A New Alpine Metallogenic Model for the Pb-Ag Orogenic Deposits of Macôt-la Plagne and Peisey-Nancroix (Western Alps, France)
Abstract
:1. Introduction
2. Geological Setting and Ore Mineralization
2.1. Regional Geology
2.2. Structural Evolution of the Briançonnais Zone
- The D1 event is characterized by an intense and penetrative schistosity (S1) oriented subparallel to S0 and by isoclinal folding. This early tectonic phase is interpreted as a top-to-the-northwest thrusting of the Internal Briançonnais over the External Briançonnais [34] (Lanari et al. [29] and references therein). The D1 deformation in the External Briançonnais occurred during the metamorphic peak. It is attributed to the exhumation of the Internal Briançonnais. There is no absolute age for the D1 deformation and metamorphic peak in the External Briançonnais. In the Internal Briançonnais, the D1 ranges from 55 and 43 Ma in the most internal parts [35,36] and until 35 Ma in the most external part (in the Modane-Aussois unit) [34]. The P-T conditions for D1 were constrained between 250–300 °C and 4–8 kbar in the BHZ [29], and 320–370 °C and 9–11 kbar in the cover of the Internal Briançonnais [34]. In the “Nappe des Gypses”, the P-T conditions for the D1-D2 transition were estimated at 350 ± 20 °C and 6.5 ± 1.8 kbar using a δ18O thermometer on carbonates [25].
- The D2 event consists of a top-to-the-east shearing and thrusting highlighted by large-scale east-verging recumbent folds associated with the S2 schistosity, dipping to the west except into the eastern part of the BHZ. The D2 deformation occurred under greenschist facies conditions [37]. In the most internal part of the Briançonnais domain, the large-scale D2 shear zones are often parallel to S1 and interpreted as detachment faults related to extension [37]. The tectonic significance of the D2 event is still debated, as backthrusting [29,34,38,39,40] or as backfolding [41] during the continental collision, or as a detachment predating the continental collision [36,37]. Ages of backthrusting using 40Ar/39Ar and Rb-Sr dating on white mica are constrained between 35 and 32 Ma into the Internal Briançonnais [34,39]. The D2-D3 transition occurred at P-T conditions between 230–300 °C and 1–3 kbar in the “Nappe des Gypses” and Internal Alps sedimentary cover [25,34,36].
- The D3 event is characterized by brittle structures and corresponds to the last stage of exhumation and to the formation of a large dome of crystalline basement associated with faulting in a brittle–ductile tectonic regime [36,37,42]. Bertrand et al. [33] suggest that the fan geometry of the BHZ results from the large-scale bending of the S2 schistosity due to D3 km-size folds. These D3 folds are associated with a sub-horizontal S3 schistosity (Lanari et al. [29] and references therein). This last D3 event is related to the last stage of exhumation below 300 °C during Oligocene-Miocene times with a southward tilting around an east–west axis into the Briançonnais zone [25,29,34].
2.3. The Pb-Ag Mining District of Macôt-la Plagne (MP) and Peisey-Nancroix (PN)
3. Field Description, Structural Analyses, and Sampling
3.1. Field Description and Structural Analyses
3.2. Samples
4. Analytical Methods
4.1. Petrographical Observations
4.2. Sulfides–Sulfosalts EPMA and LA-ICP-MS Trace Elements Protocols
4.3. Chlorite–Phengite EPMA Protocol and Thermometry Calculation
4.4. Monazite Composition Analysis and Dating (EPMA and LA-ICP-MS)
5. Petrographic Results
5.1. Sample Microstructures
5.2. Paragenetic Sequence
6. Sulfides and Sulfosalts Trace Element Composition
7. Thermobarometric Results
7.1. Chlorites
7.2. Phengites
8. Monazite Characterization and U-Pb In Situ Dating
8.1. Monazite Characterization and Composition
8.2. Monazite U-Th-Pb Chemical Dating
8.3. Monazite In Situ Isotopic U-Pb Dating
9. Discussion
9.1. An Alpine Pb-Ag Mineralization
9.2. A Mineralizing Fluid Circulation during the D1 Deformation Stage
9.3. P-T-t-d Correlation between the Genesis of the Pb-Ag Deposits and the Tectonics of the Briançonnais Zone
10. Conclusions
- Both Pb-Ag deposits are found in the same litho-structural context and show comparable paragenetic sequences attributed to a single mineralization episode with possible chemico-physical conditions evolution through progressive crystallization.
- Despite the high Pb contents, the two Pb-Ag deposits could be successfully dated using the in situ LA-ICP-MS isotopic U-Pb dating of monazite. The geochronological dataset reveals that Pb-Ag mineralization formed during the Alpine orogenesis at about 35 Ma. P-T conditions of the mineralization are estimated at 315 ± 35 °C and 6.25 ± 0.75 kbar. These correspond to the Alpine peak metamorphism of the External Briançonnais.
- P-T-t-d conditions, structural, and textural observation of deformed quartz porphyroclasts demonstrate a syn-kinematic Pb-Ag mineralization with the Alpine late-D1 deformation in the Internal Alps.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meloux, J. Alpes-Nord, Bilan Synthétique de dix Années de Prospection; Report No. 75-RME-023-FE; BRGM: Orléans, France, 1975; p. 104.
- Caby, R. Etude Géologique et Métallogénique du Bord Interne de la Zone Houillère et de la Bordure des Schistes Lustrés Entre Modane et la Vallée étroite (Savoie, Haut Val de Susa). Ph.D. Thesis, University of Paris, Paris, France, 1963; p. 205. [Google Scholar]
- Rogel, P. Le Gisement de Plomb de La Plagne (Savoie)—Etude Géologique et Métallogénique—Vanoise. Ph.D. Thesis, University of Paris, Paris, France, 1961; p. 100. [Google Scholar]
- Rogel, P. Exemple de Gisement de Galène du Trias des Alpes. Coll. Trias de la France et des Régions Limitrophes. Mém; BRGM: Paris, France, 1963; Volume 15, pp. 695–704.
- Bouladon, J. Contribution à une systématique des gisements de plomb et de zinc. Chron. Mines Rech. Min. 1969, 8, 215–227. [Google Scholar]
- Raguin, E. La mine de plomb argentifère de La Plagne (Savoie). Ann. Des Mines 1938, 13, 53–62. [Google Scholar]
- Waline, P. La mine de La Plagne. Miner. Ind. Rev. 1960, 42, 447–460. [Google Scholar]
- Cabrol, B. Etude Géologique et Minière du Massif des Hurtières-Chaine de Belledonne (Savoie)—Alpes Françaises. Ph.D. Thesis, University of Grenoble, Grenoble, France, 1967. [Google Scholar]
- Ypma, P.J. Rejuvenation of Ore Deposits as Exemplified by the Belledonne Metalliferous Province. Ph.D. Thesis, University of Rennes, Rennes, France, 1963. [Google Scholar]
- Court, P. Etude Géologique et Métallogénique de la Basse-Maurienne (Savoie)—Alpes Françaises; Faculté des Sciences de Grenoble: Grenoble, France, 1971. [Google Scholar]
- Ochoa Alencastre, A. Etude Gîtologique des Minéralisations Fluorées du Massif de Rocheray, Savoie—Alpes Françaises Externes. Ph.D. Thesis, University of Claude Bernard-Lyon 1, Lyon, France, 1979. [Google Scholar]
- Negga, H.S. Comportement de L’uranium lors des Métamorphismes tardi-Hercinien et Alpin Dans les Massifs des Aiguilles Rouges et de Belledonne (Vallorçine, Lauzière). Alpes Occidentales. Ph.D. Thesis, University of Nançy, Nancy, France, 1984. [Google Scholar]
- Routhier, P. Les Gisements Métallifères. Géologie et Principes de Recherche; Masson: Paris, France, 1963; p. 1282. [Google Scholar]
- Zhong, R.; Li, W.; Chen, Y.; Huo, H. Ore-Forming Conditions and Genesis of the Huogeqi Cu–Pb–Zn–Fe Deposit in the Northern Margin of the North China Craton: Evidence from Ore Petrologic Characteristics. Ore Geol. Rev. 2012, 44, 107–120. [Google Scholar] [CrossRef]
- Gibson, G.M.; Hutton, L.J.; Holzschuh, J. Basin Inversion and Supercontinent Assembly as Drivers of Sediment-Hosted Pb–Zn Mineralization in the Mount Isa Region, Northern Australia. J. Geol. Soc. 2017, 174, 773–786. [Google Scholar] [CrossRef]
- Cugerone, A.; Oliot, E.; Chauvet, A.; Gavaldà Bordes, J.; Laurent, A.; Le Goff, E.; Cenki-Tok, B. Structural Control on the Formation of Pb-Zn Deposits: An Example from the Pyrenean Axial Zone. Minerals 2018, 8, 489. [Google Scholar] [CrossRef]
- Cugerone, A.; Roger, F.; Cenki, B.; Oliot, E.; Paquette, J.-L. Variscan U-Th-Pb Age for Stratabound Pb-Zn Mineralization in the Bossòst Dome (Pyrenean Axial Zone). Ore Geol. Rev. 2021, 139, 104503. [Google Scholar] [CrossRef]
- Cave, B.; Perkins, W.; Lilly, R. Linking Uplift and Mineralisation at the Mount Novit Zn-Pb-Ag Deposit, Northern Australia: Evidence from Geology, U–Pb Geochronology and Sphalerite Geochemistry. Geosci. Front. 2022, 13, 101347. [Google Scholar] [CrossRef]
- Gasquet, D.; Bertrand, J.-M.; Paquette, J.-L.; Lehmann, J.; Ratzov, G.; De Ascenção Guedes, R.; Tiepolo, M.; Boullier, A.-M.; Scaillet, S.; Nomade, S. Miocene to Messinian deformation and hydrothermal activity in a pre-Alpine basement massif of the French western Alps: New U-Th-Pb and argon ages from the Lauzière Massif. Bull. Soc. Géol. Fr. 2010, 181, 227–241. [Google Scholar] [CrossRef]
- Grand’Homme, A.; Janots, E.; Bosse, V.; Seydoux-Guillaume, A.M.; De Ascenção Guedes, R. Interpretation of U-Th-Pb in-situ ages of hydrothermal monazite-(Ce) and xenotime-(Y): Evidence from a large-scale regional study in clefts from the western alps. Mineral. Petrol. 2016, 110, 787–807. [Google Scholar] [CrossRef]
- Gnos, E.; Mullis, J.; Ricchi, E.; Bergemann, C.A.; Janots, E.; Berger, A. Episodes of fissure formation in the Alps: Connecting quartz fluid inclusion, fissure monazite age, and fissure orientation data. Swiss J. Geosci. 2021, 114, 14. [Google Scholar] [CrossRef] [PubMed]
- Guillot, F. Géologie de l’Antépermien de Vanoise Septentrionale (Zone Briançonnaise Interne, Savoie, France). Ph.D. Thesis, University of Lille, Lille, France, 1987. [Google Scholar]
- Schmid, S.M.; Fügenschuh, B.; Kissling, E.; Schuster, R. Tectonic map and overall architecture of the Alpine Orogen. Eclogae Geol. Helv. 2004, 97, 93–117. [Google Scholar] [CrossRef]
- Ceriani, S.; Fügenschuh, B.; Schmid, S.M. Multi-stage thrusting at the “Penninic Front” in the Western Alps between Mont Blanc and Pelvoux massifs. Int. J. Earth Sci. 2001, 90, 685–702. [Google Scholar] [CrossRef] [Green Version]
- Barré, G.; Strzerzynski, P.; Michels, R.; Guillot, S.; Cartigny, P.; Thomassot, E.; Lorgeoux, C.; Assayag, N.; Truche, L. Tectono-metamorphic evolution of an evaporitic décollement as recorded by mineral and fluid geochemistry: The “Nappe Des Gypses” (Western Alps) case study. Lithos 2020, 358–359, 105419. [Google Scholar] [CrossRef]
- Giorgis, D.; Thélin, P.; Stampfli, G.; Bussy, F. The Mont-Mort metapelites:Variscan metamorphism and geodynamic context (Briançonnais basement, Western Alps, Switzerland). Schweiz. Mineral. Petrogr. Mitt. 1999, 79, 381–398. [Google Scholar]
- Guillot, F.; Schaltegger, U.; Bertrand, J.M.; Deloule, É.; Baudin, T. Zircon U–Pb geochronology of Ordovician magmatism in the polycyclic Ruitor Massif (Internal W Alps). Int. J. Earth Sci. 2002, 91, 964–978. [Google Scholar] [CrossRef]
- Fabre, J. Contribution à l’étude de la Zone Houillère en Maurienne et en Tarentaise (Alpes de Savoie). Ph.D. Thesis, University of Paris, Paris, France, 1958. [Google Scholar]
- Lanari, P.; Guillot, S.; Schwartz, S.; Vidal, O.; Tricart, P.; Riel, N.; Beyssac, O. Diachronous evolution of the alpine continental subduction wedge: Evidence from P–T estimates in the Briançonnais Zone Houillère (France—Western Alps). J. Geodyn. 2012, 56–57, 39–54. [Google Scholar] [CrossRef]
- Ellenberger, F. Etude géologique du pays de Vanoise. Mémoires du Service de la Carte Géologique de la France; Imprimerie Nationale: Paris, France, 1958; p. 561. [Google Scholar]
- Goffé, B.; Schwartz, S.; Lardeaux, J.M.; Bousquet, R. Explanatory notes to the map: Metamorphic structure of the Alps Western and Ligurian Alps. Mitt. Österr. Miner. Ges. 2004, 149, 125–144. [Google Scholar]
- Bousquet, R.; Oberhänsli, R.; Goffé, B.; Wiederkehr, M.; Koller, F.; Schmid, S.M.; Schuster, R.; Engi, M.; Berger, A.; Martinotti, G. Metamorphism of metasediments at the scale of an orogen: A key to the Tertiary geodynamic evolution of the Alps. Geol. Soc. Spec. Publ. 2008, 298, 393–411. [Google Scholar] [CrossRef]
- Bertrand, J.M.; Aillères, L.; Gasquet, D. The Pennine Front zone in Savoie (Western Alps), a review and new interpretations from the Zone Houillère Briançonnaise. Eclogae Geol. Helv. 1996, 89, 297–320. [Google Scholar] [CrossRef]
- Strzerzynski, P.; Guillot, S.; Leloup, P.H.; Arnaud, N.; Vidal, O.; Ledru, P.; Courrioux, G.; Darmendrail, X. Tectono-metamorphic evolution of the Briançonnais zone (Modane-Aussois and Southern Vanoise units, Lyon Turin transect, Western Alps). J. Geodyn. 2012, 56–57, 55–75. [Google Scholar] [CrossRef]
- Ganne, J. Les Dômes de Socles HP-BT dans le Domaine Pennique des Alpes Nord-Occidentales (Massifs d’Ambin et de Vanoise Sud): Modalités de Leur Exhumation. Ph.D. Thesis, University of Savoie, Chambéry, France, 2003. [Google Scholar]
- Gerber, W. Evolution Tectono-Métamorphique du Briançonnais Interne (Alpes Occidentales, Massifs de Vanoise Sud et d’Ambin): Comportement du Socle et de sa Couverture Dans un Contexte de Subduction Continentale Profonde. Ph.D. Thesis, University of Pierre et Marie Curie (Paris 6), Paris, France, 2008. [Google Scholar]
- Ganne, J.; Bertrand, J.-M.; Fudral, S.; Marquer, D.; Vidal, O. Structural and metamorphic evolution of the Ambin massif (Western Alps): Toward a new alternative exhumation model for the Briançonnais domain. Bull. Soc. Géol. Fr. 2007, 178, 437–458. [Google Scholar] [CrossRef]
- Platt, T.P.; Lister, G.S. Structural history of high-pressure metamorphic rocks in the southern Vanoise massif, French Alps, and their relation to Alpine tectonic events. J. Struct. Geol. 1985, 7, 19–35. [Google Scholar] [CrossRef]
- Freeman, S.R.; Inger, S.; Butler, R.W.H.; Cliff, R.A. Dating deformation using Rb-Sr in white mica: Greenschist facies deformation ages from the Entrelor shear zone, Italian Alps. Tectonics 1997, 16, 57–76. [Google Scholar] [CrossRef]
- Gabalda, S. Processus d’exhumation dans les Alpes Occidentales: Modélisation Géométrique et Reconstitution Géodynamique sur la Transversale Chartreuse-Maurienne, une Approche Multi-Échelle; Ecole des Mines: Paris, France, 2008. [Google Scholar]
- Bucher, S.; Schmid, S.M.; Bousquet, R.; Fugenschuh, B. Late-stage deformation in a collisional orogen (Western Alps): Nappe refolding, back-thrusting or normal faulting? Terra Nova 2003, 15, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Lanari, P.; Rolland, Y.; Schwartz, S.; Vidal, O.; Guillot, S.; Tricart, P.; Dumont, T. P-T-t estimation of deformation in low-grade quartz-feldspar-bearing rocks using thermodynamic modelling and 40Ar/39Ar dating techniques: Example of the Plan-de-Phasy shear zone unit (Briançonnais Zone, Western Alps). Terra Nova 2014, 26, 130–138. [Google Scholar] [CrossRef]
- Guillot, F. La Vallée du Ponturin (Vanoise Septentrionale, Alpes Françaises). Master’s Thesis, University of Paris, Paris, France, 1982. [Google Scholar]
- BRGM. Les Gisements de Pb-Zn Français. (Situation en 1977); Report No: RR-41430-FR-02; BRGM: Paris, France, 1977; p. 278.
- Gimard, J.; Gimard, G. Mine de Plomb Argentifère (Savoie); Monde et Minéraux: Paris, France, 1985; pp. 10–14. [Google Scholar]
- Tachat, T. Mine de Plomb Argentifère; BRGM: Paris, France, 1861; pp. 1–14.
- Gimard, J.; Gimard, G. Mines de Plomb Argentifère (Savoie); Monde et Minéraux: Paris, France, 1986; pp. 42–43. [Google Scholar]
- Passchier, C.W.; Trouw, R.A. Microtectonics; Springer Science & Business Media: Berlin, Germany, 2005; p. 366. ISBN 3-540-64003-7. [Google Scholar]
- Belissont, R.; Boiron, M.-C.; Luais, B.; Cathelineau, M. LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac—Saint-Salvy deposit (France): Insights into incorporation mechanisms and ore deposition processes. Geochim. Cosmochim. Acta 2014, 126, 518–540. [Google Scholar] [CrossRef]
- Wilson, S.A.; Ridley, W.I.; Koenig, A.E. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. J. Anal. At. Spectrom. 2002, 17, 406–409. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508. [Google Scholar] [CrossRef]
- Longerich, H.P.; Jackson, S.E.; Gunther, D. Inter-Laboratory Note. Laser Ablation Inductively Coupled Plasma Mass Spectrometric Transient Signal Data Acquisition and Analyte Concentration Calculation. J. Anal. At. Spectrom. 1996, 11, 899–904. [Google Scholar] [CrossRef]
- De Andrade, V.; Vidal, O.; Lewin, E.; O’Brien, P.; Agard, P. Quantification of electron microprobe compositional maps of rock thin sections: An optimized method and examples. J. Metamorph. Geol. 2006, 24, 655–668. [Google Scholar] [CrossRef]
- Lanari, P.; Vidal, O.; De Andrade, V.; Dubacq, B.; Lewin, E.; Grosch, E.G.; Schwartz, S. XMapTools: A MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry. Comput. Geosci. 2014, 62, 227–240. [Google Scholar] [CrossRef]
- Lanari, P.; Vho, A.; Bovay, T.; Airaghi, L.; Centrella, S. Quantitative compositional mapping of mineral phases by electron probe micro-analyser. Geol. Soc. Lond. Spec. Publ. 2019, 478, 39–63. [Google Scholar] [CrossRef]
- Bourdelle, F.; Cathelineau, M. Low-temperature chlorite geothermometry: A graphical representation based on a T–R2+ –Si diagram. Eur. J. Mineral. 2015, 27, 617–626. [Google Scholar] [CrossRef]
- Vidal, O.; Lanari, P.; Munoz, M.; Bourdelle, F.; De Andrade, V. Deciphering temperature, pressure and oxygen-activity conditions of chlorite formation. Clay Miner. 2016, 51, 615–633. [Google Scholar] [CrossRef] [Green Version]
- Parra, T.; Vidal, O.; Agard, P. A thermodynamic model for Fe–Mg dioctahedral K white micas using data from phase-equilibrium experiments and natural pelitic assemblages. Contrib. Mineral. Petrol. 2002, 143, 706–732. [Google Scholar] [CrossRef]
- Dubacq, B.; Vidal, O.; De Andrade, V. Dehydration of dioctahedral aluminous phyllosilicates: Thermodynamic modelling and implications for thermobarometric estimates. Contrib. Mineral. Petrol. 2010, 159, 159–174. [Google Scholar] [CrossRef]
- Vidal, O.; Parra, T.; Trottet, F. A thermodynamic model for Fe-Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100 to 600 °C, 1 to 25 kb range. Am. J. Sci. 2001, 301, 557–592. [Google Scholar] [CrossRef]
- Vidal, O.; Parra, T.; Vieillard, P. Thermodynamic properties of the Tschermak solid solution in Fe-Chlorite: Application to natural examples and possible role of oxidation. Am. Mineral. 2005, 90, 347–358. [Google Scholar] [CrossRef]
- Vidal, O.; De Andrade, V.; Lewin, E.; Munoz, M.; Parra, T.; Pascarelli, S. P-T-Deformation-Fe3+/Fe2+ mapping at the thin section scale and comparison with XANES mapping: Application to a garnet-bearing metapelite from the Sambagawa metamorphic belt (Japan). J. Metamorph. Geol. 2006, 24, 669–683. [Google Scholar] [CrossRef]
- Lanari, P. Micro-Cartographie P-T-ε Dans les roches Métamorphiques. Applications aux Alpes et à l’Himalaya. Ph.D. Thesis, University of Grenoble, Grenoble, France, 2012. [Google Scholar]
- Cathelineau, M. Cation site occupancy in chlorites and illites as a function of emperature. Clay Miner. 1988, 23, 471–485. [Google Scholar] [CrossRef]
- Seydoux-Guillaume, A.-M.; Montel, J.-M.; Bingen, B.; Bosse, V.; de Parseval, P.; Paquette, J.-L.; Janots, E.; Wirth, R. Low-temperature alteration of monazite: Fluid mediated coupled dissolution–precipitation, irradiation damage, and disturbance of the U–Pb and Th–Pb chronometers. Chem. Geol. 2012, 330–331, 140–158. [Google Scholar] [CrossRef]
- Villa-Vialaneix, N.; Montel, J.M.; Seydoux-Guillaume, A.M. NiLeDAM: Monazite Datation for the NiLeDAM Team. R Package Version 0.1. 2013. Available online: http://niledam.r-forge.r-project.org (accessed on 30 July 2019).
- Tomascak, P.B.; Krogstad, E.J.; Walker, R.J. U-Pb Monazite geochronology of granitic rocks from Maine: Implications for late Paleozoic tectonics in the northern Appalachians. J. Geol. 1996, 104, 185–195. [Google Scholar] [CrossRef]
- Schulz, B.; Brätz, H.; Bombach, K.; Krenn, E. In situ Th-Pb dating of monazite by 266 nm laser ablation and ICP-MS with a single collector, and its control by EMP analysis. J. Geol. Sci. 2007, 35, 377–392. [Google Scholar]
- Vermeesch, P. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 2018, 9, 1479–1493. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, B.W. Abbreviations for Names of Rock-Forming Minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- George, L.; Cook, N.J.; Ciobanu, C.L.; Wade, B.P. Trace and Minor Elements in Galena: A Reconnaissance LA-ICP-MS Study. Am. Mineral. 2015, 100, 548–569. [Google Scholar] [CrossRef]
- Moëlo, Y.; Makovicky, E.; Mozgova, N.N.; Jambor, J.L.; Cook, N.; Pring, A.; Paar, W.; Nickel, E.H.; Graeser, S.; Karup-Møller, S.; et al. Sulfosalt systematics: A review. Report of the sulfosalt sub-committee of the IMA commission on ore mineralogy. Eur. J. Mineral. 2008, 20, 7–62. [Google Scholar] [CrossRef]
- Biagioni, C.; George, L.L.; Cook, N.J.; Makovicky, E.; Moëlo, Y.; Pasero, M.; Sejkora, J.; Stanley, C.J.; Welch, M.D.; Bosi, F. The tetrahedrite group: Nomenclature and classification. Am. Mineral. 2020, 105, 109–122. [Google Scholar] [CrossRef]
- George, L.; Cook, N.; Ciobanu, C. Minor and trace elements in natural tetrahedrite-tennantite: Effects on element partitioning among base metal sulphides. Minerals 2017, 7, 17. [Google Scholar] [CrossRef]
- Masci, L. Cristallochimie du fer dans les Chlorites Métamorphiques: Approche Analytique Multiéchelle, Expérimentale, et Implications Pétrologiques. Ph.D. Thesis, Sorbonne University, Paris, France, 2019. [Google Scholar]
- Inoue, A.; Meunier, A.; Patrier-Mas, P.; Rigault, C.; Beaufort, D.; Vieillard, P. Application of chemical geothermometry to low-temperature trioctahedral chlorites. Clays Clay Miner. 2009, 57, 371–382. [Google Scholar] [CrossRef]
- Bourdelle, F.; Parra, T.; Chopin, C.; Beyssac, O. A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions. Contrib. Mineral. Petrol. 2013, 165, 723–735. [Google Scholar] [CrossRef]
- Stacey, J.S.; Kramers, J.D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar]
- Cumming, G.L.; Richards, J.R. Ore lead isotope ratios in a continuously changing Earth. Earth Planet. Sci. Lett. 1975, 28, 155–171. [Google Scholar] [CrossRef]
- Rossi, M.; Rolland, Y.; Vidal, O.; Cox, S.F. Geochemical Variations and Element Transfer during Shear-Zone Development and Related Episyenites at Middle Crust Depths: Insights from the Mont Blanc Granite (French—Italian Alps). Geol. Soc. Spec. Publ. 2005, 245, 373–396. [Google Scholar] [CrossRef]
- Cenki-Tok, B.; Darling, J.R.; Rolland, Y.; Dhuime, B.; Storey, C.D. Direct Dating of Mid-Crustal Shear Zones with Synkinematic Allanite: New in Situ U-Th-Pb Geochronological Approaches Applied to the Mont Blanc Massif. Terra Nova 2014, 26, 29–37. [Google Scholar] [CrossRef]
- Cook, N.J.; Klemd, R.; Okrusch, M. Sulphide Mineralogy, metamorphism and deformation in the matchless massive sulphide deposit, Namibia. Miner. Depos. 1994, 29, 1–15. [Google Scholar] [CrossRef]
- Gu, L.; Zheng, Y.; Tang, X.; Zaw, K.; Della-Pasque, F.; Wu, C.; Tian, Z.; Lu, J.; Ni, P.; Li, X.; et al. Copper, gold and silver enrichment in ore mylonites within massive sulphide orebodies at Hongtoushan VHMS deposit, N.E. China. Ore Geol. Rev. 2007, 30, 1–29. [Google Scholar] [CrossRef]
- Turlin, F.; Eglinger, A.; Vanderhaeghe, O.; André-Mayer, A.-S.; Poujol, M.; Mercadier, J.; Bartlett, R. Synmetamorphic Cu remobilization during the Pan-African orogeny: Microstructural, petrological and geochronological data on the kyanite-micaschists hosting the Cu(–U) Lumwana deposit in the Western Zambian copperbelt of the Lufilian belt. Ore Geol. Rev. 2016, 75, 52–75. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, Y.; Chen, H.; Lin, Z.; Hou, W.; Li, D. Micro-textural and fluid inclusion data constraints on metallic remobilization of the Ashele VMS Cu-Zn deposit, Altay, NW China. J. Geochem. Explor. 2016, 171, 113–123. [Google Scholar] [CrossRef]
- Janots, E.; Negro, F.; Brunet, F.; Goffé, B.; Engi, M.; Bouybaouène, M.L. Evolution of the REE mineralogy in HP–LT metapelites of the Sebtide complex, rif, Morocco: Monazite stability and geochronology. Lithos 2006, 87, 214–234. [Google Scholar] [CrossRef]
- Wing, B.A.; Ferry, J.M.; Harrison, T.M. Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: Petrology and geochronology. Contrib. Mineral. Petrol. 2003, 145, 228–250. [Google Scholar] [CrossRef]
- Rasmussen, B.; Fletcher, I.R.; Muhling, J.R. In situ U–Pb dating and element mapping of three generations of monazite: Unravelling cryptic tectonothermal events in low-grade terranes. Geochim. Cosmochim. Acta 2007, 71, 670–690. [Google Scholar] [CrossRef]
- Janots, E.; Engi, M.; Berger, A.; Allaz, J.; Schwarz, J.-O.; Spandler, C. Prograde metamorphic sequence of REE minerals in pelitic rocks of the central Alps: Implications for allanite–monazite–xenotime phase relations from 250 to 610 °C. J. Metamorph. Geol. 2008, 26, 509–526. [Google Scholar] [CrossRef]
- Seybold, L.; Trepmann, C.A.; Janots, E. A ductile extensional shear zone at the contact area between HP-LT metamorphic units in the Talea Ori, central Crete, Greece: Deformation during early stages of exhumation from peak metamorphic conditions. Int. J. Earth Sci. 2019, 108, 213–227. [Google Scholar] [CrossRef]
- Čopjaková, R.; Novák, M.; Franců, E. Formation of authigenic monazite-(Ce) to monazite-(Nd) from upper Carboniferous graywackes of the Drahany upland: Roles of the chemical composition of host rock and burial temperature. Lithos 2011, 127, 373–385. [Google Scholar] [CrossRef]
- Boulter, C.A.; Fotios, M.G.; Phillips, G.N. The golden mile, Kalgoorlie; a giant gold deposit localized in ductile shear zones by structurally induced infiltration of an auriferous metamorphic fluid. Econ. Geol. 1987, 82, 1661–1678. [Google Scholar] [CrossRef]
- Gratier, J.-P.; Dysthe, D.K.; Renard, F. The role of pressure solution creep in the ductility of the Earth’s upper crust. Adv. Geophys. 2013, 54, 47–179. [Google Scholar]
- Renard, F.; Brosse, E.; Gratier, J.P. The different processes involved in the mechanism of pressure solution in quartz-rich rocks and their interactions. Quartz Cem. Sandstones 2000, 29, 67–78. [Google Scholar]
- Sibson, R.H. Implications of fault-valve behaviour for rupture nucleation and recurrence. Tectonophysics 1992, 211, 283–293. [Google Scholar] [CrossRef]
- Cox, S.F. The application of failure mode diagrams for exploring the roles of fluid pressure and stress states in controlling styles of fracture-controlled permeability enhancement in faults and shear zones. Geofluids 2010, 10, 217–233. [Google Scholar] [CrossRef]
- Renard, F.; Gratier, J.-P.; Jamtveit, B. Kinetics of crack-sealing, intergranular pressure solution, and compaction around active faults. J. Struct. Geol. 2000, 22, 1395–1407. [Google Scholar] [CrossRef]
Mineral | Sample | Pb (wt%) | Cu | Fe | Zn | As | Ag | Sn | Sb | Bi | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Galena | 3501-5a * | |||||||||||
Min. | 85.31 | - | - | - | - | 260 | - | 369 | - | |||
Max. | 86.93 | - | 179 | - | - | 1003 | 152 | 912 | - | |||
Mean (17) | 86.2 | - | 20 | - | - | 588 | 8.9 | 548 | - | |||
1σ | 0.52 | - | 56 | - | - | 175 | 37 | 160 | - | |||
3501-9b | ||||||||||||
Min. | 86.52 | 1.3 | 0.2 | 1.1 | 16 | 1340 | 0.2 | 1670 | 0.1 | |||
Max. | 87.17 | 19 | 11 | 1.6 | 37 | 1665 | 0.4 | 2081 | 0.9 | |||
Mean (13) | 86.8 | 9.8 | 3.6 | 1.3 | 30 | 1507 | 0.2 | 1866 | 0.4 | |||
1σ | 0.33 | 4.3 | 4.3 | 0.3 | 5.8 | 92 | 0.1 | 125 | 0.2 | |||
3501-10a | ||||||||||||
Min. | 86.0 | 0.6 | 1.1 | 0.4 | 3.0 | 481 | 0.2 | 585 | 0.1 | |||
Max. | 18 | 3113 | 5.3 | 16 | 1447 | 0.3 | 1729 | 0.5 | ||||
Mean (11) | 8.9 | 493 | 1.9 | 13 | 957 | 0.2 | 1165 | 0.3 | ||||
1σ | 6.8 | 1157 | 1.5 | 4.0 | 374 | 0.0 | 446 | 0.1 | ||||
PN16-R05a * | ||||||||||||
Min. | 85.49 | - | - | - | - | 369 | - | 277 | - | |||
Max. | 86.53 | - | 203 | - | - | 537 | - | 694 | - | |||
Mean (5) | 86.0 | - | 41 | - | - | 449 | - | 524 | - | |||
1σ | 0.39 | - | 91 | - | - | 68 | - | 156 | - | |||
PN20-11 | ||||||||||||
Min. | 86.0 | 229 | 0.5 | 0.1 | 38 | 246 | 0.3 | 245 | 9.2 | |||
Max. | 259 | 249 | 0.9 | 40 | 369 | 0.7 | 416 | 55 | ||||
Mean (6) | 244 | 53 | 0.5 | 39 | 297 | 0.5 | 314 | 30 | ||||
1σ | 22 | 110 | 0.5 | 1.0 | 48 | 0.2 | 62 | 22 | ||||
PN20-12 | ||||||||||||
Min. | 86.0 | - | 1.5 | 0.7 | 17 | 174 | 0.9 | 111 | 12 | |||
Max. | 66 | 26 | 3.6 | 75 | 328 | 2.0 | 289 | 61 | ||||
Mean (14) | 6.9 | 8.4 | 1.5 | 38 | 240 | 1.2 | 191 | 31 | ||||
1σ | 21 | 9.7 | 0.9 | 22 | 47 | 0.3 | 47 | 19 | ||||
Mineral | Sample | Pb | Cu (wt%) | Fe (wt%) | Zn (wt%) | As (wt%) | Ag (wt%) | Sn | Sb (wt%) | Bi | ||
Tetrahedrite | PN16-R05a * | |||||||||||
–Tennantite | Min. | - | 32 | 2.8 | 3.8 | 3.2 | 5.3 | 1132 | 21 | - | ||
Max. | - | 35 | 3.5 | 4.4 | 5.6 | 6.7 | 1370 | 25 | - | |||
Mean (10) | - | 34 | 3.1 | 4.1 | 4.5 | 6.1 | 1232 | 23 | - | |||
1σ | - | 0.9 | 0.2 | 0.2 | 1.0 | 0.4 | 100 | 1.5 | - | |||
PN20-12 | ||||||||||||
Min. | 0.3 | 35.0 | 2.2 | 6.2 | 20 | 1.2 | 0.1 | 3.8 | 0.8 | |||
Max. | 2.4 | 2.3 | 6.3 | 23 | 1.5 | 2.5 | 5.2 | 2.5 | ||||
Mean (5) | 1.4 | 2.2 | 6.3 | 22 | 1.3 | 0.6 | 4.7 | 1.3 | ||||
1σ | 0.8 | 0.1 | 0.1 | 1.5 | 0.1 | 1.1 | 0.6 | 0.7 | ||||
Mineral | Sample | Pb | Cu (wt%) | Mn | Fe (wt%) | Zn | As | Ag | Cd | Sn | Sb | Bi |
Chalcopyrite | PN20-11 | |||||||||||
Min. | 0.4 | 34.0 | 0.0 | 29 | 46 | 48 | 0.3 | 6.1 | 6.0 | 1.3 | 2.9 | |
Max. | 21 | 10 | 30 | 129 | 92 | 101 | 20 | 8.9 | 89 | 2.9 | ||
Mean (8) | 7.6 | 2.1 | 29 | 62 | 67 | 20 | 9.8 | 7.1 | 24 | 2.9 | ||
1σ | 12 | 4.5 | 0.4 | 28 | 13 | 34 | 5.0 | 0.9 | 34 | - |
Samples | 3501-5b (MP) | PN16-R05a | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mineral | Chl1 | Chl2 | Chl3 | Ph1 | Ph2 | Ph | |||||||
SiO2 | 26.70 | (0.60) | 26.31 | (0.54) | 26.52 | (0.66) | 49.09 | (1.11) | 49.73 | (0.72) | 48.59 | (1.13) | |
Al2O3 | 19.66 | (0.31) | 19.52 | (0.33) | 20.54 | (0.31) | 26.57 | (0.52) | 25.80 | (0.47) | 31.20 | (0.72) | |
FeO | 27.89 | (0.49) | 28.61 | (0.56) | 25.84 | (0.61) | 4.70 | (0.40) | 4.46 | (0.30) | 1.15 | (0.10) | |
MgO | 14.09 | (0.29) | 13.00 | (0.21) | 15.23 | (0.55) | 2.39 | (0.11) | 2.42 | (0.08) | 2.00 | (0.13) | |
MnO | 0.35 | (0.10) | 0.56 | (0.08) | 0.35 | (0.08) | 0.04 | (0.06) | 0.04 | (0.01) | - | ||
K2O | - | - | - | 10.19 | (0.22) | 10.04 | (0.21) | 10.83 | (0.20) | ||||
Na2O | 0.03 | (0.01) | 0.03 | (0.01) | 0.03 | (0.01) | 0.35 | (0.22) | 0.43 | (0.18) | 0.14 | (0.06) | |
CaO | 0.03 | (0.02) | 0.02 | (0.02) | 0.04 | (0.03) | 0.04 | (0.06) | 0.08 | (0.08) | - | ||
TiO2 | 0.01 | (0.03) | 0.01 | (0.03) | 0.04 | (0.06) | 0.02 | (0.01) | 0.02 | (0.00) | 0.14 | (0.06) | |
Total | 88.76 | (0.84) | 88.04 | (0.82) | 88.58 | (1.08) | 93.38 | (1.19) | 93.03 | (0.74) | 94.11 | (1.21) | |
apfu | (14 anhydrous oxygen basis) | (11 anhydrous oxygen basis) | |||||||||||
Si | 2.81 | (0.04) | 2.81 | (0.04) | 2.77 | (0.04) | 3.38 | (0.04) | 3.43 | (0.03) | 3.26 | (0.04) | |
Al | 2.44 | (0.05) | 2.46 | (0.03) | 2.53 | (0.05) | 2.16 | (0.05) | 2.10 | (0.04) | 2.47 | (0.05) | |
Fe | 2.46 | (0.04) | 2.56 | (0.05) | 2.26 | (0.06) | 0.27 | (0.02) | 0.26 | (0.02) | 0.06 | (0.01) | |
Mg | 2.21 | (0.04) | 2.07 | (0.03) | 2.37 | (0.07) | 0.25 | (0.01) | 0.25 | (0.01) | 0.20 | (0.02) | |
Mn | 0.03 | (0.01) | 0.05 | (0.01) | 0.03 | (0.01) | - | - | - | ||||
K | - | - | - | 0.90 | (0.02) | 0.88 | (0.02) | 0.93 | (0.02) | ||||
Na | - | - | - | 0.05 | (0.03) | 0.06 | (0.02) | 0.02 | (0.01) | ||||
Ca | - | - | - | - | 0.01 | (0.01) | - | ||||||
Ti | - | - | - | - | - | 0.01 | (0.00) | ||||||
∑VI | 5.97 | (0.03) | 5.96 | (0.03) | 5.97 | (0.03) | Xcel | 0.40 | (0.04) | 0.43 | (0.02) | 0.25 | (0.02) |
XMg | 0.47 | (0.01) | 0.45 | (0.01) | 0.51 | (0.01) | XMs | 0.50 | (0.04) | 0.47 | (0.03) | 0.68 | (0.03) |
Xfe3+ | 32 | (5) | 30 | (4) | 27 | (5) | XPrl | 0.05 | (0.03) | 0.05 | (0.02) | 0.05 | (0.03) |
T (°C) * | 285 | (30) | 280 | (30) | 315 | (35) | XPg | 0.04 | (0.02) | 0.05 | (0.02) | 0.02 | (0.01) |
Analysis n° | Measured Ratio | Analysis n° | Measured Ratio | ||||||
---|---|---|---|---|---|---|---|---|---|
207Pb/206Pb | ±(1σ) | 238U/206Pb | ±(1σ) | 207Pb/206Pb | ±(1σ) | 238U/206Pb | ±(1σ) | ||
PN16-R05a-1 * | 0.813 | 0.016 | 8.168 | 0.123 | PN16-R05a-6-2 | 0.133 | 0.012 | 140.6 | 4.154 |
PN16-R05a-1-2 * | 0.726 | 0.018 | 29.43 | 0.520 | PN16-R05a-15-1 | 0.101 | 0.008 | 170.6 | 4.368 |
PN16-R05a-2 * | 0.360 | 0.014 | 107.5 | 2.312 | PN16-R05a-15-2 | 0.208 | 0.015 | 145.6 | 4.238 |
PN16-R05a-3-1 * | 0.695 | 0.033 | 23.16 | 0.735 | PN16-R05a-17-1 | 0.268 | 0.015 | 120.3 | 3.041 |
PN16-R05a-4 * | 0.665 | 0.033 | 43.35 | 1.390 | PN16-R05a-17-2 | 0.236 | 0.013 | 145.8 | 3.612 |
PN16-R05a-6-1 * | 0.125 | 0.006 | 162.9 | 2.918 | PN16-R05a-18-1 | 0.825 | 0.024 | 4.212 | 0.053 |
PN16-R05a-22-1 * | 0.077 | 0.005 | 170.1 | 3.471 | PN16-R05a-23-1 | 0.420 | 0.021 | 106.6 | 2.728 |
PN16-R05a-22-2 * | 0.111 | 0.007 | 159.5 | 3.561 | PN16-R05a-23-2 | 0.856 | 0.027 | 1.035 | 0.014 |
PN16-R05a-11-1 * | 0.619 | 0.013 | 47.19 | 0.646 | PN16-R05a-24-1 | 0.845 | 0.028 | 2.736 | 0.037 |
PN16-R05a-11-2 * | 0.425 | 0.015 | 93.98 | 1.943 | PN16-R05a-7-1 | 0.378 | 0.020 | 105.2 | 2.764 |
PN16-R05a-10-1 * | 0.171 | 0.006 | 157.0 | 2.711 | PN16-R05a-25-1 | 0.482 | 0.025 | 88.65 | 2.358 |
PN16-R05a-10-2 * | 0.229 | 0.012 | 137.0 | 3.378 | PN16-R05a-16-1 | 0.154 | 0.017 | 167.2 | 6.432 |
PN16-R05a-12-1 * | 0.117 | 0.005 | 188.3 | 3.192 | PN16-R05a-21-2 | 0.332 | 0.025 | 135.5 | 4.957 |
PN16-R05a-12-2 * | 0.227 | 0.007 | 145.1 | 2.317 | 3501-5b-13-1 | 0.799 | 0.043 | 8.834 | 0.310 |
PN16-R05a-12-3 * | 0.213 | 0.008 | 137.0 | 2.439 | 3501-5b-16-1 | 0.703 | 0.045 | 21.53 | 0.867 |
PN16-R05a-12-4 * | 0.297 | 0.012 | 123.3 | 2.433 | 3501-5b-16-2 | 0.791 | 0.068 | 9.173 | 0.537 |
PN16-R05a-14-1 * | 0.226 | 0.010 | 139.7 | 2.731 | 3501-5b-17-1 | 0.586 | 0.037 | 55.01 | 2.057 |
PN16-R05a-14-2 * | 0.216 | 0.010 | 154.6 | 3.344 | 3501-5b-24-1 | 0.231 | 0.030 | 137.2 | 7.150 |
PN16-R05a-8-1 * | 0.325 | 0.012 | 129.0 | 2.497 | 3501-5b-28-1 | 0.644 | 0.101 | 20.73 | 2.068 |
PN16-R05a-8-2 * | 0.274 | 0.009 | 136.8 | 2.433 | 3501-5b-30-1 | 0.509 | 0.043 | 78.06 | 3.656 |
PN16-R05a-8-3 * | 0.260 | 0.009 | 129.4 | 2.343 | 3501-5b-37-1 | 0.539 | 0.046 | 79.74 | 3.879 |
PN16-R05a-13-1 * | 0.087 | 0.003 | 211.4 | 3.129 | 3501-5b-42-1 | 0.499 | 0.033 | 89.21 | 3.183 |
PN16-R05a-13-2 * | 0.251 | 0.012 | 133.9 | 3.047 | 3501-5b-53-1 | 0.503 | 0.065 | 84.75 | 6.176 |
PN16-R05a-19-1 * | 0.094 | 0.005 | 173.0 | 3.293 | 3501-5b-54-1 | 0.482 | 0.043 | 115.5 | 5.600 |
PN16-R05a-19-2 * | 0.087 | 0.006 | 179.2 | 4.175 | 3501-4b-1-1 | 0.501 | 0.035 | 65.75 | 2.550 |
PN16-R05a-5-1 * | 0.647 | 0.024 | 50 | 1.150 | 3501-4b-1-2 | 0.475 | 0.029 | 83.26 | 2.704 |
PN16-R05a-9-1 * | 0.189 | 0.007 | 174.5 | 3.046 | 3501-4b-2-1 | 0.600 | 0.028 | 59.99 | 1.403 |
PN16-R05a-9-2 * | 0.219 | 0.008 | 153.1 | 2.580 | 3501-10a-13-2 | 0.802 | 0.044 | 11.90 | 0.438 |
PN16-R05a-20-1 * | 0.220 | 0.010 | 143.1 | 3.070 | 3501-10a-12-1 | 0.859 | 0.032 | 7.130 | 0.177 |
PN16-R05a-20-2 * | 0.194 | 0.009 | 155.5 | 3.386 | 3501-10a-12-2 | 0.878 | 0.028 | 1.638 | 0.037 |
PN16-R05a-21-1 * | 0.192 | 0.007 | 142.2 | 2.428 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertauts, M.; Janots, E.; Rossi, M.; Duhamel-Achin, I.; Boiron, M.-C.; Airaghi, L.; Lanari, P.; Lach, P.; Peiffert, C.; Magnin, V. A New Alpine Metallogenic Model for the Pb-Ag Orogenic Deposits of Macôt-la Plagne and Peisey-Nancroix (Western Alps, France). Geosciences 2022, 12, 331. https://doi.org/10.3390/geosciences12090331
Bertauts M, Janots E, Rossi M, Duhamel-Achin I, Boiron M-C, Airaghi L, Lanari P, Lach P, Peiffert C, Magnin V. A New Alpine Metallogenic Model for the Pb-Ag Orogenic Deposits of Macôt-la Plagne and Peisey-Nancroix (Western Alps, France). Geosciences. 2022; 12(9):331. https://doi.org/10.3390/geosciences12090331
Chicago/Turabian StyleBertauts, Maxime, Emilie Janots, Magali Rossi, Isabelle Duhamel-Achin, Marie-Christine Boiron, Laura Airaghi, Pierre Lanari, Philippe Lach, Chantal Peiffert, and Valérie Magnin. 2022. "A New Alpine Metallogenic Model for the Pb-Ag Orogenic Deposits of Macôt-la Plagne and Peisey-Nancroix (Western Alps, France)" Geosciences 12, no. 9: 331. https://doi.org/10.3390/geosciences12090331
APA StyleBertauts, M., Janots, E., Rossi, M., Duhamel-Achin, I., Boiron, M. -C., Airaghi, L., Lanari, P., Lach, P., Peiffert, C., & Magnin, V. (2022). A New Alpine Metallogenic Model for the Pb-Ag Orogenic Deposits of Macôt-la Plagne and Peisey-Nancroix (Western Alps, France). Geosciences, 12(9), 331. https://doi.org/10.3390/geosciences12090331