The Importance of Eurekan Mountains on Cenozoic Sediment Routing on the Western Barents Shelf
Abstract
:1. Introduction
2. Geological Background
3. Materials and Methods
4. Results
4.1. Central Tertiary Basin—Unit 1, Grumantbyen Formation
4.2. Central Tertiary Basin—Unit 2, Frysjaodden Formation
4.3. Central Tertiary Basin—Units 3A and 3B, Battfjellet and Aspelintoppen Formations
4.4. Southwest Barents Shelf—Unit A, Torsk Formation
4.5. Southwest Barents Shelf—Unit B, Torsk Formation
5. Provenance Interpretations and Discussion
5.1. Provenance Variation Recorded within the Central Tertiary Basin
5.2. Linking the Torsk Formation Sands with Paleogene Sandstones on Spitsbergen
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Piepjohn, K.; Von Gosen, W.; Tessensohn, F. The Eurekan deformation in the Arctic: An outline. J. Geol. Soc. 2016, 173, 1007–1024. [Google Scholar] [CrossRef]
- Vamvaka, A.; Pross, J.; Monien, P.; Piepjohn, K.; Estrada, S.; Lisker, F.; Spiegel, C. Exhuming the Top End of North America: Episodic Evolution of the Eurekan Belt and Its Potential Relationships to North Atlantic Plate Tectonics and Arctic Climate Change. Tectonics 2019, 38, 4207–4228. [Google Scholar] [CrossRef] [Green Version]
- Dörr, N.; Lisker, F.; Clift, P.D.; Carter, A.; Gee, D.G.; Tebenkov, A.M.; Spiegel, C. Late Mesozoic-Cenozoic exhumation history of northern Svalbard and its regional significance: Constraints from apatite fission track analysis. Tectonophysics 2012, 514–517, 81–92. [Google Scholar] [CrossRef]
- Blakey, R. Paleotectonic and paleogeographic history of the Arctic region. Atl. Geosci. 2021, 57, 007–039. [Google Scholar] [CrossRef]
- Smelror, M.; Petrov, O.V.; Larssen, G.B.; Werner, S.C. Atlas: Geological History of the Barents Sea; Geological Survey of Norway: Trondheim, Norway, 2009; p. 134. [Google Scholar]
- Steel, R.J.; Dalland, A.; Kalgraff, K.; Larsen, V. (Eds.) The Central Tertiary Basin of Spitsbergen: Sedimentary Development of a Sheared-Margin Basin; Canadian Society of Petroleum Geologists: Calgary, AB, Canada, 1981; Volume 7, pp. 647–664. [Google Scholar]
- Steel, R.; Gjelberg, J.; Helland-Hansen, W.; Kleinspehn, K.; Nøttvedt, A.; Rye-Larsen, M. The Tertiary Strike-Slip Basins and Orogenic Belt of Spitsbergen. Strike-Slip Deform. Basin Form. Sediment. 1985, 37, 339–359. [Google Scholar] [CrossRef]
- Müller, R.D.; Spielhagen, R.F. Evolution of the Central Tertiary Basin of Spitsbergen: Towards a synthesis of sediment and plate tectonic history. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1990, 80, 153–172. [Google Scholar] [CrossRef]
- Helland-Hansen, W.; Grundvåg, S.-A. The Svalbard Eocene-Oligocene (?) Central Basin succession: Sedimentation patterns and controls. Basin Res. 2021, 33, 729–753. [Google Scholar] [CrossRef]
- Bruhn, R.; Steel, R. High-resolution sequence stratigraphy of a clastic foredeep succession (Paleocene, Spitsbergen): An example of peripheral-bulge-controlled depositional architecture. J. Sediment Res. 2003, 73, 745–755. [Google Scholar] [CrossRef]
- Helland-Hansen, W. Sedimentation in Paleogene foreland basin, Spitsbergen. Assoc. Pet. Geol. Bull. 1990, 74, 260–272. [Google Scholar] [CrossRef]
- Lüthje, C.J.; Nichols, G.; Jerred, R. Sedimentary facies and reconstruction of a transgressive coastal plain with coal formation, Paleocene, Spitsbergen, Arctic Norway. Norw. J. Geol. 2020, 100, 202010. [Google Scholar] [CrossRef]
- Elling, F.J.; Spiegel, C.; Estrada, S.; Davis, D.W.; Reinhardt, L.; Henjes-Kunst, F.; Allroggen, N.; Dohrmann, R.; Piepjohn, K.; Lisker, F. Origin of Bentonites and Detrital Zircons of the Paleocene Basilika Formation, Svalbard. Front. Earth Sci. 2016, 4, 73. [Google Scholar] [CrossRef] [Green Version]
- Grundvåg, S.A.; Johannessen, E.P.; Helland-Hansen, W.; Plink-Björklund, P. Depositional architecture and evolution of progradationally stacked lobe complexes in the Eocene Central Basin of Spitsbergen. Sedimentology 2014, 61, 535–569. [Google Scholar] [CrossRef]
- Petter, A.L.; Steel, R.J. Hyperpycnal flow variability and slope organization on an Eocene shelf margin, Central Basin, Spitsbergen. AAPG Bull. 2006, 90, 1451–1472. [Google Scholar] [CrossRef]
- Petersen, T.G.; Thomsen, T.B.; Olaussen, S.; Stemmerik, L. Provenance shifts in an evolving Eurekan foreland basin: The Tertiary Central Basin, Spitsbergen. J. Geol. Soc. 2016, 173, 634. [Google Scholar] [CrossRef]
- Helland-Hansen, W. Facies and stacking patterns of shelf-deltas within the Palaeogene Battfjellet Formation, Nordenskiöld Land, Svalbard: Implications for subsurface reservoir prediction. Sedimentology 2010, 57, 190–208. [Google Scholar] [CrossRef]
- Safronova, P.A.; Henriksen, S.; Andreassen, K.; Laberg, J.S.; Vorren, T.O. Evolution of shelf-margin clinoforms and deep-water fans during the middle Eocene in the Sorvestsnaget Basin, southwest Barents Sea. AAPG Bull. 2014, 98, 515–544. [Google Scholar] [CrossRef]
- Lasabuda, A.; Laberg, J.S.; Knutsen, S.-M.; Høgseth, G. Early to middle Cenozoic paleoenvironment and erosion estimates of the southwestern Barents Sea: Insights from a regional mass-balance approach. Mar. Pet. Geol. 2018, 96, 501–521. [Google Scholar] [CrossRef]
- Ryseth, A.; Augustson, J.H.; Charnock, M.; Haugerud, O.; Knutsen, S.M.; Midbøe, P.S.; Opsal, J.G.; Sundsbø, G. Cenozoic stratigraphy and evolution of the Sørvestsnaget Basin, southwestern Barents Sea. Nor. Geol. Tidsskr. 2003, 83, 107–130. [Google Scholar]
- Bergh, S.G.; Grogan, P. Tertiary structure of the Sørkapp-Hornsund Region, South Spitsbergen, and implications for the offshore southern extension of the fold-thrust Belt. Nor. Geol. Tidsskr. 2003, 83, 43–60. [Google Scholar]
- Riis, F. Quantification of Cenozoic vertical movements of Scandinavia by correlation of morphological surfaces with offshore data. Glob. Planet Chang. 1996, 12, 331–357. [Google Scholar] [CrossRef]
- Faleide, J.I.; Myhre, A.M.; Eldholm, O. Early Tertiary volcanism at the western Barents Sea margin. Geol. Soc. Lond. Spec. Publ. 1988, 39, 135–146. [Google Scholar] [CrossRef]
- Kristensen, T.B.; Rotevatn, A.; Marvik, M.; Henstra, G.A.; Gawthorpe, R.L.; Ravnås, R. Structural evolution of sheared margin basins: The role of strain partitioning. Sørvestsnaget Basin, Norwegian Barents Sea. Basin Res. 2018, 30, 279–301. [Google Scholar] [CrossRef] [Green Version]
- Libak, A.; Eide, C.H.; Mjelde, R.; Keers, H.; Flüh, E.R. From pull-apart basins to ultraslow spreading: Results from the western Barents Sea Margin. Tectonophysics 2012, 514–517, 44–61. [Google Scholar] [CrossRef]
- Chew, D.; O’Sullivan, G.; Caracciolo, L.; Mark, C.; Tyrrell, S. Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U-Pb provenance analysis. Earth-Sci. Rev. 2020, 202, 103093. [Google Scholar] [CrossRef]
- Flowerdew, M.J.; Fleming, E.J.; Morton, A.C.; Frei, D.; Chew, D.M.; Daly, J.S. Assessing mineral fertility and bias in sedimentary provenance studies: Examples from the Barents Shelf. Geol. Soc. Lond. Spec. Publ. 2020, 484, 255. [Google Scholar] [CrossRef]
- Harland, W.B.; Kelly Simon, R.A.; Geddes, I.; Doubleday Paul, A. Chapter 4 The Central Basin. Geol. Soc. Lond. Mem. 1997, 17, 47–74. [Google Scholar] [CrossRef]
- Dörr, N.; Lisker, F.; Jochmann, M.; Rainer, T.; Schlegel, A.; Schubert, K.; Spiegel, C. Subsidence, rapid inversion, and slow erosion of the Central Tertiary Basin of Svalbard: Evidence from the thermal evolution and basin modeling. In Circum-Arctic Structural Events: Tectonic Evolution of the Arctic Margins and Trans-Arctic Links with Adjacent Orogens; Geological Society of America: Boulder, CO, USA, 2019; Volume 541. [Google Scholar]
- Jochmann, M.M.; Augland, L.E.; Lenz, O.; Bieg, G.; Haugen, T.; Grundvåg, S.A.; Jelby, M.E.; Midtkandal, I.; Dolezych, M.; Hjálmarsdóttir, H.R. Sylfjellet: A new outcrop of the Paleogene Van Mijenfjorden Group in Svalbard. arktos 2020, 6, 17–38. [Google Scholar] [CrossRef] [Green Version]
- Dypvik, H.; Riber, L.; Burca, F.; Rüther, D.; Jargvoll, D.; Nagy, J.; Jochmann, M. The Paleocene–Eocene thermal maximum (PETM) in Svalbard—Clay mineral and geochemical signals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 302, 156–169. [Google Scholar] [CrossRef]
- Doerner, M.; Berner, U.; Erdmann, M.; Barth, T. Geochemical characterization of the depositional environment of Paleocene and Eocene sediments of the Tertiary Central Basin of Svalbard. Chem. Geol. 2020, 542, 119587. [Google Scholar] [CrossRef]
- Smelror, M.; Larssen, G.B. Are there Upper Cretaceous sedimentary rocks preserved on Sørkapp land, Svalbard? Norw. J. Geol. 2016, 96, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Gilmullina, A.; Klausen, T.G.; Doré, A.G.; Sirevaag, H.; Suslova, A.; Eide, C.H. Arctic sediment routing during the Triassic: Sinking the Arctic Atlantis. J. Geol. Soc. 2023, 180, jgs2022-2018. [Google Scholar] [CrossRef]
- Plink-Björklund, P.; Mellere, D.; Steel, R.J. Turbidite variability and architecture of sand-prone, deep-water slopes: Eocene clinoforms in the central basin, spitsbergen. J. Sediment. Res. 2001, 71, 895–912. [Google Scholar] [CrossRef]
- Charles, A.J.; Condon, D.J.; Harding, I.C.; Pälike, H.; Marshall, J.E.A.; Cui, Y.; Kump, L.; Croudace, I.W. Constraints on the numerical age of the Paleocene-Eocene boundary. Geochem. Geophys. Geosystems 2011, 12, Q0AA17. [Google Scholar] [CrossRef] [Green Version]
- Critelli, S.; Reed, W.E. Provenance and stratigraphy of the Devonian (Old Red Sandstone) and Carboniferous sandstones of Spitsbergen, Svalbard. Eur. J. Mineral. -Ohne Beih. 1999, 11, 149–166. [Google Scholar] [CrossRef] [Green Version]
- Dallmeyer, R.D.; Peucat, J.J.; Hirajima, T.; Ohta, Y. Tectonothermal chronology within a blueschist-eclogite complex, west-central Spitsbergen, Svalbard: Evidence from 40Ar39Ar and RbSr mineral ages. Lithos 1990, 24, 291–304. [Google Scholar] [CrossRef]
- Pettersson, C.H.; Tebenkov, A.M.; Larionov, A.N.; Andresen, A.; Pease, V. Timing of migmatization and granite genesis in the Northwestern Terrane of Svalbard, Norway: Implications for regional correlations in the Arctic Caledonides. J. Geol. Soc. 2009, 166, 147–158. [Google Scholar] [CrossRef]
- Kośmińska, K.; Spear, F.S.; Majka, J.; Faehnrich, K.; Manecki, M.; Piepjohn, K.; Dallmann, W.K. Deciphering late Devonian–early Carboniferous P–T–t path of mylonitized garnet-mica schists from Prins Karls Forland, Svalbard. J. Metamorph. Geol. 2020, 38, 471–493. [Google Scholar] [CrossRef]
- Nagy, J.; Kaminski, M.A.; Johnsen, K.; Mitlehner, A.G. Foraminiferal, palynomorph, and diatom biostratigraphy and paleoenvironments of the Torsk Formation: A reference section for the Paleocene-Eocene transition in the western Barents Sea. In Contributions to the Micropaleontology and Paleoceanography of the Northern North Atlantic; Hass, H.C., Kaminski, M.A., Eds.; Grzybowski Foundation Special Publication: Krakow, Poland, 1997; Volume 5, pp. 15–38. [Google Scholar]
- Knutsen, S.M.; Skjold, L.J.; Skott, P.H. Palaeocene and Eocene development of the Tromso Basin-sedimentary response to rifting and early sea-floor spreading in the Barents Sea area. Nor. Geol. Tidsskr. 1992, 72, 191–207. [Google Scholar]
- Grundvåg, S.A.; Marin, D.; Kairanov, B.; Śliwińska, K.K.; Nøhr-Hansen, H.; Jelby, M.E.; Escalona, A.; Olaussen, S. The Lower Cretaceous succession of the northwestern Barents Shelf: Onshore and offshore correlations. Mar. Pet. Geol. 2017, 86, 834–857. [Google Scholar] [CrossRef] [Green Version]
- Midtkandal, I.; Faleide, J.I.; Faleide, T.S.; Serck, C.S.; Planke, S.; Corseri, R.; Dimitriou, M.; Nystuen, J.P. Lower Cretaceous Barents Sea strata: Epicontinental basin configuration, timing, correlation and depositional dynamics. Geol. Mag. 2020, 157, 458–476. [Google Scholar] [CrossRef]
- Klausen, T.G.; Müller, R.; Slama, J.; Helland-Hansen, W. Evidence for late triassic provenance areas and Early Jurassic sediment supply turnover in the Barents Sea Basin of Northern Pangea. Lithosphere 2017, 9, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Klausen, T.G.; Müller, R.; Sláma, J.; Olaussen, S.; Rismyhr, B.; Helland-Hansen, W. Depositional history of a condensed shallow marine reservoir succession: Stratigraphy and detrital zircon geochronology of the Jurassic Stø Formation, Barents Sea. J. Geol. Soc. 2018, 175, 130–145. [Google Scholar] [CrossRef]
- Fleming, E.J.; Flowerdew, M.J.; Smyth, H.R.; Scott, R.A.; Morton, A.C.; Omma, J.E.; Frei, D.; Whitehouse, M.J. Provenance of Triassic sandstones on the southwest Barents Shelf and the implication for sediment dispersal patterns in northwest Pangaea. Mar. Pet. Geol. 2016, 78, 516–535. [Google Scholar] [CrossRef]
- Line, L.H.; Müller, R.; Klausen, T.G.; Jahren, J.; Hellevang, H. Distinct petrographic responses to basin reorganization across the Triassic–Jurassic boundary in the southwestern Barents Sea. Basin Res. 2020, 32, 1463–1484. [Google Scholar] [CrossRef]
- Senger, K.; Brugmans, P.; Grundvåg, S.-A.; Jochmann, M.M.; Nøttvedt, A.; Olaussen, S.; Skotte, A.; Smyrak-Sikora, A. Petroleum, coal and research drilling onshore Svalbard: A historical perspective. Nor. J. Geol. 2019, 99, Nr 3. [Google Scholar] [CrossRef] [Green Version]
- Gabrielsen, R.H.; Frerseth, R.B.; Jensen, L.N.; Kalheim, J.E.; Riis, F. Structural elements of the Norwegian continental shelf. Nor. Pet. Dir. Bull. 1990, 6, 33p. [Google Scholar]
- Omosanya, K.O.; Harishidayat, D.; Marheni, L.; Johansen, S.E.; Felix, M.; Abrahamson, P. Recurrent mass-wasting in the Sørvestsnaget Basin Southwestern Barents Sea: A test of multiple hypotheses. Mar. Geol. 2016, 376, 175–193. [Google Scholar] [CrossRef]
- Suttner, L.J.; Basu, A.; Ingersoll, R.V.; Bullard, T.F.; Ford, R.L.; Pickle, J.D. The effect of grain size on detrital modes; a test of the Gazzi-Dickinson point-counting method; discussion and reply. J. Sediment. Res. 1985, 55, 616–618. [Google Scholar] [CrossRef]
- Folk, R.L.; Andrews, P.B.; Lewis, D.W. Detrital sedimentary rock classification and nomenclature for use in New-Zealand. N. Z. J. Geol. Geophys. 1970, 13, 937–968. [Google Scholar] [CrossRef] [Green Version]
- Morton, A.C.; Hallsworth, C. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. J. Sediment. Geol. 1994, 90, 241–256. [Google Scholar] [CrossRef]
- Tyrrell, S.; Haughton, P.D.W.; Daly, J.S.; Kokfelt, T.F.; Gagnevin, D. The use of the common Pb isotope composition of detrital K-feldspar grains as a provenance tool and its application to Upper Carboniferous paleodrainage, northern England. J. Sediment. Res. 2006, 76, 324–345. [Google Scholar] [CrossRef]
- Flowerdew, M.J.; Tyrrell, S.; Riley, T.R.; Whitehouse, M.J.; Mulvaney, R.; Leat, P.T.; Marschall, H.R. Distinguishing East and West Antarctic sediment sources using the Pb isotope composition of detrital K-feldspar. Chem. Geol. 2012, 292, 88–102. [Google Scholar] [CrossRef]
- Chew, D.M.; Petrus, J.A.; Kamber, B.S. U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb. Chem. Geol. 2014, 363, 185–199. [Google Scholar] [CrossRef]
- Chew, D.M.; Sylvester, P.J.; Tubrett, M.N. U-Pb and Th-Pb dating of apatite by LA-ICPMS. Chem. Geol. 2011, 280, 200–216. [Google Scholar] [CrossRef]
- Stacey, J.S.; Kramers, J.D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sc. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Alle, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; Vonquadt, A.; Roddick, J.C.; Speigel, W. 3 Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace-Element and Ree Analyses. Geostand. Newslett. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plešovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Black, L.P.; Kamo, S.L.; Allen, C.M.; Davis, D.W.; Aleinikoff, J.N.; Valley, J.W.; Mundil, R.; Campbell, I.H.; Korsch, R.J.; Williams, I.S.; et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol. 2004, 205, 115–140. [Google Scholar] [CrossRef]
- Luvizotto, G.L.; Zack, T.; Meyer, H.P.; Ludwig, T.; Triebold, S.; Kronz, A.; Münker, C.; Stockli, D.F.; Prowatke, S.; Klemme, S.; et al. Rutile crystals as potential trace element and isotope mineral standards for microanalysis. Chem. Geol. 2009, 261, 346–369. [Google Scholar] [CrossRef]
- Zack, T.; Stockli, D.F.; Luvizotto, G.L.; Barth, M.G.; Belousova, E.; Wolfe, M.R.; Hinton, R.W. In situ U-Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications. Contrib. Miner. Petr. 2011, 162, 515–530. [Google Scholar] [CrossRef]
- Cochrane, R.; Spikings, R.A.; Chew, D.; Wotzlaw, J.F.; Chiaradia, M.; Tyrrell, S.; Schaltegger, U.; Van der Lelij, R. High temperature (>350 °C) thermochronology and mechanisms of Pb loss in apatite. Geochim. Cosmochim. Ac. 2014, 127, 39–56. [Google Scholar] [CrossRef]
- Thomson, S.N.; Gehrels, G.E.; Ruiz, J.; Buchwaldt, R. Routine low-damage apatite U-Pb dating using laser ablation-multicollector- ICPMS. Geochem. Geophys. Geosystems 2012, 13, Q0AA21. [Google Scholar] [CrossRef]
- Krestianinov, E.; Amelin, Y.; Neymark, L.A.; Aleinikoff, J.N. U-Pb systematics of uranium-rich apatite from Adirondacks: Inferences about regional geological and geochemical evolution, and evaluation of apatite reference materials for in situ dating. Chem. Geol. 2021, 581, 120417. [Google Scholar] [CrossRef]
- Paul, A.N.; Spikings, R.A.; Gaynor, S.P. U-Pb ID-TIMS reference ages and initial Pb isotope compositions for Durango and Wilberforce apatites. Chem. Geol. 2021, 586, 120604. [Google Scholar] [CrossRef]
- Frei, D.; Gerdes, A. Precise and accurate in situ U-Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS. Chem. Geol. 2009, 261, 261–270. [Google Scholar] [CrossRef]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Nasdala, L.; Corfu, F.; Valley, J.W.; Spicuzza, M.J.; Wu, F.-Y.; Li, Q.-L.; Yang, Y.-H.; Fisher, C.; Münker, C.; Kennedy, A.K.; et al. Zircon M127–A Homogeneous Reference Material for SIMS U–Pb Geochronology Combined with Hafnium, Oxygen and, Potentially, Lithium Isotope Analysis. Geostand. Geoanal. Res. 2016, 40, 457–475. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, A.K.; Zack, T. High-sensitivity U-Pb rutile dating by secondary ion mass spectrometry (SIMS) with an O 2 + primary beam. Chem. Geol. 2012, 332–333, 65–73. [Google Scholar] [CrossRef]
- Whitehouse, M.J.; Kamber, B.S. Assigning dates to thin gneissic veins in high-grade metamorphic terranes: A cautionary tale from Akilia, southwest Greenland. J. Pet. 2005, 46, 291–318. [Google Scholar] [CrossRef]
- Riley, T.R.; Flowerdew, M.J.; Millar, I.L.; Whitehouse, M.J. Triassic magmatism and metamorphism in the Antarctic Peninsula: Identifying the extent and timing of the Peninsula Orogeny. J. South Am. Earth Sci. 2020, 103, 102732. [Google Scholar] [CrossRef]
- Jeon, H.; Whitehouse, M.J. A Critical Evaluation of U–Pb Calibration Schemes Used in SIMS Zircon Geochronology. Geostand. Geoanal. Res. 2015, 39, 443–452. [Google Scholar] [CrossRef]
- Nasdala, L.; Hofmeister, W.; Norberg, N.; Martinson, J.M.; Corfu, F.; Dörr, W.; Kamo, S.L.; Kennedy, A.K.; Kronz, A.; Reiners, P.W.; et al. Zircon M257-A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostand. Geoanal. Res. 2008, 32, 247–265. [Google Scholar] [CrossRef]
- Meinhold, G. Rutile and its applications in earth sciences. Earth-Sci. Rev. 2010, 102, 1–28. [Google Scholar] [CrossRef]
- Watson, E.B.; Wark, D.A.; Thomas, J.B. Crystallization thermometers for zircon and rutile. Contrib. Miner. Petr. 2006, 151, 413–433. [Google Scholar] [CrossRef]
- Morton, A.C.; Yaxley, G. Detrital apatite geochemistry and its application in provenance studies. In Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry; Geological Society of America: Boulder, CO, USA, 2007; Volume 420, pp. 319–344. [Google Scholar]
- O’Sullivan, G.; Chew, D.; Kenny, G.; Henrichs, I.; Mulligan, D. The trace element composition of apatite and its application to detrital provenance studies. Earth-Sci. Rev. 2020, 201, 103044. [Google Scholar] [CrossRef]
- Johansson, Å.; Gee, D.G.; Björklund, L.; Witt-Nilsson, P. Isotope studies of granitoids from the Bangenhuk Formation, Ny Friesland Caledonides, Svalbard. Geol. Mag. 1995, 132, 303–320. [Google Scholar] [CrossRef]
- Johansson, Å.; Larionov, A.N.; Tebenkov, A.M.; Ohta, Y.; Gee, D.G. Caledonian granites of western and central Nordaustlandet, northeast Svalbard. Gff 2002, 124, 135–148. [Google Scholar] [CrossRef]
- Slagstad, T.; Kirkland, C.L. The use of detrital zircon data in terrane analysis: A nonunique answer to provenance and tectonostratigraphic position in the Scandinavian Caledonides. Lithosphere 2017, 9, 1002–1011. [Google Scholar] [CrossRef] [Green Version]
- Higgins, A.K.; Soper, N.J.; Leslie, A.G. The Ellesmerian and Caledonian orogenic belts of Greenland. Polarforschung 2000, 68, 141–151. [Google Scholar]
- Nielsen, M.L.; Lee, M.; Ng, H.C.; Rushton, J.C.; Hendry, K.R.; Kihm, J.-H.; Nielsen, A.T.; Park, T.-Y.S.; Vinther, J.; Wilby, P.R. Metamorphism obscures primary taphonomic pathways in the early Cambrian Sirius Passet Lagerstätte, North Greenland. Geology 2021, 50, 4–9. [Google Scholar] [CrossRef]
- Tegner, C.; Storey, M.; Holm, P.M.; Thorarinsson, S.B.; Zhao, X.; Lo, C.H.; Knudsen, M.F. Magmatism and Eurekan deformation in the High Arctic Large Igneous Province: 40Ar–39Ar age of Kap Washington Group volcanics, North Greenland. Earth Planet Sc. Lett. 2011, 303, 203–214. [Google Scholar] [CrossRef]
- Barnes, C.J.; Walczak, K.; Janots, E.; Schneider, D.; Majka, J. Timing of Paleozoic Exhumation and Deformation of the High-Pressure Vestgötabreen Complex at the Motalafjella Nunatak, Svalbard. Minerals 2020, 10, 125. [Google Scholar] [CrossRef] [Green Version]
- Manby, G.M. A reappraisal of chloritoid-bearing phyllites in the Forland Complex rocks of Prins Karls Forland, Spitsbergen. Miner. Mag. 1983, 47, 311–318. [Google Scholar] [CrossRef]
- Majka, J.; Kośmińska, K. Magmatic and metamorphic events recorded within the Southwestern Basement Province of Svalbard. arktos 2017, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Gasser, D.; Andresen, A. Caledonian terrane amalgamation of Svalbard: Detrital zircon provenance of mesoproterozoic to carboniferous strata from oscar II Land, western spitsbergen. Geol. Mag. 2013, 150, 1103–1126. [Google Scholar] [CrossRef]
- Pettersson, C.H.; Pease, V.; Frei, D. U-Pb zircon provenance of metasedimentary basement of the Northwestern Terrane, Svalbard: Implications for the Grenvillian-Sveconorwegian orogeny and development of Rodinia. Precambrian Res. 2009, 175, 206–220. [Google Scholar] [CrossRef]
- Vermeesch, P. Multi-sample comparison of detrital age distributions. Chem. Geol. 2013, 341, 140–146. [Google Scholar] [CrossRef]
- Vermeesch, P.; Resentini, A.; Garzanti, E. An R package for statistical provenance analysis. J. Sediment. Geol. 2016, 336, 14–25. [Google Scholar] [CrossRef]
- Røhr, T.S.; Andersen, T.; Dypvik, H. Provenance of Lower Cretaceous sediments in the Wandel Sea Basin, North Greenland. J. Geol. Soc. 2008, 165, 755–767. [Google Scholar] [CrossRef]
- Czarniecka, U.; Haile, B.G.; Braathen, A.; Krajewski, K.P.; Kristoffersen, M.; Jokubauskas, P. Petrography, bulk-rock geochemistry, detrital zircon U–Pb geochronology and Hf isotope analysis for constraining provenance: An example from Middle Triassic deposits (Bravaisberget Formation), Sørkappøya, Svalbard. Norw. J. Geol. 2020, 100, 202017. [Google Scholar] [CrossRef]
- Kirkland, C.L.; Pease, V.; Whitehouse, M.J.; Ineson, J.R. Provenance record from Mesoproterozoic-Cambrian sediments of Peary Land, North Greenland: Implications for the ice-covered Greenland Shield and Laurentian palaeogeography. Precambrian Res. 2009, 170, 43–60. [Google Scholar] [CrossRef]
- Pózer Bue, E.; Andresen, A. Constraining depositional models in the Barents Sea region using detrital zircon U–Pb data from Mesozoic sediments in Svalbard. Geol. Soc. Lond. Spec. Publ. 2014, 386, 261–279. [Google Scholar] [CrossRef]
- Morris, G.A.; Kirkland, C.L.; Pease, V. Orogenic paleofluid flow recorded by discordant detrital zircons in the Caledonian foreland basin of northern Greenland. Lithosphere 2015, 7, 138–143. [Google Scholar] [CrossRef] [Green Version]
- Andresen, A.; Agyei-Dwarko, N.Y.; Kristoffersen, M.; Hanken, N.M. A Timanian foreland basin setting for the late Neoproterozoic-early Palaeozoic cover sequences (Dividal Group) of Northeastern Baltica. Geol. Soc. Spec. Publ. 2014, 390, 157–175. [Google Scholar] [CrossRef]
- Zhang, W.; Roberts, D.; Pease, V. Provenance characteristics and regional implications of Neoproterozoic, Timanian-margin successions and a basal Caledonian nappe in northern Norway. Precambrian Res. 2015, 268, 153–167. [Google Scholar] [CrossRef]
- Lorenz, H.; Gee, D.G.; Korago, E.; Kovaleva, G.; McClelland, W.C.; Gilotti, J.A.; Frei, D. Detrital zircon geochronology of Palaeozoic Novaya Zemlya-a key to understanding the basement of the Barents Shelf. Terra Nova 2013, 25, 496–503. [Google Scholar] [CrossRef]
- Pease, V.; Scott, R.A. Crustal affinities in the Arctic Uralides, northern Russia: Significance of detrital zircon ages from Neoproterozoic and Palaeozoic sediments in Novaya Zemlya and Taimyr. J. Geol. Soc. 2009, 166, 517–527. [Google Scholar] [CrossRef]
- Pettersson, C.H.; Pease, V.; Frei, D. Detrital zircon U-Pb ages of Silurian-Devonian sediments from NW Svalbard: A fragment of Avalonia and Laurentia? J. Geol. Soc. 2010, 167, 1019–1032. [Google Scholar] [CrossRef]
- Beranek, L.P.; Gee, D.G.; Fisher, C.M. Detrital zircon U-Pb-Hf isotope signatures of Old Red Sandstone strata constrain the Silurian to Devonian paleogeography, tectonics, and crustal evolution of the Svalbard Caledonides. GSA Bull. 2020, 132, 1987–2003. [Google Scholar] [CrossRef]
- Andreichev, V.L.; Soboleva, A.A.; Gehrels, G. U-Pb dating and provenance of detrital zircons from the Upper Precambrian deposits of North Timan. Stratigr. Geol. Correl. 2014, 22, 147–159. [Google Scholar] [CrossRef]
- Kirkland, C.L.; Daly, J.S.; Eide, E.A.; Whitehouse, M.J. Tectonic evolution of the Arctic Norwegian Caledonides from a texturally- and structurally-constrained multi-isotopic (Ar-Ar, Rb-Sr, Sm-Nd, U-Pb) study. Am. J. Sci. 2007, 307, 459–526. [Google Scholar] [CrossRef]
- Kirkland, C.L.; Daly, J.S.; Whitehouse, M.J. Basement-cover relationships of the Kalak Nappe Complex, Arctic Norwegian Caledonides and constraints on neoproterozoic terrane assembly in the North Atlantic Region. Precambrian Res. 2008, 160, 245–276. [Google Scholar] [CrossRef]
- Kirkland, C.L.; Bingen, B.; Whitehouse, M.J.; Beyer, E.; Griffin, W.L. Neoproterozoic palaeogeography in the North Atlantic Region: Inferences from the Akkajaure and Seve Nappes of the Scandinavian Caledonides. Precambrian Res. 2011, 186, 127–146. [Google Scholar] [CrossRef]
- Nutman, A.P.; Dawes, P.R.; Kalsbeek, F.; Hamilton, M.A. Palaeoproterozoic and Archaean gneiss complexes in northern Greenland: Palaeoproterozoic terrane assembly in the High Arctic. Precambrian Res. 2008, 161, 419–451. [Google Scholar] [CrossRef] [Green Version]
- Khudoley, A.K.; Sobolev, N.N.; Petrov, E.O.; Ershova, V.B.; Makariev, A.A.; Makarieva, E.V.; Gaina, C.; Sobolev, P.O. A reconnaissance provenance study of Triassic–Jurassic clastic rocks of the Russian Barents Sea. Gff 2019, 141, 263–271. [Google Scholar] [CrossRef]
- Soloviev, A.V.; Zaionchek, A.V.; Suprunenko, O.I.; Brekke, H.; Faleide, J.I.; Rozhkova, D.V.; Khisamutdinova, A.I.; Stolbov, N.M.; Hourigan, J.K. Evolution of the provenances of Triassic rocks in Franz Josef Land: U/Pb LA-ICP-MS dating of the detrital zircon from Well Severnaya. Lithol. Miner. Resoure 2015, 50, 102–116. [Google Scholar] [CrossRef]
- Kruskal, J.B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 1964, 29, 1–27. [Google Scholar] [CrossRef]
- Bjerager, M.; Alsen, P.; Hovikoski, J.; LINDSTRÖM, S.; Pilgaard, A.; Stemmerik, L.; Therkelsen, J. Triassic lithostratigraphy of the Wandel Sea Basin, North Greenland. Bull. Geol. Soc. Den. 2019, 67, 83–105. [Google Scholar]
- Gilmullina, A.; Klausen, T.G.; Doré, A.G.; Rossi, V.M.; Suslova, A.; Eide, C.H. Linking sediment supply variations and tectonic evolution in deep time, source-to-sink systems—The Triassic Greater Barents Sea Basin. GSA Bull. 2021, 134, 1760–1780. [Google Scholar] [CrossRef]
- Boyden, J.A.; Müller, R.D.; Gurnis, M.; Torsvik, T.H.; Clark, J.A.; Turner, M.; Ivey-Law, H.; Watson, R.J.; Cannon, J.S. Next-generation plate-tectonic reconstructions using GPlates. In Geoinformatics: Cyberinfrastructure for the Solid Earth Sciences; Cambridge University Press: Cambridge, UK, 2011; pp. 95–114. [Google Scholar]
- Petersen, T.G.; Hamann, N.E.; Stemmerik, L. Correlation of the Palaeogene successions on the north-east Greenland and Barents Sea margins. Bull. Geol. Soc. Den. 2016, 64, 77–96. [Google Scholar]
- Lasabuda, A.P.; Johansen, N.S.; Laberg, J.S.; Faleide, J.I.; Senger, K.; Rydningen, T.A.; Patton, H.; Knutsen, S.-M.; Hanssen, A. Cenozoic uplift and erosion of the Norwegian Barents Shelf–A review. Earth-Sci. Rev. 2021, 217, 103609. [Google Scholar] [CrossRef]
Sample | Lat 1 | Long 2 | Formation | Unit | Petrog 3 | HMA 4 | QS 5 | Kfs Pb | Apatite U-Pb/Chem | Rutile U-Pb/ Chem | Zircon U-Pb |
---|---|---|---|---|---|---|---|---|---|---|---|
BH 10-2008 51.98 | 77.630 | 16.027 | Aspelintoppen | 3B | ● | ● | ● | ||||
BH 10-2008 98.00 | 77.630 | 16.027 | Battfjellet | 3A | ● | ● | ● | ||||
BH 10-2008 137.90 | 77.630 | 16.027 | Battfjellet | 3A | ● | ● | ● | ● | ● | ● | |
BH 10-2008 290.92 | 77.630 | 16.027 | Frysjaodden | 2 | ● | ● | |||||
BH 10-2008 332.96 | 77.630 | 16.027 | Frysjaodden | 2 | ● | ● | ● | ||||
BH 10-2008 356.00 | 77.630 | 16.027 | Frysjaodden | 2 | ● | ● | ● | ||||
BH 10-2008 375.00 | 77.630 | 16.027 | Frysjaodden | 2 | ● | ● | ● | ● | ● | ● | |
BH 10-2008 387.96 | 77.630 | 16.027 | Frysjaodden | 2 | ● | ● | ● | ||||
BH 10-2008 417.06 | 77.630 | 16.027 | Frysjaodden | 2 | ● | ● | ● | ||||
BH 10-2008 427.63 | 77.630 | 16.027 | Frysjaodden | 2 | ● | ● | ● | ||||
BH 10-2008 840.00 | 77.630 | 16.027 | Grumantbyen | 1 | ● | ● | ● | ||||
BH 10 2008-871.90 | 77.630 | 16.027 | Grumantbyen | 1 | ● | ● | ● | ● | ● | ||
BH 10-2008 895.00 | 77.630 | 16.027 | Grumantbyen | 1 | ● | ● | ● | ||||
7316/5-1 1353.10 | 73.520 | 16.431 | Torsk | B | ● | ● | |||||
7316/5-1 1353.40 | 73.520 | 16.431 | Torsk | B | ● | ||||||
7316/5-1 1359.50 | 73.520 | 16.431 | Torsk | B | ● | ● | |||||
7316/5-1 1364.80 | 73.520 | 16.431 | Torsk | B | ● | ||||||
7316/5-1 1370.30 | 73.520 | 16.431 | Torsk | B | ● | ||||||
7316/5-1 1373.20 | 73.520 | 16.431 | Torsk | B | ● | ● | |||||
7316/5-1 1373.70 | 73.520 | 16.431 | Torsk | B | ● | ||||||
7316/5-1 1464.50 | 73.520 | 16.431 | Torsk | B | ● | ● | ● | ● | ● | ||
7316/5-1 1467.10 | 73.520 | 16.431 | Torsk | B | ● | ● | ● | ||||
7316/5-1 1468.40 | 73.520 | 16.431 | Torsk | B | ● | ● | ● | ||||
7316/5-1 1469.80 | 73.520 | 16.431 | Torsk | B | ● | ||||||
7216/11-1S 2988.30 | 72.016 | 16.604 | Torsk | A | ● | ● | |||||
7216/11-1S 2989.80 | 72.016 | 16.604 | Torsk | A | ● | ● | ● | ● | ● | ||
7216/11-1S 2991.30 | 72.016 | 16.604 | Torsk | A | ● | ● | |||||
7216/11-1S 2992.90 | 72.016 | 16.604 | Torsk | A | ● | ● |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flowerdew, M.J.; Fleming, E.J.; Chew, D.M.; Morton, A.C.; Frei, D.; Benedictus, A.; Omma, J.; Riley, T.R.; Badenszki, E.; Whitehouse, M.J. The Importance of Eurekan Mountains on Cenozoic Sediment Routing on the Western Barents Shelf. Geosciences 2023, 13, 91. https://doi.org/10.3390/geosciences13030091
Flowerdew MJ, Fleming EJ, Chew DM, Morton AC, Frei D, Benedictus A, Omma J, Riley TR, Badenszki E, Whitehouse MJ. The Importance of Eurekan Mountains on Cenozoic Sediment Routing on the Western Barents Shelf. Geosciences. 2023; 13(3):91. https://doi.org/10.3390/geosciences13030091
Chicago/Turabian StyleFlowerdew, Michael J., Edward J. Fleming, David M. Chew, Andrew C. Morton, Dirk Frei, Aukje Benedictus, Jenny Omma, Teal. R. Riley, Eszter Badenszki, and Martin J. Whitehouse. 2023. "The Importance of Eurekan Mountains on Cenozoic Sediment Routing on the Western Barents Shelf" Geosciences 13, no. 3: 91. https://doi.org/10.3390/geosciences13030091
APA StyleFlowerdew, M. J., Fleming, E. J., Chew, D. M., Morton, A. C., Frei, D., Benedictus, A., Omma, J., Riley, T. R., Badenszki, E., & Whitehouse, M. J. (2023). The Importance of Eurekan Mountains on Cenozoic Sediment Routing on the Western Barents Shelf. Geosciences, 13(3), 91. https://doi.org/10.3390/geosciences13030091