Rendzinas of the Russian Northwest: Diversity, Genesis, and Ecosystem Functions: A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Geography, Morphology, and Taxonomy
3.2. The Role of Parent Materials in Soil Genesis
3.3. The Development of Soil Profile in Time
3.4. Soil Organic Matter in Presence of Carbonates
3.5. Agricultural and Thechnogenic Soil Transformation
3.6. Soil Transforms Local Biodiversity
3.7. Soil Regulates Ecosystem Functions and Services
3.8. Soil Chemical Properties
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sibirtsev, N.M. Classification of soils in application to Russia. Yearb. Geol. Meneral. Russ. 1897, 2, 73–78. [Google Scholar]
- Sibirtsev, N.M. Selected Works: Vol. 1–2. In Soil Science; Sobolev, S.S., Ed.; Selkhozgiz: Moscow, Russia, 1951; 472p. [Google Scholar]
- Vilensky, D.G. Soil Science. In Textbook for Universities; Uchpedgiz: Moscow, Russia, 1950; 383p. [Google Scholar]
- Duchaufour, F. Fundamentals of Soil Science; Progress: Moscow, Russia, 1970; 573p. [Google Scholar]
- Reintam, L.; Kann, J.; Kailas, T.; Kahrik, R. Elemental composition of humic acids and fulvic acids in the epipedon of some Estonian soils. Proc. Est. Acad. Sci. Chem. 2000, 49, 131–144. [Google Scholar] [CrossRef]
- Gagarina, E.I.; Abakumov, E.V.; Legkih, A.L. Soils of the central part of Izhorskaya upland and their transformation under antropogenic impart. Biol. Commun. 2007, 1, 117–131. [Google Scholar]
- Gagarina, E.I. Lithological Factor of Soilformation (on Example of North-West of Russian Plain); Saint-Petersburg State University: Saint-Petersburg, Russia, 2004; 260p. [Google Scholar]
- Gagarina, E.I.; Khantulev, A.A. On the ratio of leaching and in the relationship of leaching and podzolization processes in soddy-carbonate soils of Izhora upland. Bull. Leningr. State Univ. 1961, 1, 21. [Google Scholar]
- Valkov, V.F.; Kazeev, K.S.; Kolesnikov, S.I.; Kutrovskii, M.A. Soil Formation on Limestones and Marls; ZAO Rostizdat: Rostov, Russia, 2007; 198p. [Google Scholar]
- Abakumov, E. Pedodiversity of Subboreal Ecosystems under Contrasting Geogenic Factors (Case Study of Samarskaya Luka, Middle Volga Region, Russia). Geosciences 2022, 12, 443. [Google Scholar] [CrossRef]
- Sukhanov, P.A. Genetic and Agroecological Features of Subtropic Rends of North-East Part of Libyan; Candidate of Agricultural Sciences—Moscow Agricultural Academy of K.A. Timiryazev: Moscow, Russia, 1986. [Google Scholar]
- Kazeev, K.S.; Soldatov, V.P.; Shkhapatsev, A.K.; Yermolaeva, O.Y.; Kolesnikov, S.I. Changes in the Properties of Calcareous Soils after Clearcutting in the Coniferous-Deciduous Forests of the Northwestern Caucasus. Russ. J. For. Sci. 2021, 4, 426–436. [Google Scholar]
- Pestryakov, V.K. (Ed.) Soils of Leningrad Oblast; Leningraddat: Leningrad, Russia, 1973; 344p. [Google Scholar]
- Nitsenko, A.A. Essays on the Vegetation of the Leningrad Region; Leningraddat: Leningrad, Russia, 1959; 142p. [Google Scholar]
- Malakhovsky, D.B.; Markov, K.K. (Eds.) Geomorphology and Quaternary Deposits of the North-West of the European Part of the USSR; Nauka: Leningrad, Russia, 1969; 256p. [Google Scholar]
- Konyushkov, D.E.; Gerasimova, M.I.; Ananko, T.V. Correlation of Soddy Calcareous Soils on the Soil Map of the Russian Federation (1:2.5 M Scale, 1988) and in the Russian Soil Classification System. Eurasian Soil Sci. 2019, 52, 244–257. [Google Scholar] [CrossRef]
- Russian Soil Database. Date of Access to the Source. Available online: https://soil-db.ru/map?lat=55.7558&lng=37.6173 (accessed on 14 June 2023).
- Abdushaeva, Y.M.; Nikolayeva, T.A.; Karniz, A.A. Species composition of perennial legumes on soddy-carbonate soils in the conditions of the Novgorod region. In Improving the Efficiency of Use and Reproduction of Natural Resources; Materials of the Scientific-Practical Conference; Nikonov, M.V., Ed.; Yaroslav the Wise Novgorod State University: Veliky Novgorod, Russia, 2016; pp. 217–220. [Google Scholar]
- Voyku, I.P. Differentiation of agricultural land use in the Pskov region. In Proceedings of the Formation of Organizational and Economic Conditions for the Effective Functioning of the Agroindustrial Complex: Collection of Scientific Papers of the XII International Scientific and Practical Conference, Minsk, Belorus, 28–29 May 2020; pp. 116–121. [Google Scholar]
- V. V. Dokuchaep Soil Institute (VASKhNIL). Classification and Diagnostics of Soils in the USSR; Kolos: Moscow, Russia, 1977; 220p. [Google Scholar]
- V. V. Dokuchaep Soil Institute (VASKhNIL). Classification and Diagnostics of soils in Russia; Oykumena: Smolensk, Russia, 2004; 342p. [Google Scholar]
- Dokuchaev, V.V. (Ed.) Field Soil Identifier; Soil Institute: Moscow, Russia, 2008; 182p. [Google Scholar]
- Ponomareva, V.V.; Myasnokiva, A.M. To the characteristics of humus formation process in sod-carbonate soils. Sov. Soil Sci. 1951, 12, 721–735. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Goryachkin, S.V.; Spiridonova, I.A.; Sedov, S.N.; Targulyan, V.O. North taiga soils on dense gypsums: Morphology, properties, and genesis. Eurasian Soil Sci. 2003, 7, 773–785. [Google Scholar]
- Zhangurov, E.V.; Startsev, V.V.; Dubrovskiy, Y.A.; Degteva, S.V.; Dymov, A.A. Morphogenetic features of soils under mountainous larch forests and woodlands in the subpolar Urals. Eurasian Soil Sci. 2019, 2, 1463–1476. [Google Scholar] [CrossRef]
- Abakumov, E.; Kosaki, T.; Fujitake, N. Humus and Humic Acids of Luvisol and Cambisol of Jiguli Ridges, Samara Region, Russia. Appl. Environ. Soil Sci. 2009, 671359. [Google Scholar] [CrossRef] [Green Version]
- Porshnyakov, S.N.; Porshnyakov, G.S. Geological Excursions in the Borovichi Area; GEOS: Moscow, Russia, 2021; 128p. [Google Scholar]
- Ergina, E.; Tronza, G.; Shevchenko, I.; Ergin, S.; Sidorenko, I. Current nature and problems of agricultural land management in the Republic of Crimea. In Topical Problems of Agriculture, Civil and Environmental Engineering (TPACEE 2020) E3S Web Conferences; EDP Sciences: Les Ulis, France, 2020; Volume 224, p. 04015. [Google Scholar]
- Reintam, E.; Köster, T. The role of chemical indicators to correlate some Estonian soils with WRB and Soil Taxonomy criteria. Geoderma 2006, 136, 199–209. [Google Scholar] [CrossRef]
- Reintam, L.Y. Formation and development of Rendzinas. Sci. Proc. Est. Acad. Agric. 1975, 100, 3–29. [Google Scholar]
- Harbar, V.; Poznyak, S. Genesis and properties of rendzinas in the podilski tovtry. Pol. J. Soil Sci. 2015, XLVIII/2, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Alexandrovskiy, A.L. Rates of soil–forming processes in three main models of pedogenesis. Rev. Mex. Cienc. Geológicas 2007, 24, 283–292. [Google Scholar]
- Zech, W.; Hempfling, R.; Haumaier, L.; Schulten, H.-R.; Haider, K. Humification in subalpine Rendzinas: Chemical analyses, IR and 13C NMR spectroscopy and pyrolysis-field ionization mass spectrometry. Geoderma 1990, 47, 123–138. [Google Scholar] [CrossRef]
- Abakumov, E.V.; Gagarina, E.I. Soil Formation in Regeneration Ecosystems of Minining Heaps of North-West of Russia; Saint-Petersburg Sate University: Saint-Petersburg, Russia, 2006. [Google Scholar]
- Orlova, N.E.; Bakina, L.G.; Orlova, E.E. The principes of humus seasonal transformation in Russian north-west soils. Biol. Commun. 2006, 1, 210–215. [Google Scholar]
- Gagarina, E.I.; Bakina, L.G.; Plotnikova, T.A. Changes in the forms of humic acid binding to mineral components of soils during liming. Vestnik. SPbSU 1998, 3. Available online: http://vestnik.spbu.ru/html15/s03/s03v1/s03v1.html (accessed on 14 June 2023).
- Ivanov, A.I.; Konashenkov, A.A.; Vorobyov, V.A.; Ivanova, Z.A.; Vyazovskiy, V.A.; Petrov, I.I. Topical issues of liming of acidic soils of the non-chernozem region. Agrochem. Newsl. 2019, 3, 6–9. [Google Scholar]
- Chebotarev, N.T.; Mikusheva, E.N.; Mushinsliy, A.A. Influence of the mineral fertilizers and lime on fractional-group composition and balance of humus in the soddy-podzolic. Agrochem. Newsl. 2009, 3, 10–12. [Google Scholar]
- Radmanović, S.B.; Đorđević, A.R.; Nikolić, N.S. Humification degree of rendzina soil humic acids influenced by carbonate leaching and land use. J. Agric. Sci. 2015, 60, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Kõlli, R.; Rannik, K. Matching Estonian humus cover types’ (pro humus forms’) and soils’ classifications. Appl. Soil Ecol. 2018, 123, 627–631. [Google Scholar] [CrossRef]
- Kalicka, M.; Witkowska-Walczak, B.; Sawiñski, C.; DêbickiInt, R. Impact of land use on water properties of rendzinas. Agrophysics 2008, 22, 333–338. [Google Scholar]
- Bartenyov, I.M.; Poznyakov, I.V. Wear capacity of soils and its impact on durability of working tools of tillage machines. For. J. 2013, 3, 114–123. [Google Scholar]
- Abakumov, E.V.; Maximova, E.I.; Lagoda, A.V.; Koptseva, E.M. Soil formation in the quarries for limestone and clay production in the Ukchta region. Eurasian Soil Sci. 2011, 44, 380–385. [Google Scholar] [CrossRef]
- Litvinovich, A.V.; Pavlova, O.Y.; Lavryshev, A.V.; Bure, V.M.; Kovleva, A.O. The Ameliorative Properties, Fertilizing Value and the Rate of Dissolution in Soils of Different Size Fractions of Screening Dolomite Used for Road Construction. Agrochemistry 2016, 200, 31–41. [Google Scholar]
- Bryukhanov, A.Y.; Kondratyev, S.A.; Oblomkova, N.S.; Ogluzdin, A.S.; Subbotin, I.A. Methodology. Biogenic Pressure on Water Objects from Agricultural Production. Technol. Tech. Means Mech. Prod. Crop Livest. Prod. 2016, 89, 175–183. [Google Scholar]
- Aparin, B.F.; Kasatkina, G.A.; Matinan, N.N.; Sukhacheva, E.Y. Red Soil Data Book of Leningrad Region; Aeroplan: Saint-Petersburg, Russia, 2007; 320p. [Google Scholar]
- Pärtel, M.; Mändla, R.; Zobel, M. Landscape history of a calcareous (alvar) grassland in Hanila, western Estonia, during the last three hundred years. Landsc. Ecol. 1999, 14, 187–196. [Google Scholar] [CrossRef]
- Kalda, A.A. The Vegetation of the Lahemaa National Park (Characterization, Investigation and Problems of Reconstruction). Acta et Commentationes Universitatis Tartuensis, Tartu. Ph.D. Thesis, University of Tartu, Tartu, Estonia, 1982. [Google Scholar]
- Costanza, R.; D’arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Van Den Belt, M. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Kovaleva, T.V.; Krupnov, O.R.; Florinskaya, T.M. Duderhof Heights—Complex Natural Reserve; Saint-Petersburg State University: Saint-Petersburg, Russia, 2006; 144p. [Google Scholar]
- Vorjniuk, G.Y.; Pitulko, V.M.; Kulibaba, V.V. Spatiotemporal variability of groundwater composition on the territory of the izhora plateau. Reg. Ecol. 2015, 6, 67–79. [Google Scholar]
Horizon | Depth, cm | TOC, % to Fine Earth | pH | CaCO3, % | Skeletal Fraction, % | Clay Fraction, % | Cha/Cfa |
---|---|---|---|---|---|---|---|
Rendzic Leptosol, Izhora Upland, Leningrad region | |||||||
A (AU) | 0–10 | 8.09 | 7.20 | 27.09 | 55 | 19.1 | 1.50 |
Acα (ACca) | 10–15 | 3.42 | 7.55 | 44.55 | 67 | 17.8 | 1.10 |
Cα (Cca) | 15–22 | 0.20 | 7.90 | 58.70 | 80 | 12.1 | 0.90 |
Rendzic Technosol, bottom of quarry, Izhora Upland, Leningrad region | |||||||
A (AJ) | 0–5 | 2.10 | 7.80 | 55.70 | 87 | 9.0 | 0.80 |
Acα (ACca) | 5–12 | 0.53 | 8.10 | 69.80 | 93 | 6.0 | 0.70 |
Umbric Retisol, Izhora Upland, Leningrad region | |||||||
A (AU) | 0–12 | 6.20 | 5.80 | 0.00 | 10 | 28 | 0.95 |
AE(AEL) | 12–25 | 1.30 | 5.45 | 0.00 | 12 | 17 | 0.75 |
BCα (BCca) | 25–35 | 0.50 | 5.70 | 2.30 | 15 | 23 | 0.79 |
Cα (Cca) | 35–45 | 0.15 | 7.20 | 7.80 | 25 | 12 | 0.80 |
Umric Retisol, Novgorod region | |||||||
A (AY) | 0–15 | 3.45 | 5.20 | 0.00 | 15 | 34 | 0.85 |
AE (AEL) | 15–29 | 0.98 | 4.60 | 0.00 | 17 | 28 | 0.70 |
Bt (Bi) | 29–45 | 0.25 | 5.80 | 1.20 | 19 | 33 | 0.60 |
CαCca | 45–60 | 0.12 | 6.90 | 2.40 | 23 | 19 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abakumov, E. Rendzinas of the Russian Northwest: Diversity, Genesis, and Ecosystem Functions: A Review. Geosciences 2023, 13, 216. https://doi.org/10.3390/geosciences13070216
Abakumov E. Rendzinas of the Russian Northwest: Diversity, Genesis, and Ecosystem Functions: A Review. Geosciences. 2023; 13(7):216. https://doi.org/10.3390/geosciences13070216
Chicago/Turabian StyleAbakumov, Evgeny. 2023. "Rendzinas of the Russian Northwest: Diversity, Genesis, and Ecosystem Functions: A Review" Geosciences 13, no. 7: 216. https://doi.org/10.3390/geosciences13070216
APA StyleAbakumov, E. (2023). Rendzinas of the Russian Northwest: Diversity, Genesis, and Ecosystem Functions: A Review. Geosciences, 13(7), 216. https://doi.org/10.3390/geosciences13070216