Characterizing Spatial Patterns of Amazon Rainforest Wildfires and Driving Factors by Using Remote Sensing and GIS Geospatial Technologies
Abstract
:1. Introduction
2. Study Area
3. Data Sets and Methodology
3.1. The Workflow of the Study
3.2. Data Preparation and Processing
3.2.1. Wildfire Data (Dependent Variable)
3.2.2. Driving Factors (Explanatory Variables)
3.3. Spatial Pattern Analyses
3.3.1. Spatial Density
3.3.2. Hotspot Analysis
3.4. Spatial Statistical Analyses
3.4.1. Geographically Weighted Gaussian Regression (GWGR)
3.4.2. Geographically Weighted Poisson Regression (GWPR)
3.5. Model Evaluation and Comparison
4. Results
4.1. Spatial Distribution
4.2. Spatial Statistical Regression Analyses
4.2.1. Benchmark Regression Analysis
4.2.2. Geographically Weighted Gaussian Regression
4.2.3. Geographically Weighted Poisson Regression
4.3. Model Evaluation and Comparison
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ometto, J.P.; Aguiar, A.P.D.; Martinelli, L.A. Amazon deforestation in Brazil: Effects, drivers and challenges. Carbon Manag. 2011, 2, 575–585. [Google Scholar] [CrossRef]
- Bawa, K.S.; Markham, A. Climate Change and Tropical Forests. Trends Ecol. Evol. 1995, 10, 348–349. [Google Scholar] [CrossRef]
- Silveira, M.; Petri, C.A.; Broggio, I.S. Drivers of Fire Anomalies in the Brazilian Amazon: Lessons Learned from the 2019 Fire Crisis. Land 2020, 9, 516. [Google Scholar] [CrossRef]
- Kshetri, N.; Rojas Torres, D.C.; Besada, H.; Moros Ochoa, M.A. Big Data as a Tool to Monitor and Deter Environmental Offenders in the Global South: A Multiple Case Study. Sustainability 2020, 12, 10436. [Google Scholar] [CrossRef]
- Liu, Q.; Shan, Y.; Shu, L.; Sun, P.; Du, S. Spatial and temporal distribution of forest fire frequency and forest area burnt in Jilin Province, Northeast China. J. For. Res. 2018, 29, 1233–1239. [Google Scholar] [CrossRef]
- Wittenberg, L.; Malkinson, D. Spatio-temporal perspectives of forest fires regimes in a maturing Mediterranean mixed pine landscape. Eur. J. For. Res. 2009, 128, 297–304. [Google Scholar] [CrossRef]
- Liu, Q.; Qin, X.; Li, X. A Study of Spatiotemporal Characteristics of Forest Fires in Sichuan Province Based on Point Pattern’s Method. J. Sichuan For. Sci. Technol. 2019, 40, 6–12. [Google Scholar]
- Genton, M.G.; Butry, D.T.; Gumpertz, M.L.; Prestemon, J.P. Spatio-temporal analysis of wildfire ignitions in the St Johns River Water Management District, Florida. Int. J. Wildland Fire 2006, 15, 87. [Google Scholar] [CrossRef]
- Román-Cuesta, M.R.; Martínez-Vilalta, J. Effectiveness of protected areas in mitigating fire within their boundaries: Case study of Chiapas, Mexico. Conserv. Biol. J. Soc. Conserv. Biol. 2006, 20, 1074–1086. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Charlton, M.; Brunsdon, C. Measuring Spatial Variations in Relationships with Geographically Weighted Regression. In Recent Developments in Spatial Analysis: Spatial Statistics, Behavioral Modelling and Computational Intelligence; Fischer, M.M., Getis, A., Eds.; Springer: Berlin, Germany; London, UK, 2011; pp. 60–82. [Google Scholar]
- Koutsias, N.; Martínez, J.; Chuvieco, E.; Allgöwer, B. Modeling wildland fire occurrence in southern Europe by a geographically weighted regression approach. In Proceedings of the 5th International Workshop on Remote Sensing and GIS Applications to Forest Fire Management: Fire Effects Assessment, Zaragoza, Spain, 16–18 June 2005; Universidad de Zaragoza: Zaragoza, Spain, 2005; pp. 57–60. [Google Scholar]
- Avila-Flores, D.; Pompa-Garcia, M.; Antonio-Nemiga, X.; Rodriguez-Trejo, D.A.; Vargas-Perez, E.; Santillan-Perez, J. Driving factors for forest fire occurrence in Durango State of Mexico: A geospatial perspective. Chin. Geogr. Sci. 2010, 20, 491–497. [Google Scholar] [CrossRef]
- Parisien, M.A.; Moritz, M.A. Environmental controls on the distribution of wildfire at multiple spatial scales. Ecol. Monogr. 2009, 79, 127–154. [Google Scholar] [CrossRef]
- Morello, T.F.; Ramos, R.M.; Anderson, L.O.; Owen, N.; Rosan, T.M.; Steil, L.O.; Erson, L.; Owen, N.; Rosan, T.M.; Steil, L. Predicting fires for policy making: Improving accuracy of fire brigade allocation in the Brazilian Amazon. Ecol. Econ. 2020, 169, 106501. [Google Scholar] [CrossRef]
- Hilker, T.; Lyapustin, A.I.; Tucker, C.J.; Hall, F.G.; Myneni, R.B.; Wang, Y.; Bi, J.; Mendes de Moura, Y.; Sellers, P.J. Vegetation dynamics and rainfall sensitivity of the Amazon. Proc. Natl. Acad. Sci. USA 2014, 111, 16041–16046. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.H.L.; Aragão, L.E.; Fonseca, M.G.; Almeida, C.T.; Vedovato, L.B.; Anderson, L.O. Deforestation-Induced Fragmentation Increases Forest Fire Occurrence in Central Brazilian Amazonia. Forests 2018, 9, 305. [Google Scholar] [CrossRef]
- Devisscher, T.; Anderson, L.O.; Aragão Luiz, E.O.C.; Galván, L.; Malhi, Y. Increased Wildfire Risk Driven by Climate and Development Interactions in the Bolivian Chiquitania, Southern Amazonia. PLoS ONE 2016, 11, e0161323. [Google Scholar] [CrossRef]
- Schulte, L.A.; Mladenoff, D.J. Severe wind and fire regimes in northern forests: Historical variability at the regional scale. Ecology 2005, 86, 431–445. [Google Scholar] [CrossRef]
- Ali, A.A.; Carcaillet, C.; Bergeron, Y. Long-term fire frequency variability in the eastern Canadian boreal forest: The influences of climate vs. local factors. Glob. Chang. Biol. 2009, 15, 1230–1241. [Google Scholar] [CrossRef]
- Wood, S.W.; Murphy, B.P.; Bowman David, M.J.S. Firescape ecology: How topography determines the contrasting distribution of fire and rain forest in the south-west of the Tasmanian Wilderness World Heritage Area. J. Biogeogr. 2011, 38, 1807–1820. [Google Scholar] [CrossRef]
- Stage, A.R. An Expression for the Effect of Aspect, Slope, and Habitat Type on Tree Growth. For. Sci. 1976, 22, 457–460. [Google Scholar]
- Alencar, A.; Nepstad, D.; Diaz, M.C.V. Forest Understory Fire in the Brazilian Amazon in ENSO and Non-ENSO Years: Area Burned and Committed Carbon Emissions. Earth Interact. 2006, 10, 1–17. [Google Scholar] [CrossRef]
- Armenteras, D.; González, T.M.; Retana, J. Forest fragmentation and edge influence on fire occurrence and intensity under different management types in Amazon forests. Biol. Conserv. 2013, 159, 73–79. [Google Scholar] [CrossRef]
- Cochrane, M.A. Synergistic Interactions between Habitat Fragmentation and Fire in Evergreen Tropical Forests. Conserv. Biol. 2001, 15, 1515–1521. [Google Scholar] [CrossRef]
- Bucini, G.; Lambin, E.F. Fire impacts on vegetation in Central Africa: A remote-sensing-based statistical analysis. Appl. Geogr. 2002, 22, 27–48. [Google Scholar] [CrossRef]
- Morton, D.C.; Defries, R.S.; Randerson, J.T.; Giglio, L.; Schroeder, W.; van Der Werf, G.R. Agricultural intensification increases deforestation fire activity in Amazonia. Glob. Chang. Biol. 2008, 14, 2262–2275. [Google Scholar] [CrossRef]
- Marlon, J.R.; Bartlein, P.J.; Carcaillet, C.; Gavin, D.G.; Harrison, S.P.; Higuera, P.E.; Joos, F.; Power, M.J.; Prentice, I.C. Climate and human influences on global biomass burning over the past two millennia. Nat. Geosci. 2008, 1, 697–702. [Google Scholar] [CrossRef]
- Schelhaas, M.-J.; Hengeveld, G.; Moriondo, M.; Reinds, G.J.; Kundzewicz, Z.W.; Maat, H.; Bindi, M. Assessing risk and adaptation options to fires and windstorms in European forestry. Mitig. Adapt. Strat. Glob. Chang. 2010, 15, 681–701. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Moreno, J.M.; Camia, A. Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives. For. Ecol. Manag. 2013, 294, 11–22. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Krawchuk, M.A.; Groot, W.J.d.; Wotton, B.M.; Gowman, L.M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483. [Google Scholar] [CrossRef]
- Wotton, B.M.; Nock, C.A.; Flannigan, M.D. Forest fire occurrence and climate change in Canada. Int. J. Wildland Fire 2010, 19, 253. [Google Scholar] [CrossRef]
- Živanović, S.; Ivanović, R.; Nikolić, M.; Đokić, M.; Tošić, I. Influence of air temperature and precipitation on the risk of forest fires in Serbia. Meteorol. Atmos. Phys. 2020, 132, 869–883. [Google Scholar] [CrossRef]
- Beer, T. The interaction of wind and fire. Bound. Layer Meteorol. 1991, 54, 287–308. [Google Scholar] [CrossRef]
- Aragão, L.E.O.C.; Malhi, Y.; Roman-Cuesta, R.M.; Saatchi, S.; Anderson, L.O.; Shimabukuro, Y.E. Spatial patterns and fire response of recent Amazonian droughts. Geophys. Res. Lett. 2007, 34(7), L07701. [Google Scholar] [CrossRef]
- Gavin, J.; Haberman, S.; Verrall, R. Moving weighted average graduation using kernel estimation. Insur. Math. Econ. 1993, 12, 113–126. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Koutsias, N.; Kalabokidis, K.D.; Allgöwer, B. Fire occurrence patterns at landscape level: Beyond positional accuracy of ignition points with kernel density estimation methods. Nat. Resour. Model. 2004, 17, 359–375. [Google Scholar] [CrossRef]
- Tomaszewski, B. Geographic Information Systems (GIS) for Disaster Management; Routledge: New York, NY, USA, 2021. [Google Scholar]
- Haining, R.; Law, J.; Griffith, D. Modelling small area counts in the presence of overdispersion and spatial autocorrelation. Comput. Stat. Data Anal. 2009, 53, 2923–2937. [Google Scholar] [CrossRef]
- Dayananda, P. Stochastic models for forest fires. Ecol. Model. 1977, 3, 309–313. [Google Scholar] [CrossRef]
- Cameron, A.C.; Trivedi, P.K. Regression Analysis of Count Data; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Ismail, N.; Jemain, A.A. Handling overdispersion with negative binomial and generalized Poisson regression models. Casualty Actuar. Soc. Forum 2007, 2007, 103–158. [Google Scholar]
- Lee, J.-H.; Han, G.; Fulp, W.J.; Giuliano, A.R. Analysis of overdispersed count data: Application to the Human Papillomavirus Infection in Men (HIM) Study. Epidemiol. Infect. 2012, 140, 1087–1094. [Google Scholar] [CrossRef]
- Stewart, M. An Analysis of Amazonian Forest Fires. Available online: https://towardsdatascience.com/an-analysis-of-amazonian-forest-fires-8facca63ba69 (accessed on 21 September 2020).
- Butler, R.A. The Amazon Rainforest. Available online: https://rainforests.mongabay.com/amazon/ (accessed on 10 April 2022).
- Soares-Filho, B.; Silvestrini, R.; Nepstad, D.; Brando, P.; Rodrigues, H.; Alencar, A.; Coe, M.; Locks, C.; Lima, L.; Hissa, L.; et al. Forest fragmentation, climate change and understory fire regimes on the Amazonian landscapes of the Xingu headwaters. Landscape Ecol. 2012, 27, 585–598. [Google Scholar] [CrossRef]
- Sturtevant, B.R.; Cleland, D.T. Human and biophysical factors influencing modern fire disturbance in northern Wisconsin. Int. J. Wildland Fire 2007, 16, 398. [Google Scholar] [CrossRef]
- Kelley, D.I.; Burton, C.; Huntingford, C.; Brown, M.A.J.; Whitley, R.; Dong, N. Technical note: Low meteorological influence found in 2019 Amazonia fires. Biogeosciences 2021, 18, 787–804. [Google Scholar] [CrossRef]
- Box, G.E.P.; Cox, D.R. An Analysis of Transformations. J. R. Stat. Soc. Ser. B Methodol. 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Faraway, J.J. Practical Regression and ANOVA Using R. Available online: http://csyue.nccu.edu.tw/Practical%20Regression%20and%20Anova%20using%20R.pdf (accessed on 10 April 2022).
Variable | Source | Unit | Description of Original Data |
---|---|---|---|
Dependent variable | |||
Wildfire occurrence | NASA | fire count | Total wildfire count in 2019. Each fire count represents one or more wildfires within a 1 × 1 km pixel. Derived from MODIS MCD14ML |
Explanatory variables | |||
Topographic | |||
Elevation | GTOPO30 | m | 1 km resolution |
Slope | GTOPO30 | degree | Derived from elevation grid |
Aspect | GTOPO30 | ratio | Derived from elevation grid |
Land Use | |||
Pastureland Area | MapBiomas | % | The sum of (Pasture/Crop) areas within a cell, divided by total cell area, and multiplied by 100 |
Cropland Area | MapBiomas | ||
Vegetation Cover | |||
Fractional Vegetation Cover | NASA | ratio | The corresponding fuel amount within the grid. Derived from MOD13Q1 NDVI, 500 m resolution |
Number of Forest Patches | TerraBrasilis | patch count | The number of forest patches within a cell |
Edges Proportion | TerraBrasilis | km/km² | The sum of the lengths of all forest edge segments within a cell, divided by cell area, 1:25,0000 |
Anthropogenic data | |||
Population Density | WorldPop | people per km² | The average population for each grid |
Road Density | DNIT | km/km² | The sum of the length of all roads (federal, state, and other) within a cell, divided by total cell area |
Habitat Loss | PRODES/INPE | % | The sum of all deforested areas within a cell, divided by total cell area, and multiplied by 100 |
Meteorological | |||
Temperature | TerraClimate | Celsius ℃ | Annual mean temperature, ~4 meters resolution |
Relative Humidity | POWER | % | The ratio of the vapor pressure of air to its saturation vapor pressure |
Wind Speed | TerraClimate | m/s | meters per second |
Maximum Cumulative Water Deficit | CHIRPS | mm | Minimum value of the monthly accumulated water deficit in 2019 |
Variable | Coefficients Value | Std. Error | Robust Std. Error | t-Statistic | Probability (p-value) | Robust t-Statistic | Robust Probability | VIF |
---|---|---|---|---|---|---|---|---|
Intercept | 1.072 | 0.012 | 0.012 | 87.353 | <0.001 | 87.253 | <0.001 | -------- |
Elevation | −0.411 | 0.175 | 0.190 | −2.353 | 0.019 | −2.159 | 0.031 | 4.2 |
Slope | −0.048 | 0.020 | 0.019 | −2.350 | 0.019 | −2.502 | 0.012 | 2.8 |
Aspect | 0.060 | 0.013 | 0.012 | 4.689 | <0.001 | 4.779 | <0.001 | 1.1 |
FVC | −0.005 | 0.013 | 0.013 | −0.342 | 0.733 | −0.348 | 0.728 | 1.2 |
Number of Forest Patches | 0.196 | 0.027 | 0.026 | 7.270 | <0.001 | 7.566 | <0.001 | 4.8 |
Edge Proportion | 0.112 | 0.022 | 0.020 | 5.074 | <0.001 | 5.542 | <0.001 | 3.2 |
Population Density | −0.195 | 0.018 | 0.018 | −10.693 | <0.001 | −10.911 | <0.001 | 2.2 |
Road Density | 0.086 | 0.019 | 0.022 | 4.442 | <0.001 | 3.875 | <0.001 | 2.5 |
Habitat Loss | 0.654 | 0.018 | 0.021 | 36.244 | <0.001 | 31.882 | <0.001 | 2.2 |
Crop Area | −0.143 | 0.018 | 0.020 | −8.007 | <0.001 | −7.197 | <0.001 | 2.1 |
Pastureland | 0.363 | 0.026 | 0.022 | 14.058 | <0.001 | 16.215 | <0.001 | 4.4 |
Temperature | −0.017 | 0.019 | 0.020 | −0.899 | 0.369 | −0.852 | 0.394 | 2.3 |
MCWD | 0.028 | 0.020 | 0.019 | 1.404 | 0.160 | 1.530 | 0.126 | 2.7 |
Wind | −0.056 | 0.016 | 0.017 | −3.396 | 0.001 | −3.284 | 0.001 | 1.8 |
Relative Humidity | −0.005 | 0.018 | 0.019 | −0.294 | 0.769 | −0.285 | 0.776 | 2.2 |
Variable | Poisson Coeff | Quasi-Poisson Coeff | SE Poisson Coeff | SE Quasi-Poisson Coeff | t-Statistic Poisson | p-Value Poisson | t-Statistic Quasi-Poisson | p-Value Quasi-Poisson | VIF |
---|---|---|---|---|---|---|---|---|---|
Intercept | 1.005 | 1.005 | 0.010 | 0.084 | 103.8 | <0.001 | 12.0 | <0.001 | -------- |
Elevation | −0.068 | −0.068 | 0.008 | 0.072 | −8.2 | <0.001 | −0.9 | 0.342 | 3.7 |
Slope | −0.123 | −0.123 | 0.007 | 0.057 | −18.5 | <0.001 | −2.1 | 0.033 * | 2.0 |
Aspect | 0.026 | 0.026 | 0.004 | 0.032 | 7.2 | <0.001 | 0.8 | 0.408 | 1.2 |
FVC | 0.043 | 0.043 | 0.004 | 0.037 | 9.9 | <0.001 | 1.1 | 0.251 | 1.8 |
Number of Forest Patches | 0.347 | 0.347 | 0.009 | 0.076 | 39.7 | <0.001 | 4.6 | <0.001 | 1.1 |
Edge Proportion | 0.171 | 0.171 | 0.009 | 0.074 | 19.8 | <0.001 | 2.3 | 0.022 * | 1.2 |
Population Density | −0.930 | −0.930 | 0.006 | 0.054 | −148.1 | <0.001 | −17.1 | <0.001 | 1.8 |
Road Density | −0.063 | −0.063 | 0.005 | 0.042 | −13.2 | <0.001 | −1.5 | 0.127 | 1.4 |
Habitat Loss | 1.280 | 1.280 | 0.009 | 0.079 | 139.5 | <0.001 | 16.1 | <0.001 | 1.5 |
Crop Area | −0.073 | −0.073 | 0.004 | 0.037 | −17.1 | <0.001 | −2.0 | 0.048 * | 2.7 |
Pastureland | 0.965 | 0.965 | 0.012 | 0.108 | 77.5 | <0.001 | 9.0 | <0.001 | 3.1 |
Temperature | −0.045 | −0.045 | 0.006 | 0.054 | −7.2 | <0.001 | −0.8 | 0.406 | 2.7 |
MCWD | 0.134 | 0.134 | 0.007 | 0.060 | 19.2 | <0.001 | 2.2 | 0.027 * | 1.9 |
Wind | −0.230 | −0.230 | 0.005 | 0.041 | −48.5 | <0.001 | −5.6 | <0.001 | 1.2 |
Relative Humidity | −0.278 | −0.278 | 0.006 | 0.048 | −49.6 | <0.001 | −5.7 | <0.001 | 2.0 |
GWGR Spatial Variation Status. | GWPR Spatial Variation Status | ||||||||
---|---|---|---|---|---|---|---|---|---|
Coefficient | IQR | SE | 2SE | Status | IQR | SE (Poisson) | SE (Quasi-Poisson) | 2SE (Quasi-Poisson) | Status |
Intercept | 0.948 | 0.012 | 0.024 | Non-stationary | 1.925 | 0.010 | 0.084 | 0.167 | Non-stationary |
Elevation | 0.603 | 0.025 | 0.050 | Non-stationary | 1.335 | 0.008 | 0.072 | 0.143 | Non-stationary |
Slope | 0.206 | 0.020 | 0.040 | Non-stationary | 0.450 | 0.007 | 0.057 | 0.115 | Non-stationary |
Aspect | 0.084 | 0.013 | 0.026 | Non-stationary | 0.196 | 0.004 | 0.032 | 0.064 | Non-stationary |
FVC | 0.142 | 0.013 | 0.026 | Non-stationary | 0.301 | 0.004 | 0.037 | 0.074 | Non-stationary |
Number of Forest Patches | 0.239 | 0.027 | 0.054 | Non-stationary | 0.488 | 0.009 | 0.076 | 0.151 | Non-stationary |
Edges Proportion | 0.188 | 0.022 | 0.044 | Non-stationary | 0.662 | 0.009 | 0.074 | 0.149 | Non-stationary |
Population Density | 0.224 | 0.012 | 0.024 | Non-stationary | 0.464 | 0.006 | 0.054 | 0.109 | Non-stationary |
Habitat Loss | 0.229 | 0.018 | 0.036 | Non-stationary | 0.926 | 0.009 | 0.079 | 0.159 | Non-stationary |
Pastureland Area | 0.287 | 0.024 | 0.048 | Non-stationary | 1.790 | 0.012 | 0.108 | 0.215 | Non-stationary |
Temperature | 0.340 | 0.018 | 0.036 | Non-stationary | 1.116 | 0.006 | 0.054 | 0.108 | Non-stationary |
MCWD | 0.321 | 0.020 | 0.040 | Non-stationary | 0.748 | 0.007 | 0.060 | 0.121 | Non-stationary |
Wind Speed | 0.486 | 0.016 | 0.032 | Non-stationary | 1.079 | 0.005 | 0.041 | 0.082 | Non-stationary |
Relative Humidity | 0.437 | 0.018 | 0.036 | Non-stationary | 1.016 | 0.006 | 0.048 | 0.097 | Non-stationary |
Models | Family | AICc | Adjusted R² / Deviance explained | Moran’s I | Z-Score | p-Value |
---|---|---|---|---|---|---|
OLS | Gaussian | 20061.057 | 0.516 | 0.406 | 65.244 | <0.001 |
GWGR | Gaussian | 15594.000 | 0.746 | 0.006 | 1.001 | 0.317 |
Poisson | Poisson | 17069.801 | 0.550 | 0.331 | 53.759 | <0.001 |
GWPR | Poisson | 5183.925 | 0.784 | 0.088 | 14.167 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Pu, R.; Downs, J.; Jin, H. Characterizing Spatial Patterns of Amazon Rainforest Wildfires and Driving Factors by Using Remote Sensing and GIS Geospatial Technologies. Geosciences 2022, 12, 237. https://doi.org/10.3390/geosciences12060237
Ma C, Pu R, Downs J, Jin H. Characterizing Spatial Patterns of Amazon Rainforest Wildfires and Driving Factors by Using Remote Sensing and GIS Geospatial Technologies. Geosciences. 2022; 12(6):237. https://doi.org/10.3390/geosciences12060237
Chicago/Turabian StyleMa, Cong, Ruiliang Pu, Joni Downs, and He Jin. 2022. "Characterizing Spatial Patterns of Amazon Rainforest Wildfires and Driving Factors by Using Remote Sensing and GIS Geospatial Technologies" Geosciences 12, no. 6: 237. https://doi.org/10.3390/geosciences12060237
APA StyleMa, C., Pu, R., Downs, J., & Jin, H. (2022). Characterizing Spatial Patterns of Amazon Rainforest Wildfires and Driving Factors by Using Remote Sensing and GIS Geospatial Technologies. Geosciences, 12(6), 237. https://doi.org/10.3390/geosciences12060237