Interpretation of Hyperspectral Shortwave Infrared Core Scanning Data Using SEM-Based Automated Mineralogy: A Machine Learning Approach
Abstract
:1. Introduction
2. Data and Processing
2.1. SEM-Based Automated Mineralogy
2.2. Shortwave Infrared Spectroscopy
2.3. Image Registration
3. Neural Network Masking
3.1. Preprocessing
3.2. Supervised Learning and Results
3.3. Finer Masking
4. Modal Mineral Classification
4.1. Preprocessing
4.2. Modal Learning
4.3. Results
4.4. Interpreting Accuracy
4.5. Cluster-Wise Accuracy
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acosta, I.; Contreras, C.; Khodadadzadeh, M.; Tolosana-Delgado, R.; Gloaguen, R. Drill-core hyperspectral and geochemical data integration in a superpixel-based machine learning framework. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4214–4228. [Google Scholar] [CrossRef]
- Barton, I.F.; Gabriel, M.J.; Lyons-Baral, J.; Barton, M.D.; Duplessis, L.; Roberts, C. Extending geometallurgy to the mine scale with hyperspectral imaging: A pilot study using drone-and ground-based scanning. Mining Metall. Explor. 2021, 38, 799–818. [Google Scholar] [CrossRef]
- De La Rosa, R.; Khodadadzadeh, M.; Tusa, L.; Kirsch, M.; Gisbert, G.; Tornos, F.; Tolosana-Delgado, R.; Gloaguen, R. Mineral quantification at deposit scale using drill-core hyperspectral data: A case study in the Iberian Pyrite Belt. Ore Geol. Rev. 2021, 139, 104514. [Google Scholar] [CrossRef]
- Tusa, L.; Mahdi, K.; Contreras, C.; Rafiezadeh, K.; Fuchs, M.; Gloaguen, R.; Gutzmer, J. Drill-core mineral abundance estimation using hyperspectral and high-resolution mineralogical data. Remote Sens. 2020, 12, 1218. [Google Scholar] [CrossRef] [Green Version]
- Capps, R.; Moore, J. Castle Mountain Geology and Gold Mineralization, San Bernardino County, California and Clark County, Nevada; Nevada Bureau of Mines and Geology, Map 108; Department of Geology University of Georgia: Athens, GA, USA, 1997. [Google Scholar]
- Nielson, J.; Turner, R.; Bedford, D. Geologic Map of the Hart Peak Quadrangle, California and Nevada: A Digital Database; Technical Report, Open-File Report 99-34; U.S. Geological Survey: Reston, VA, USA, 1999.
- Secrest, G.; Tahija, L.; Black, E.; Rabb, T.; Nilsson, J.; Bartlett, R. Technical Report on the Castle Mountain Project Feasibility Study, San Bernardino County, California, USA; Technical Report, Feasibility Study for Equinox Gold; 2021; 453p. Available online: https://www.sec.gov/Archives/edgar/data/1756607/000127956921000353/ex991.htm (accessed on 14 June 2023).
- Smith, G.M.; Milton, E.J. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sens. 1999, 20, 2653–2662. [Google Scholar] [CrossRef]
- Bedell, R.; Coolbaugh, M. Atmospheric corrections. Rev. Econ. Geol. 2009, 16, 257–263. [Google Scholar]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis, 6th ed.; Pearson: London, UK, 2007. [Google Scholar]
- Ross, D.A.; Lim, J.; Lin, R.; Yang, M. Incremental learning for robust visual tracking. Int. J. Comput. Vis. 2008, 77, 125–141. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A deep donvolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Kingma, D.P.; Ba, J. ADAM: A method for stochastic optimization. arXiv 2017, arXiv:cs.LG/1412.6980. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Daubechies, I. Society for Industrial and Applied Mathematics. Ten Lect. Wavelets 1992. [Google Scholar]
- Kingma, D.P.; Welling, M. An introduction to variational autoencoders. Found. Trends Mach. Learn. 2019, 12, 307–392. [Google Scholar] [CrossRef] [Green Version]
- Murphy, K.P. Probabilistic Machine Learning: Advanced Topics; MIT Press: Cambridge, MA, USA, 2023. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Aarge-scale machine learning on heterogeneous systems. arXiv 2015, arXiv:1603.04467. [Google Scholar]
- Green, P.J.; Silverman, B.W. Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach; Chapman & Hall: Boca Raton, FL, USA, 1993. [Google Scholar]
- Tenorio, L. An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems; Society for Industrial and Applied Mathematics; SIAM: Philadelphia, PA, USA, 2017. [Google Scholar]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Provost, F.; Fawcett, T. Analysis and visualization of classifier performance with nonuniform class and cost distributions. In AAAI-97 Workshop on AI Approaches to Fraud Detection and Risk Management; The AAAI Press: Menlo Park, CA, USA, 1997; pp. 57–63. [Google Scholar]
- Bengfort, B.; Bilbro, R.; Danielsen, N.; Gray, L.; McIntyre, K.; Roman, P.; Poh, Z. Yellowbrick. Version 0.9.1. Available online: http://www.scikit-yb.org/en/latest/ (accessed on 30 April 2023).
- Acosta, I.C.C.; Khodadadzadeh, M.; Tusa, L.; Ghamisi, P.; Gloaguen, R. A machine learning framework for drill-core mineral mapping using hyperspectral and high-resolution mineralogical data fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4829–4842. [Google Scholar] [CrossRef]
- Montavon, G.; Samek, W.; Müller, K.R. Methods for interpreting and understanding deep neural networks. Digit. Signal Process. 2018, 73, 1–15. [Google Scholar] [CrossRef]
Model | Training Samples | Test Samples |
---|---|---|
Quartz | 7616 | 2538 |
K-Feldspar | 3785 | 1263 |
Na-K-Feldspar | 64 | 12 |
Unclassified | 54 | 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rotem, A.; Vidal, A.; Pfaff, K.; Tenorio, L.; Chung, M.; Tharalson, E.; Monecke, T. Interpretation of Hyperspectral Shortwave Infrared Core Scanning Data Using SEM-Based Automated Mineralogy: A Machine Learning Approach. Geosciences 2023, 13, 192. https://doi.org/10.3390/geosciences13070192
Rotem A, Vidal A, Pfaff K, Tenorio L, Chung M, Tharalson E, Monecke T. Interpretation of Hyperspectral Shortwave Infrared Core Scanning Data Using SEM-Based Automated Mineralogy: A Machine Learning Approach. Geosciences. 2023; 13(7):192. https://doi.org/10.3390/geosciences13070192
Chicago/Turabian StyleRotem, Amit, Alexander Vidal, Katharina Pfaff, Luis Tenorio, Matthias Chung, Erik Tharalson, and Thomas Monecke. 2023. "Interpretation of Hyperspectral Shortwave Infrared Core Scanning Data Using SEM-Based Automated Mineralogy: A Machine Learning Approach" Geosciences 13, no. 7: 192. https://doi.org/10.3390/geosciences13070192
APA StyleRotem, A., Vidal, A., Pfaff, K., Tenorio, L., Chung, M., Tharalson, E., & Monecke, T. (2023). Interpretation of Hyperspectral Shortwave Infrared Core Scanning Data Using SEM-Based Automated Mineralogy: A Machine Learning Approach. Geosciences, 13(7), 192. https://doi.org/10.3390/geosciences13070192