, 223–232. [Google Scholar]
- D’Alessandro, L.; Miccadei, E.; Piacentini, T. Morphotectonic study of the lower Sangro River valley (Abruzzi, Central Italy). Geomorphology 2008, 102, 145–158. [Google Scholar] [CrossRef]
- Miccadei, E.; Piacentini, T.; Pozzo, A.D.; Corte, M.L.; Sciarra, M. Morphotectonic map of the Aventino-Lower Sangro valley (Abruzzo, Italy), scale 1:50,000. J. Maps 2013, 9, 390–409. [Google Scholar] [CrossRef] [Green Version]
- Gioia, D.; Gallicchio, S.; Moretti, M.; Schiattarella, M. Landscape response to tectonic and climatic forcing in the foredeep of the southern Apennines, Italy: Insights from Quaternary stratigraphy, quantitative geomorphic analysis, and denudation rate proxies. Earth Surf. Process. Landf. 2014, 39, 814–835. [Google Scholar]
- Mostardini, F.; Merlini, S. Appennino centro-meridionale. Sezioni geologiche e proposta di modello strutturale. Mem. Soc. Geol. Ital. 1986, 35, 177–202. [Google Scholar]
- Patacca, E.; Scandone, P. Geology of the Southern Apennines. Ital. J. Geosci. 2007, 7, 75–119. [Google Scholar]
- Bonardi, G.; Ciarcia, S.; Di Nocera, S.; Matano, F.; Sgrosso, I.; Torre, M. Carta delle principali unità cinematiche dell’Appennino meridionale. Nota illustrative. Ital. J. Geosci. 2009, 128, 47–60. [Google Scholar]
- Patacca, E.; Scandone, P.; Di Luzio, E.; Cavinato, G.P.; Parotto, M. Structural architecture of the central Apennines: Interpretation of the CROP 11 seismic profile from the Adriatic coast to the orographic divide. Tectonics 2008, 27, 36. [Google Scholar] [CrossRef]
- Vezzani, L.; Ghisetti, F.; Festa, A. Carta Geologica del Molise (Scala 1:100.000); Lithograph Geda: Firenze, Italy, 2004. [Google Scholar]
- Bonardi, G.; D’Argenio, B.; Perrone, V. Carta Geologica dell’Appennino Meridionale in scala 1:250.000. Mem. Soc. Geol. Ital. 1988, 41, 1341. [Google Scholar]
- Ricchetti, G.; Ciaranfi, N.; Luperto Sinni, E.; Mongelli, F.; Pieri, P. Geodinamica ed evoluzione sedimentaria e tettonica dell’avampaese apulo. Mem. Soc. Geol. Ital. 1988, 41, 57–82. [Google Scholar]
- Doglioni, C.; Mongelli, F.; Pieri, P. The Puglia uplift (SE-Italy): An anomaly in the foreland of the Apenninic subduction due to buckling of a thick continental lithosphere. Tectonics 1994, 13, 1309–1321. [Google Scholar] [CrossRef]
- Vezzani, L.; Festa, A.; Ghisetti, F. Geology and Tectonic Evolution of the Central-Southern Apennines, Italy; Geological Society of America: Boulder, CO, USA, 2010; Volume 469. [Google Scholar] [CrossRef]
- Di Bucci, D.; Corrado, S.; Naso, G.; Parotto, M.; Praturlon, A. Evoluzione Tettonica Neogenico-Quaternaria dell’Area Molisana. Ital. J. Geosci. 1999, 118, 13–30. [Google Scholar]
- Bracone, V.; Amorosi, A.; Aucelli, P.P.C.; Rosskopf, C.M.; Scarciglia, F.; Di Donato, V.; Esposito, P. The Pleistocene tectono-sedimentary evolution of the Apenninic foreland basin between Trigno and Fortore rivers (Southern Italy) through a sequence stratigraphic perspective. Basin Res. 2012, 24, 213–233. [Google Scholar] [CrossRef]
- Scrocca, D.; Tozzi, M. Tettogenesi Mio-Pliocenica dell’Appennino Molisano. Ital. J. Geosci. 1999, 118, 255–286. [Google Scholar]
- Patacca, E.; Scandone, P. Post-Tortonian mountain building in the Apennines, the role of the passive sinking of a relic lithospheric slab. In The Lithosphere in Italy—Advances in Earth Science Research—A Mid-term Conference Convened by the Italian National Committee for the International Lithosphere Program and Sponsored by the Accademia Nazionale Dei Lincei and the Consiglio Nazionale Delle Ricerche; Boriani, A., Bonafede, M., Piccardo, G.B., Vai, G.B., Eds.; Accademia Nazionale dei Lincei: Rome, Italy, 1989; Volume 80, pp. 157–176. [Google Scholar]
- C.N.R. Neotectonic Map of Italy (Scale 1:500.000). In Progetto Finalizzato Geodinamica; Ambrosetti, P.; Bartolini, C.; Bosi, C.; Carraro, F.; Ciaranfi, N.; Panizza, M.; Papani, G.; Vezzani, L.; Zanferrari, A. (Eds.) Consiglio Nazionale delle Ricerche (CNR): Rome, Italy, 1987. [Google Scholar]
- Rosskopf, C.M.; Scorpio, V. Geomorphologic map of the Biferno River valley floor system (Molise, southern Italy). J. Maps 2013, 9, 106–114. [Google Scholar] [CrossRef]
- APAT. Rapporto sulle frane in Italia: Il Progetto IFFI. Metodologia, risultati e rapporti regionali. APAT Rep. 2007, 78, 681. [Google Scholar]
- Pisano, L.; Zumpano, V.; Aucelli, P.P.C.; Parise, M.; Rosskopf, C.M. Landslide susceptibility zonation at the regional scale: The Molise case study (Italy). Rend. Online Della Soc. Geol. Ital. 2016, 41, 183–186. [Google Scholar] [CrossRef]
- Martino, S.; Antinielli, B.; Bozzano, F.; Caprari, P.; Discenza, M.E.; Esposito, C.; Fiorucci, M.; Iannucci, R.; Marmoni, G.M.; Schilirò, L. Landslides triggered after the 16 August 2018 Mw 5.1 Molise earthquake (Italy) by a combination of intense rainfalls and seismic shaking. Landslides 2020, 17, 1177–1190. [Google Scholar] [CrossRef]
- Martino, S.; Marmoni, G.M.; Fiorucci, M.; Ceci, A.F.; Discenza, M.E.; Rouhi, J.; Tedoradze, D. Role of antecedent rainfall in the earthquake-triggered shallow landslides involving unsaturated slope covers. Appl. Sci. 2022, 12, 2917. [Google Scholar] [CrossRef]
- Jenny, S.; Goes, S.; Giardini, D.; Kahle, H.G. Seismic potential of southern Italy. Tectonophysics 2006, 415, 81–101. [Google Scholar] [CrossRef]
- Guidoboni, E.; Ferrari, G.; Tarabusi, G.; Sgattoni, G.; Comastri, A.; Mariotti, D.; Ciuccarelli, C.; Bianchi, M.G.; Valensise, G. CFTI5Med, the new release of the catalogue of strong earthquakes in Italy and in the Mediterranean area. Sci. Data 2019, 6, 80. [Google Scholar] [CrossRef] [Green Version]
- Miccolis, S.; Filippucci, M.; de Lorenzo, S.; Frepoli, A.; Pierri, P.; Tallarico, A. Seismogenic Structure Orientation and Stress Field of the Gargano Promontory (Southern Italy) From Microseismicity Analysis. Front. Earth Sci. 2021, 9, 589332. [Google Scholar] [CrossRef]
- Miccadei, E.; Carabella, C.; Paglia, G. Morphoneotectonics of the Abruzzo Periadriatic Area (Central Italy): Morphometric Analysis and Morphological Evidence of Tectonics Features. Geosciences 2021, 11, 397. [Google Scholar] [CrossRef]
- Di Stefano, R.; Ciaccio, M.G.; Baccheschi, P.; Zhao, D. The Adriatic Thrust Fault of the 2021 Seismic Sequence Estimated from Accurate Earthquake Locations Using sP Depth Phases. Bull. Seismol. Soc. Am. 2022, 113, 480–493. [Google Scholar] [CrossRef]
- Strahler, A.N. Quantitative classification of watershed geomorphology. Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Forte, A.M.; Whipple, K.X. Short communication: The Topographic Analysis Kit (TAK) for TopoToolbox. Earth Surf. Dyn. 2019, 7, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Forte, A.M. Topographic-Analysis-Kit, (v1.0.2). Zenodo. 2019. Available online: https://zenodo.org/record/2536565/export/hx (accessed on 10 February 2023).
- Hack, J.T. Stream-Profile Analysis and Stream-Gradient Index. J. Res. U.S. Geol. Surv. 1973, 1, 421–429. [Google Scholar]
- Valkanou, N.; Karymbalis, E.; Papanastassiou, D.; Soldati, M.; Chalkias, C.; Gaki-Papanastassiou, K. Μorphometric Analysis for the Assessment of Relative Tectonic Activity in Evia Island, Greece. Geosciences 2020, 10, 264. [Google Scholar] [CrossRef]
- Buczek, K.; Gòrnik, M. Evaluation of tectonic activity using morphometric indices: Case study of the Tatra Mts. (Western Carpathians, Poland). Environ. Earth Sci. 2020, 79, 176. [Google Scholar] [CrossRef] [Green Version]
- Pavano, F.; Romagnoli, G.; Tortorici, G.; Catalano, S. Morphometric evidences of recent tectonic deformation along the southeast-ern margin of the Hyblean Plateau (SE-Sicily, Italy). Geomorphology 2019, 342, 1–19. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Bhat, S.A.; Rashid, I. Geoinformatics for assessing the morphometric control on hydrological response at watershed scale in the upper Indus Basin. J. Earth Syst. Sci. 2012, 121, 659–686. [Google Scholar] [CrossRef] [Green Version]
- Wobus, C.; Whipple, K.X.; Kirby, E.; Snyder, N.; Johnson, J.; Spyropolou, K.; Crosby, B.; Sheehan, D. Tectonics from topography: Procedures, promise, and pitfalls. Spec. Pap. Geol. Soc. Am. 2006, 398, 55–74. [Google Scholar] [CrossRef]
- Smith, A.G.; Fox, M.; Schwanghart, W.; Carter, A. Comparing methods for calculating channel steepness index. Earth-Sci. Rev. 2022, 227, 103970. [Google Scholar] [CrossRef]
- Siddiqui, S.; Castaldini, D.; Soldati, M. DEM-based drainage network analysis using steepness and Hack SL indices to identify areas of differential uplift in Emilia–Romagna Apennines, northern Italy. Arab. J. Geosci. 2017, 10, 3. [Google Scholar] [CrossRef]
- Cyr, A.J.; Granger, D.; Olivetti, V.; Moli, P. Quantifying rock uplift rates using channel steepness and cosmogenic nuclide–determined erosion rates: Examples from northern and southern Italy. Lithosphere 2010, 2, 188–198. [Google Scholar] [CrossRef] [Green Version]
- Kirby, E.; Whipple, K. Quantifying differential rock-uplift rates via stream profile analysis. Geology 2001, 29, 415–418. [Google Scholar] [CrossRef]
- Castillo, M.; Muñoz-Salinas, E.; Ferrari, L. Response of a landscape to tectonics using channel steepness indices (ksn) and OSL: A case of study from the Jalisco Block, Western Mexico. Geomorphology 2014, 221, 204–214. [Google Scholar] [CrossRef]
- Whittaker, A.C.; Boulton, S.J. Tectonic and climatic controls on knickpoint retreat rates and landscape response times. J. Geophys. Res. Earth Surf. 2012, 117, 19. [Google Scholar] [CrossRef] [Green Version]
- Flint, J.J. Stream gradient as a function of order, magnitude, and discharge. Water Resour. Res. 1974, 10, 969–973. [Google Scholar] [CrossRef]
- Whipple, K.X. Bedrock Rivers and the Geomorphology of Active Orogens. Annu. Rev. Earth Planet. Sci. 2004, 32, 151–185. [Google Scholar] [CrossRef] [Green Version]
- Mudd, S.M.; Clubb, F.J.; Gailleton, B.; Hurst, M.D. How concave are river channels? Earth Surf. Dynam. 2018, 6, 505–523. [Google Scholar] [CrossRef] [Green Version]
- Boulton, S.J. Geomorphic Response to Differential Uplift: River Long Profiles and Knickpoints from Guadalcanal and Makira (Solomon Islands). Front. Earth Sci. 2020, 8, 23. [Google Scholar] [CrossRef]
- Spagnolo, M.; Pazzaglia, F.J. Testing the geological influences on the evolution of river profiles: A case from the northern Apennines (Italy). Suppl. Geogr. Fis. E Din. Quat. 2005, 28, 103–113. [Google Scholar]
- Roe, G.H.; Montgomery, D.R.; Hallet, B. Effects of orographic precipitation variations on the concavity of steady-state river profiles. Geology 2002, 30, 143–146. [Google Scholar] [CrossRef]
- Queiroz, G.L.; Salamuni, E.; Nascimento, E.R. Knickpoint finder: A software tool that improves neotectonic analysis. Comput. Geosci. 2015, 76, 80–87. [Google Scholar] [CrossRef]
- Ambrosetti, P.; Bonadonna, F.P.; Bosi, C.; Carraro, F.; Cita, B.M.; Giglia, G.; Manetti, P.; Martinis, B.; Merlo, C.; Panizza, M.; et al. Proposta di un Progetto Operativo per L’elaborazione della Carta Neotettonica D’italia; CNR-Progetto Finalizzato Geodinamica: Rome, Italy, 1976; pp. 1–49. [Google Scholar]
- Carabella, C.; Buccolini, M.; Galli, L.; Miccadei, E.; Paglia, G.; Piacentini, T. Geomorphological analysis of drainage changes in the NE Apennines piedmont area: The case of the middle Tavo River bend (Abruzzo, Central Italy). J. Maps 2020, 16, 222–235. [Google Scholar] [CrossRef] [Green Version]
- Miccadei, E.; Carabella, C.; Paglia, G.; Piacentini, T. Paleo-drainage network, morphotectonics, and fluvial terraces: Clues from the verde stream in the middle Sangro river (central italy). Geosciences 2018, 8, 337. [Google Scholar] [CrossRef] [Green Version]
- Piacentini, T.; Miccadei, E. The role of drainage systems and intermontane basins in the Quaternary landscape of the Central Apennines chain (Italy). Rend. Lincei 2014, 25 (Suppl. 2), 139–150. [Google Scholar] [CrossRef]
- Chelli, A.; Segadelli, S.; Vescovi, P.; Tellini, C. Large-scale geomorphological mapping as a tool to detect structural features: The case of Mt. Prinzera ophiolite rock mass (Northern Apennines, Italy). J. Maps 2016, 12, 770–776. [Google Scholar] [CrossRef] [Green Version]
- Demurtas, V.; Orrù, P.E.; Deiana, G. Evolution of Deep-Seated Gravitational Slope Deformations in Relation with Uplift and Fluvial Capture Processes in Central Eastern Sardinia (Italy). Land 2021, 10, 1193. [Google Scholar] [CrossRef]
- Miccadei, E.; Piacentini, T.; Buccolini, M. Long-term geomorphological evolution in the Abruzzo area, Central Italy: Twenty years of research. Geol. Carpathica 2017, 68, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Campobasso, C.; Carton, A.; Chelli, A.; D’orefice, M.; Dramis, F.; Graciotti, R.; Guida, D.; Pambianchi, G.; Peduto, F.; Pellegrini, L. Aggiornamento ed integrazioni delle linee guida della Carta Geomorfologica d’Italia alla scala 1:50.000. In Quaderni Serie III; Servizio Geologico d’Italia: Rome, Italy, 2021; Volume 13. [Google Scholar]
- Maddy, D. Uplift-driven valley incision and river terrace formation in southern England. J. Quat. Sci. 1997, 12, 539–545. [Google Scholar] [CrossRef]
- Kiden, P.; Törnqvist, T.E. Can river terrace flights be used to quantify Quaternary tectonic uplift rates? J. Quat. Sci. 1998, 13, 573–575. [Google Scholar] [CrossRef]
- Lavé, J.; Avouac, J.P. Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. J. Geophys. Res. Solid Earth 2000, 105, 5735–5770. [Google Scholar] [CrossRef] [Green Version]
- Wegmann, K.W.; Pazzaglia, F.J. Late Quaternary fluvial terraces of the Romagna and Marche Apennines, Italy: Climatic, lithologic, and tectonic controls on terrace genesis in an active orogen. Quat. Sci. Rev. 2009, 28, 137–165. [Google Scholar] [CrossRef]
- Piacentini, T.; Mascioli, F.; Miccadei, E. Successioni del Quaternario continentale. In Note Illustrative del Foglio 372 “Vasto” della Carta Geologica D’italia alla Scala 1: 50.000; Servizio Geologico d’Italia, ISPRA: Roma, Italy, 2012; pp. 55–69. [Google Scholar]
- Merritts, D.J.; Vincent, K.R.; Wohl, E.E. Long river profiles, tectonism, and eustasy: A guide to interpreting fluvial terraces. J. Geophys. Res. Solid Earth 2004, 99, 31–50. [Google Scholar] [CrossRef] [Green Version]
- Valente, E. Long-Term Morphotectonic Evolution of the Southern Apennines. Ph.D. Thesis, Università degli Studi di Napoli “Federico II”, Napoli, Italy, 2009; 224p. [Google Scholar]
- Bracone, V. Studio Geologico-Stratigrafico e Geomorfologico nel Settore Costiero Compreso tra il Fiume Trigno ed il Fiume Fortore. Ph.D. Thesis, Università degli Studi del Molise, Campobasso, Italy, 2009; 149p. [Google Scholar]
- Kruse, S.; Royden, L. Bending and unbending of an elastic lithosphere: The Cenozoic history of the Apennine and Dinaride foredeep basins. Tectonics 1994, 13, 278–302. [Google Scholar] [CrossRef]
- Ferrarini, F.; Arrowsmith, J.R.; Brozzetti, F.; de Nardis, R.; Cirillo, D.; Whipple, K.X.; Lavecchia, G. Late Quaternary Tectonics along the Peri-Adriatic Sector of the Apenninic Chain (Central-Southern Italy): Inspecting Active Shortening through Topographic Relief and Fluvial Network Analyses. Lithosphere 2021, 2021, 7866617. [Google Scholar] [CrossRef]
- Cello, G.; Martini, N.; Paltrinieri, W.; Tortorici, L. Structural styles in the frontal zones of the southern Apennines, Italy: An example from the Molise district. Tectonics 1989, 8, 753–768. [Google Scholar]
- Galeandro, A.; Doglioni, A.; Guerricchio, A.; Simeone, V. Hydraulic stream network conditioning by a tectonically induced, giant, deep-seated landslide along the front of the Apennine chain (south Italy). Nat. Hazards Earth Syst. Sci. 2013, 13, 1283–1329. [Google Scholar] [CrossRef] [Green Version]
- Corrado, S.; Di Bucci, D.; Naso, G.; Butler, R.W.H. Thrusting and strike-slip tectonics in the Alto Molise region (Italy): Implications for the Neogene-Quaternary evolution of the Central Apennine orogenic system. J. Geol. Soc. Lond. 1997, 154, 679–688. [Google Scholar] [CrossRef]
- Fracassi, U.; Valensise, G. Unveiling the sources of the catastrophic 1456 multiple earthquake: Hints to an unexplored tectonic mechanism in southern Italy. Bull. Seismol. Soc. Am. 2017, 97, 725–748. [Google Scholar] [CrossRef] [Green Version]
- Latorre, D.; De Gori, P.; Chiarabba, C.; Amato, A.; Virieux, J.; Monfret, T. Three-dimensional kinematic depth migration of converted waves: Application to the 2002 Molise aftershock sequence (southern Italy). Geophys. Prospect. 2008, 56, 587–600. [Google Scholar] [CrossRef]
- Chiarabba, C.; De Gori, P.; Chiaraluce, L.; Bordoni, P.; Cattaneo, M.; De Martin, M.; Frepoli, A.; Michelini, A.; Monachesi, A.; Moretti, M.; et al. Mainshocks and aftershocks of the 2002 Molise seismic sequence, southern Italy. J. Seismol. 2005, 9, 487–494. [Google Scholar] [CrossRef]
- Moretti, M.; Margheriti, L.; Govoni, A.; Marchetti, A.; Ointore, S.; Carrannante, S.; D’Alema, E.; De Gori, P.; Piccinini, D.; valoroso, L.; et al. L’emergenza sismica in Molise (Agosto 2018). Implementazione della rete sismica di emergenza SISMIKO e condivisione dei dati. Rapp. Tec. INGV 2020, 418, 1–32. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancinelli, V.; Paglia, G.; Discenza, M.E.; Minnillo, M.; Cerrone, F.; Rizzo, M.; Miccadei, E. Morphotectonic Features in the Middle Biferno River Valley: The Case of Ponte Liscione Dam (Central Italy). Geosciences 2023, 13, 240. https://doi.org/10.3390/geosciences13080240
Mancinelli V, Paglia G, Discenza ME, Minnillo M, Cerrone F, Rizzo M, Miccadei E. Morphotectonic Features in the Middle Biferno River Valley: The Case of Ponte Liscione Dam (Central Italy). Geosciences. 2023; 13(8):240. https://doi.org/10.3390/geosciences13080240
Chicago/Turabian StyleMancinelli, Vania, Giorgio Paglia, Marco Emanuele Discenza, Mariacarmela Minnillo, Francesco Cerrone, Marzia Rizzo, and Enrico Miccadei. 2023. "Morphotectonic Features in the Middle Biferno River Valley: The Case of Ponte Liscione Dam (Central Italy)" Geosciences 13, no. 8: 240. https://doi.org/10.3390/geosciences13080240
APA StyleMancinelli, V., Paglia, G., Discenza, M. E., Minnillo, M., Cerrone, F., Rizzo, M., & Miccadei, E. (2023). Morphotectonic Features in the Middle Biferno River Valley: The Case of Ponte Liscione Dam (Central Italy). Geosciences, 13(8), 240. https://doi.org/10.3390/geosciences13080240