Changes in the Regime of Erosive Precipitation on the European Part of Russia for the Period 1966–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Territory under Study
2.2. Data
2.3. Regression Models
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Durack, P.J.; Wijffels, S.E.; Matear, R.J. Ocean Salinities Reveal Strong Global Water Cycle Intensification during 1950 to 2000. Science 2012, 336, 455–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Dore, M.H. Climate change and changes in global precipitation patterns: What do we know? Environ. Int. 2005, 31, 1167–1181. [Google Scholar] [CrossRef] [PubMed]
- Nearing, M.A.; Pruski, F.F.; O’Neal, M.R. Expected climate change impacts on soil erosion rates: A review. J. Soil Water Conserv. 2004, 59, 43–50. [Google Scholar]
- Panagos, P.; Ballabio, C.; Borrelli, P.; Meusburger, K.; Klik, A.; Rousseva, S.; Tadic, M.P.; Michaelides, S.; Hrabalíková, M.; Olsen, P.; et al. Rainfall erosivity in Europe. Sci. Total Environ. 2015, 511, 801–814. [Google Scholar] [CrossRef] [Green Version]
- Ellison, W.D.; Ellison, O.T. Soil erosion studies part VI: Soil detachment by surface flow. Agric. Eng. 1947, 28, 402–406. [Google Scholar]
- Makkaveev, N.I. River Channel and Erosion in Its Basin; Russian Academy of Sciences: Moscow, Russia, 1955; p. 347. [Google Scholar]
- Schwebs, G.I. Theoretical Foundations of Erosion Science; Vischaya School: Kiev-Odessa, Russia, 1981; p. 224. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar] [CrossRef] [Green Version]
- Roshydromet. Second Roshydromet Assessment Report on Climate Change and Its Consequences in Russian Federation; Roshydromet: Moscow, Russsia, 2014; p. 1008. [Google Scholar]
- Jones, R.J.; Le Bissonnais, Y.; Bazzoffi, P.; Sanchez, D.J.; Düwel, O.; Loj, G.; Øygarden, L.; Prasuhn, V.; Rydell, B.; Strauss, P.; et al. Nature and Extent of Soil Erosion in Europe. In EU Reports of the Technical Working Groups Established under the Thematic Strategy for Soil Protection; Van-Camp, L., Bujarrabal, B., Gentile, A.R., Jones, R.J.A., Montanarella, L., Olazabal, C., Selvaradjou, S.-K., Eds.; Office for Official Publications of the European Communities: Luxembourg, 2004; pp. 145–185. [Google Scholar]
- Routschek, A.; Schmidt, J.; Kreienkamp, F. Impact of climate change on soil erosion–A high-resolution projection on catchment scale until 2100 in Saxony/Germany. Catena 2014, 121, 99–109. [Google Scholar] [CrossRef]
- Bardin, M.Y.; Platova, T.V. Changes in thresholds of extreme temperatures and precipitation on territory of Russia with global warming. Probl. Ekol. Monit. I Modelirovaniya Ekosist. 2013, 25, 71–93. [Google Scholar]
- Groisman, P.Y.; Knight, R.W.; Zolina, O.G. Recent Trends in Regional and Global Intense Precipitation Patterns. In Climate Vulnerability: Understanding and Addressing Threats to Essential Resources; Pielke, A.R., Adegoke, J., Niyogi, D., Kallos, G., Seastedt, R.T., Hossain, F., Eds.; Academic Press: Cambridge, MA, USA, 2013; Volume 2, pp. 25–55. [Google Scholar] [CrossRef]
- Zolina, O. Change in intense precipitation in Europe. In Changes in Flood Risk in Europe; Special Publication No. 10; Kundzewicz, Z.W., Ed.; IAHS Press: Wallingford, UK, 2012; pp. 97–120. [Google Scholar] [CrossRef]
- Bogdanova, E.G.; Gavrilova, S.Y.; Il’in, B.M. Variation in the number of days with heavy precipitation on the territory of Russia for the period of 1936–2000. Russ. Meteorol. Hydrol. 2010, 35, 344–348. [Google Scholar] [CrossRef]
- Roshydromet. Assessment Report on Climate Change and Its Consequences in Russian Federation; Roshydromet: Moscow, Russia, 2008; p. 228. [Google Scholar]
- Groisman, P.Y.; Knight, R.W.; Easterling, D.R.; Karl, T.R.; Hegerl, G.C.; Razuvaev, V.N. Trends in intense precipitation in the climate record. J. Clim. 2005, 18, 1326–1350. [Google Scholar] [CrossRef]
- Santer, B.D.; Mears, C.; Wentz, F.J.; Taylor, K.E.; Gleckler, P.J.; Wigley, T.M.L.; Barnett, T.P.; Boyle, J.S.; Brüggemann, W.; Gillett, N.P.; et al. Identification of human-induced changes in atmospheric moisture content. Proc. Natl. Acad. Sci. USA 2007, 104, 15248–15253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, T.; O’Gorman, P.A.; Levine, X.J. Water vapor and the dynamics of climate changes. Rev. Geophys. 2010, 48. [Google Scholar] [CrossRef] [Green Version]
- Perevedentsev, Y.P. Klimat i Okruzhajushhaja Sreda Privolzhskogo Federal’nogo Okruga (Climate and Environment of the Volga Federal District); Kazan Federal University: Kazan, Russia, 2013; p. 274. [Google Scholar]
- Belyaev, V.R.; Golosov, V.N.; Kislenko, K.S.; Kuznetsova, J.S.; Markelov, M.V. Combining direct observations, modelling, and 137cs tracer for evaluating individual event contribution to long-term sediment budgets. In Sediment Dynamics in Changing Environments; IAHS Press: Wallingford, UK, 2008; Volume 325, pp. 114–122. [Google Scholar]
- Rysin, I.I.; Golosov, V.N.; Grigoryev, I.I.; Zaitceva, M.Y. Influence of climate change on the rates of gully growth in the Vyatka-Kama watershed. Geomorfologiya 2017, 1, 90–103. [Google Scholar] [CrossRef]
- Larionov, G.A. Soil Erosion and Deflation: Basic Patterns and Quantitative Estimates; Moscow State University: Moscow, Russia, 1993; p. 200. [Google Scholar]
- Edwards, W.M.; Owens, L.B. Large storm effects on total soil loss. J. Soil Water Conserv. 1991, 46, 75–78. [Google Scholar]
- Larionov, G.A. Erosion potential of rainfalls. In The Work of Water Streams; Publishing House of Moscow State University: Moscow, Russia, 1987; pp. 17–21. [Google Scholar]
- Alisov, B.P. Climate of the USSR; Moscow University: Moscow, Russia, 1956; p. 128. [Google Scholar]
- Bardin, M.Y.; Rankova, E.Y.; Platova, T.V.; Samokhina, O.F.; Egorov, V.I.; Nikolaeva, A.M.; Gromov, S.A. Report on Climate Features in the Russian Federation in 2018; Rosgidromet: Moscow, Russia, 2019. [Google Scholar]
- Golosov, V.N.; Belyaev, V.R.; Markelov, M.V. Application of Chernobyl-derived 137Cs fallout for sediment redistribution studies: Lessons from European Russia. Hydrol. Process. 2013, 27, 781–794. [Google Scholar] [CrossRef]
- Maltsev, K.; Yermolaev, O. Assessment of soil loss by water erosion in small river basins in Russia. Catena 2020, 195, 104726. [Google Scholar] [CrossRef]
- Golosov, V.; Yermolaev, O.; Litvin, L.; Chizhikova, N.; Kiryukhina, Z.; Safina, G. Influence of climate and land use changes on recent trends of soil erosion rates within the Russian plain. Land Degrad. Dev. 2018, 29, 2658–2667. [Google Scholar] [CrossRef]
- RIHMI-WDC. Baseline Climatological Data Sets. Obninsk, Russia, 2021. Available online: http://meteo.ru/english/data/ (accessed on 25 May 2022).
- Bulygina, O.N.; Razuvaev, V.N.; Korshunova, N.N.; Groisman, P.Y. Climate variations and changes in extreme climate events in Russia. Environ. Res. Lett. 2007, 2, 044020. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water; A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); USDA-ARS: Washington, DC, USA, 1997; p. 404.
- Renard, K.G.; Freimund, J.R. Using monthly precipitation data to estimate the R-factor in the revised USLE. J. Hydrol. 1994, 157, 287–306. [Google Scholar] [CrossRef]
- Rigby, R.A.; Stasinopoulos, D.M. Generalized additive models for location, scale and shape (with discussion). J. Appl. Stat. 2005, 54, 507–554. [Google Scholar] [CrossRef] [Green Version]
- Stasinopoulos, D.M.; Rigby, R.A.; Heller, G.; Voudouris, V.; De Bastiani, F. Flexible Regression and Smoothing: Using GAMLSS in R; Chapman and Hall/CRC: London, UK, 2017; p. 571. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 25 May 2022).
- Litvin, L.F.; Zorina, Y.F.; Sidorchuk, A.Y.; Chernov, A.V.; Golosov, V.N. Erosion and sedimentation on the Russian Plain; Part 1, Contemporary processes. Hydrol. Process. 2003, 17, 3335–3346. [Google Scholar] [CrossRef]
- Litvin, L.F.; Kiryukhina, Z.P.; Krasnov, S.F.; Dobrovol’skaya, N.G. Dynamics of agricultural soil erosion in European Russia. Eurasian Soil Sci. 2017, 50, 1343–1352. [Google Scholar] [CrossRef]
- Rimkus, E.; Kazys, J.; Bukantis, A.; Krotovas, A. Temporal variation of extreme precipitation events in Lithuania. Oceanologia 2011, 53, 259–277. [Google Scholar] [CrossRef] [Green Version]
- Tammets, T.; Jaagus, J. Climatology of precipitation extremes in Estonia using the method of moving precipitation totals. Theor. Appl. Climatol. 2013, 111, 623–639. [Google Scholar] [CrossRef]
- Croitoru, A.E.; Chiotoroiu, B.C.; Todorova, V.I.; Torică, V. Changes in precipitation extremes on the Black Sea Western Coast. Glob. Planet. Chang. 2013, 102, 10–19. [Google Scholar] [CrossRef]
- Voskresenskaya, E.; Vyshkvarkova, E. Extreme precipitation over the Crimean Peninsula. Quat. Int. 2016, 409, 75–80. [Google Scholar] [CrossRef]
- Ashabokov, B.; Tashilova, A.; Kesheva, L.; Taubekova, Z. Trends in Precipitation Parameters in the Climate Zones of Southern Russia (1961–2011). Russ. Meteorol. Hydrol. 2017, 42, 150–158. [Google Scholar] [CrossRef]
- Mätlik, O.; Post, P. Synoptic weather types that have caused heavy precipitation in Estonia in the period 1961–2005. Estonian J. Eng. 2008, 14, 195–208. [Google Scholar] [CrossRef] [Green Version]
- Fiener, P.; Neuhaus, P.; Botschek, J. Long-term trends in rainfall erosivity analysis of high resolution precipitation time series (1937–2007) from Western Germany. Agric. For. Meteorol. 2013, 171, 115–123. [Google Scholar] [CrossRef]
- Soulis, E.; Sarhadi, A.; Tinel, M.; Suthar, M. Extreme precipitation time trends in Ontario, 1960–2010. Hydrol. Process. 2016, 30, 4090–4410. [Google Scholar] [CrossRef]
- Sarhadi, A.; Soulis, E.D. Time-varying extreme rainfall intensity-duration-frequency curves in a changing climate. Geophys. Res. Lett. 2017, 44, 2454–2463. [Google Scholar] [CrossRef]
- Golosov, V.; Yermolayev, O.; Rysin, I.; Vanmaercke, M.; Medvedeva, R.; Zaytseva, M. Mapping and spatial-temporal assessment of gully density in the Middle Volga region, Russia. Earth Surf. Process. Landf. 2018, 43, 2818–2834. [Google Scholar] [CrossRef]
- Medvedeva, R.A.; Golosov, V.N.; Ermolaev, O.P. Spatio-Temporal Assessment of Gully Erosion in the Zone of Intensive Agriculture in the European Part of Russia. Geogr. Nat. Resour. 2018, 39, 204–211. [Google Scholar] [CrossRef]
- Mal’tsev, K.A.; Ivanov, M.A.; Sharifullin, A.G.; Golosov, V.N. Changes in the Rate of Soil Loss in River Basins within the Southern Part of European Russia. Eurasian Soil Sci. 2019, 52, 718–727. [Google Scholar] [CrossRef]
- Golosov, V.N.; Ivanova, N.N.; Gusarov, A.V.; Sharifullin, A.G. Assessment of the trend of degradation of arable soils on the basis of data on the rate of stratozem development obtained with the use of 137 Cs as a chronomarker. Eurasian Soil Sci. 2017, 10, 1195–1208. [Google Scholar] [CrossRef]
- Golosov, V.N.; Walling, D.E.; Konoplev, A.V.; Ivanov, M.M.; Sharifullin, A.G. Application of bomb- and Chernobyl-derived radiocaesium for reconstructing changes in erosion rates and sediment fluxes from croplands in areas of European Russia with different levels of Chernobyl fallout. J. Environ. Radioact. 2018, 186, 78–89. [Google Scholar] [CrossRef]
- Park, H.; Sherstiukov, A.B.; Fedorov, A.N.; Polyakov, I.V.; Walsh, J.E. An observation-based assessment of the influences of air temperature and snow depth on soil temperature in Russia. Environ. Res. Lett. 2014, 9, 064026. [Google Scholar] [CrossRef]
- Mueller, E.N.; Pfister, A. Increasing occurrence of high-intensity rainstorm events relevant for the generation of soil erosion in a temperate lowland region in central Europe. J. Hydrol. 2011, 411, 266–278. [Google Scholar] [CrossRef]
- Golosov, V.N.; Gennadiev, A.N.; Olson, K.R.; Markelov, M.V.; Zhidkin, A.P.; Chendev, Y.G.; Kovach, R.G. Spatial and temporal features of soil erosion in the forest-steppe zone of the East-European Plain. Eurasian Soil Sci. 2011, 44, 794–801. [Google Scholar] [CrossRef]
- Yermolaev, O.P.; Golosov, V.N.; Dvinskikh, A.P.; Litvin, L.F.; Kumani, M.V.; Rysin, I.I. Recent changes in sediment redistribution in the upper parts of the fluvial system of European Russia: Regional aspects. Proc. Int. Assoc. Hydrol. Sci. 2015, 367, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Guan, Y.; Wu, L.; Guan, X.; Cai, W.; Huang, J.; Dong, W.; Zhang, B. Changing lengths of the four seasons by global warming. Geophys. Res. Lett. 2021, 48, e2020GL091753. [Google Scholar] [CrossRef]
ID | Definition | Units |
---|---|---|
R12.7 | The number of days per warm season with a daily precipitation of more than 12.7 mm | days |
R12.7–40 | The number of days per warm season with a daily precipitation of 12.7 to 40 mm | days |
R40 | The number of days with a daily precipitation of more than 40 mm | days |
R × 1 day | The maximum one-day precipitation amount per warm season | mm |
Modelled Feature | T * | TM ** | Ecoregion | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Northwest Russian-Novaya Zemlya Tundra | Kola Peninsula Tundra | Scandinavian and Russian Taiga | Sarmatic Mixed Forests | Central European Mixed Forests | East European Forest Steppe | Pontic Steppe | Caspian Lowland Desert | Crimean Submediterranean Forest Complex | Caucasus Mixed Forests | Ural Montane Forests and Tundra | |||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | |||
R12.7–40 | Curr. incr. | 3 (0) | 2 (0) | 32 (6) | 15 (5) | 1 (0) | 10 (0) | 7 (0) | 1 (0) | 0 (0) | 1 (0) | 1 (0) | |
1 (1) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (0) | |||
% Curr. incr. | 57 | 33 | 74 | 71 | 50 | 32 | 22 | 33 | 0 | 14 | 40 | ||
Curr. decr. | 3 (0) | 2 (0) | 10 (0) | 3 (0) | 0 (0) | 7 (0) | 14 (1) | 0 (0) | 1 (0) | 4 (0) | 3 (1) | ||
0 (0) | 2 (1) | 1 (0) | 3 (0) | 1 (0) | 14 (6) | 11 (7) | 2 (1) | 1 (1) | 2 (0) | 0 (0) | |||
% Curr. decr. | 43 | 67 | 26 | 29 | 50 | 68 | 78 | 67 | 100 | 86 | 60 | ||
R40 | Curr. incr. | 1 (0) | 1 (0) | 24 (1) | 10 (1) | 0 (0) | 16 (0) | 13 (1) | 2 (0) | 2 (0) | 3 (0) | 3 (0) | |
0 (0) | 0 (0) | 1 (0) | 1 (0) | 0 (0) | 0 (0) | 1 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |||
% Curr. incr. | 100 | 50 | 61 | 48 | 0 | 52 | 45 | 67 | 100 | 43 | 60 | ||
Curr. decr. | 0 (0) | 1 (0) | 10 (0) | 6 (0) | 1 (0) | 10 (0) | 10 (0) | 1 (0) | 0 (0) | 1 (0) | 1 (0) | ||
0 (0) | 0 (0) | 6 (0) | 5 (2) | 1 (0) | 5 (1) | 7 (0) | 0 (0) | 0 (0) | 3 (1) | 1 (0) | |||
% Curr. decr. | 0 | 50 | 39 | 52 | 100 | 48 | 55 | 33 | 0 | 57 | 40 | ||
R × 1 day | Curr. incr. | 6 (0) | 3 (0) | 31 (7) | 11 (2) | 2 (0) | 12 (0) | 14 (1) | 1 (0) | 2 (0) | 2 (0) | 2 (0) | |
0 (0) | 0 (0) | 0 (0) | 1 (1) | 0 (0) | 2 (0) | 1 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |||
% Curr. incr. | 86 | 50 | 72 | 57 | 100 | 45 | 47 | 33 | 100 | 29 | 40 | ||
Curr. decr. | 1 | 1 | 11 | 5 | 0 | 9 | 12 (1) | 0 | 0 | 3 | 2 | ||
0 | 2 (2) | 1 (1) | 4 (1) | 0 | 8 (5) | 5 (4) | 2 (1) | 0 | 2 | 1 | |||
% Curr. decr. | 14 | 50 | 28 | 43 | 0 | 55 | 53 | 67 | 0 | 71 | 60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chizhikova, N.; Yermolaev, O.; Golosov, V.; Mukharamova, S.; Saveliev, A. Changes in the Regime of Erosive Precipitation on the European Part of Russia for the Period 1966–2020. Geosciences 2022, 12, 279. https://doi.org/10.3390/geosciences12070279
Chizhikova N, Yermolaev O, Golosov V, Mukharamova S, Saveliev A. Changes in the Regime of Erosive Precipitation on the European Part of Russia for the Period 1966–2020. Geosciences. 2022; 12(7):279. https://doi.org/10.3390/geosciences12070279
Chicago/Turabian StyleChizhikova, Nelli, Oleg Yermolaev, Valentin Golosov, Svetlana Mukharamova, and Anatoly Saveliev. 2022. "Changes in the Regime of Erosive Precipitation on the European Part of Russia for the Period 1966–2020" Geosciences 12, no. 7: 279. https://doi.org/10.3390/geosciences12070279
APA StyleChizhikova, N., Yermolaev, O., Golosov, V., Mukharamova, S., & Saveliev, A. (2022). Changes in the Regime of Erosive Precipitation on the European Part of Russia for the Period 1966–2020. Geosciences, 12(7), 279. https://doi.org/10.3390/geosciences12070279