Preservation of the Geoheritage and Mining Heritage of Serifos Island, Greece: Geotourism Perspectives in a Potential New Global Unesco Geopark
Abstract
:1. Introduction
2. Geological Setting
3. Results
3.1. Geological-Tectonic Geosites at Serifos
3.2. Mineralogical and Petrological Geotopes at Serifos
3.3. Geomorphological–Hydrogeological Geosites at Serifos
3.4. Mining Heritage of Serifos
4. Discussion
4.1. The Possibilities of Geotourism Development in Serifos—Geotourism Perspectives
- Serifos geomorphosites, such as lagoons, sand dunes, tompolo, landforms resulting from differential erosion and weathering (tafoni) (Figure 10).
- The Serifos granodiorite considered to be synchronous with Miocene extensional detachment faulting, intruded gneisses, schists and marbles causing an extensive contact metamorphic aureole.
- Tectonics geotopes, including Megalo Livadi and Kavos Kiklopas detachments.
- The Koutalas cave, between the bays of Megalo Livadi and Koutalas with stalactites and stalagmites, at Stavrakopoulos, discovered in 1893 during excavations. In one of the rooms formed by the cave, utensils and pottery were found, which prove that in ancient times, it was a place of worship. The first room of the cave is decorated with stalactites and columns, while the next chamber is covered almost along its entire length by a small lake. In the chamber that follows is an altar framed by various utensils, traces of fire and bones, covered with stalagmite material. A protection zone of 500 m has been defined around the cave (Government Gazette 29/B/26/1/63).
- The cave of the Cyclops. It is located near the monastery of Evangelistria and Kavos Kiklopas detachments.
- The hot springs at the bay of Almyros, near the sea (Figure 10). There, tabular translucent barite and rhombohedral calcite have been found in exceptional crystals.
- Agia Marina-Koutalas. The Agia Marina area is characterized by splendid occurrences of andraditic garnets in association with quartz crystals. The Koutalas area is characterized by the operations of mining activity, such as rail systems, ore transport, wagons and the workers’ residencies.
- Avessalos. The Avessalos area is the best site in the world in respect to the mineral green quartz (prase). The crystal forms, intergrowths and sizes (up to 40 cm) of green quartz specimens from this locality are spectacular.
- Chalara with iconic mining infrastructure and also best development of proximal high-T skarn.
- Miners pathway. Τhe hiking trail leading from “Giftika” area to Ano Chora was the road that the miners used to take in order to reach the western areas of the island and get to work. It was built in 1858, it is still well-preserved and it constitutes one of the most beautiful paths of the island.
- Prehistoric clay kilns have been identified on Avessalos in the Phournoi area and on the Kefala peninsula, which testify to the extraction and processing of ore in the early stages. The presence of circular towers, such as Aspropyrgos in the bay of Koutalas, and other buildings may be associated with mining and metallurgical activity on the island.
- Moutoula sulfide ore deposits (galena).
4.2. The Proposed Network of Geocultural Routes of Serifos (Geotrails of Serifos)
- In situ interpretive form implemented at the geosites which provides direct and visual aspect (information signs, panels, geotrails, guided tours, etc.). These provide information about the attractions and the geoheritage and their significance [69]. The information signs will be placed in central points of the settlements and at the entry points of an important junction of paths, where they will inform the visitor of all the geotopes and the routes. Specifically, these signs will contain informative texts and photos and a thematic map that will inform the visitor about its location in the geopark and will lead him to the geotopes through a map that will be designed and will depict the existing roads and paths, the main place names, the settlements, and any useful information for the visitor [69,70].
- Ex situ interpretive form used in related facilities (visitor centers, museums, etc.), such as popular lectures, interactive and video presentations, museum artefacts, laboratories, etc. [70].
4.3. Serifos: A Potential New Unesco Global Geopark
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crofts, R. Putting Geoheritage Conservation on All Agendas. Geoheritage 2018, 10, 231–238. [Google Scholar] [CrossRef]
- Crofts, R.; Tormey, D.; Gordon, J. Introducing New Guidelines on Geoheritage Conservation in Protected and Conserved Areas. Geoheritage 2021, 13, 33. [Google Scholar] [CrossRef]
- Santangelo, N.; Valente, E. Geoheritage and Geotourism. Resources 2020, 9, 80. [Google Scholar] [CrossRef]
- Carcavilla, L.; Durán Valsero, J.; García-Cortés, Á.; López-Martínez, J. Geological Heritage and Geoconservation in Spain: Past, Present, and Future. Geoheritage 2009, 1, 75–91. [Google Scholar] [CrossRef]
- Gordon, J.E. Geoheritage, Geotourism and the Cultural Landscape: Enhancing the Visitor Experience and Promoting Geoconservation. Geosciences 2018, 8, 136. [Google Scholar] [CrossRef] [Green Version]
- UNESCO Geoparks Program—A New Initiative to Promote a Global Network of Geoparks Safeguarding and Developing Selected Areas Having Significant Geological Features; Document 156 EX/11 Rev., Executive Board, 156th session; UNESCO: Paris, France, 1999; p. 4.
- Farsani, N.D.; Coelho, C.; Costa, C. Geotourism and Geoparks as novel strategies for socio-economic development in rural areas. Int. J. Tour. Res. 2011, 13, 68–81. [Google Scholar] [CrossRef]
- Dowling, R.; Newsome, D. (Eds.) Geotourism; Elsevier/Heineman: Oxford, UK, 2006. [Google Scholar]
- Dowling, R.K. Global geotourism—An emerging form of sustainable tourism. Czech J. Tour. 2013, 2, 59–79. [Google Scholar] [CrossRef] [Green Version]
- Hose, T.A. 3G’s for Modern. Geotourism. Geoheritage 2012, 4, 7–24. [Google Scholar] [CrossRef]
- UNESCO. Available online: https://en.unesco.org/global-geoparks (accessed on 22 June 2021).
- UNESCO. Global Geoparks Network; Division of Ecological and Earth Sciences: Paris, France, 2006. [Google Scholar]
- Mc Keever, P.; Zouros, N. Geoparks: Celebrating earth heritage, sustaining local communities. Episodes 2005, 28, 274–278. [Google Scholar] [CrossRef] [Green Version]
- Salemink, J. Skarn and Ore Formation at Serifos, Greece as a Consequence of Granodiorite Intrusion. Ph.D. Thesis, University of Utrecht, Utrecht, The Netherlands, 1985. [Google Scholar]
- Ducoux, M.; Branquet, Y.; Jolivet, L.; Arbaret, L.; Grasemann, B.; Rabillard, A.; Gumiaux, C.; Drufin, S. Synkinematic skarns and fluid drainage along detachments: The West Cycladic Detachment System on Serifos Island (Cyclades, Greece) and its related mineralization. Tectonophysics 2017, 695, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Fitros, M.; Tombros, S.; Williams-Jones, A.E.; Tsikouras, B.; Koutsopoulou, E.; Hatzipanagiotou, K. Physicochemical controls on bismuth mineralization: An example from Moutoulas, Serifos island, Cyclades, Greece. Amer. Miner. 2017, 102, 1622–1631. [Google Scholar] [CrossRef] [Green Version]
- Voudouris, P.; Mavrogonatos, C.; Spry, P.G.; Baker, T.; Melfos, V.; Klemd, R.; Haase, K.; Repstock, A.; Djiba, A.; Bismayer, U.; et al. Porphyry and epithermal deposits in Greece: An overview, new discoveries, and mineralogical constraints on their genesis. Ore Geol. Rev. 2019, 107, 654–691. [Google Scholar] [CrossRef]
- Korosidis, J.; Voudouris, P.; Kouzmanov, K. Distal Fe skarn deposits of Serifos Island: New mineralogical and geochemical constrains on the retrograde assemblage and associated ore mineralization. In The Critical Role of Minerals in the Carbon-Neutral Future, Proceedings of the 16th SGA Biennial Meeting, Rotorua, New Zealand, 28–31 March 2022; Society Geology Applied: Rotorua, New Zealand, 2022; in press. [Google Scholar]
- Grasemann, B.; Zamolyi, A.; Petrakakis, K.; Rambousek, C.; Igelseder, C. Ein neuer metamorphic core complex in den West- Kykladen (Serifos, Greichenland). Erlanger Geol. Abh. 2002, 3, 36–37. [Google Scholar]
- Grasemann, B.; Petrakakis, K. Evolution of the Serifos metamorphic core complex. J. Virtual Explor. 2007, 27, 1–18. [Google Scholar] [CrossRef]
- Grasemann, B.; Schneider, D.A.; Stockli, D.F.; Iglseder, C. Miocene bivergent crustal extension in the Aegean: Evidence from the western Cyclades (Greece). Lithosphere 2012, 4, 23–39. [Google Scholar] [CrossRef] [Green Version]
- Iglseder, C.; Grasemann, B.; Schneider, D.A.; Petrakakis, K.; Miller, C.; Klötzli, U.S.; Thöni, M.; Zámolyi, A.; Rambousek, C. I and S-type plutonism on Serifos (W-Cyclades, Greece). Tectonophysics 2009, 473, 69–83. [Google Scholar] [CrossRef]
- Rabillard, A.; Arbaret, L.; Jolivet, L.; Le Breton, N.; Gumiaux, C.; Augier, R.; Grasemann, B. Interactions between plutonism and detachments during metamorphic core complex formation, Serifos Island (Cyclades, Greece). Tectonics 2015, 34, 1080–1106. [Google Scholar] [CrossRef] [Green Version]
- Gauthier, G.; Albandakis, N. Minerals from the Serifos skarn, Greece. Miner. Rec. 1991, 22, 303–308. [Google Scholar]
- Voudouris, P.; Katerinopoulos, A.; Christofalou, F.; Kassimi, G. Serifos island, Aegean Sea/Greece: A worldwide unique mineralogical and petrological geotope. ProGeo. News 2007, 1, 7–8. [Google Scholar]
- Voudouris, P.; Voulgaris, N.; Christophalou, F.; Kassimi, P. Development of Mineralogical-Petrological Geotopes on the Serifos Island, using Geographic Information Systems (GIS). In Proceedings of the 11th Conference of the Greek Geological Society, Special Session of the Geological and Geomorphological Heritage Conservation Committee, Athens, Greece, 24–26 May 2007; pp. 49–52. [Google Scholar]
- Voudouris, P.; Katerinopoulos, A.; Magganas, A. Mineralogical geotopes in Greece: Preservation and promotion of museum specimens of minerals and gemstones. Sofia Initiative “Mineral diversity preservation”. In Proceedings of the IX International Symposium Mineral Diversity Research and Reservation, Sofia, Bulgaria, 16–18 October 2017; pp. 149–159. [Google Scholar]
- Ottens, B.; Voudouris, P. Griechenland: Mineralien-Fundorte-Lagerstätten; Christian Weise Verlag: Munich, Germany, 2018; p. 480. ISBN 978-3-921656-86-0. [Google Scholar]
- Klemme, S.; Berndt, J.; Mavrogonatos, C.; Flemetakis, S.; Baziotis, I.; Voudouris, P.; Xydous, S. On the Color and Genesis of Prase (Green Quartz) and Amethyst from the Island of Serifos, Cyclades, Greece. Minerals 2018, 8, 487. [Google Scholar] [CrossRef] [Green Version]
- Voudouris, P.; Mavrogonatos, C.; Graham, I.; Giuliani, G.; Tarantola, A.; Melfos, V.; Karampelas, S.; Katerinopoulos, A.; Magganas, A. Gemstones of Greece: Geology and Crystallizing Environments. Minerals 2019, 9, 461. [Google Scholar] [CrossRef] [Green Version]
- Marinos, G. Geology and metallogeny of Serifos island. Geol. Geophys. Res. 1951, 1, 95–127. (In Greek) [Google Scholar]
- Georgakopoulou, M.; Bassiakos, Y.; Philaniotou, O. Seriphos surfaces: A study of copper slag heaps and copper sources in the context of Early Bronze Age Aegean metal production. Archaeometry 2011, 53, 123–145. [Google Scholar] [CrossRef]
- Philaniotou, O.; Bassiakos, Y.; Georgakopoulou, M. Early Bronze Age copper production on Seriphos (Cyclades, Greece). In Metallurgy: Understanding How, Learning Why. Studies in Honour of James D. Muhly; Betancourt, P.P., Ferrence, S.C., Eds.; Prehistory Monographs 29; INSTAP Academic Press: Philadelphia, PA, USA, 2011; pp. 157–164. [Google Scholar]
- Voudouris, P.; Melfos, M.; Mavrogonatos, C.; Photiades, A.; Moraiti, E.; Rieck, B.; Kolitsch, U.; Tarantola, A.; Scheffer, C.; Morin, D.; et al. The Lavrion mines: A unique site of geological and mineralogical heritage. Minerals 2021, 11, 76. [Google Scholar] [CrossRef]
- Ring, U.; Glodny, J.; Will, T.; Thomson, S. The Hellenic subduction system: High-pressure metamorphism, exhumation, normal faulting, and large-scale extension. Ann. Rev. Earth Planet. Sci. 2010, 38, 45–76. [Google Scholar] [CrossRef]
- Jolivet, L.; Faccenna, C.; Huet, B.; Labrousse, L.; Le Pourhiet, L.; Lacombe, O.; Lecomte, E.; Burov, E.; Denèle, Y.; Brun, J.-P.; et al. Aegean tectonics: Strain localization, slab tearing and trench retreat. Tectonophysics 2013, 597, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Wind, S.C.; Schneider, D.A.; Hannington, M.D.; McFarlane, C.R.M. Regional similarities in lead isotopes and trace elements in galena of the Cyclades Mineral District, Greece with implications for the underlying basement. Lithos 2020, 366, 105559. [Google Scholar] [CrossRef]
- Seman, S.; Stockli, D.F.; Soukis, K. The provenance and internal structure of the Cycladic Blueschist Unit revealed by detrital zircon geochronology, Western Cyclades, Greece. Tectonics 2017, 36, 1407–1429. [Google Scholar] [CrossRef]
- Reinecke, T.; Altherr, R.; Hartung, B.; Hatzipanagiotou, K.; Kreuzer, H.; Harre, W.; Klein, H.; Keller, J.; Geenen, E.; Boeger, H. Remnants of a Late Cretaceous high temperature belt on the island of Anafi (Cyclades, Greece). N. Jahrbuch Miner. Abhandl. 1982, 145, 157–182. [Google Scholar]
- Stouraiti, C.; Pantziris, I.; Vasilatos, C.; Kanellopoulos, C.; Mitropoulos, P.; Pomonis, P.; Moritz, R.; Chiaradia, M. Ophiolitic Remnants from the Upper and Intermediate Structural Unit of the Attic-Cycladic Crystalline Belt (Aegean, Greece): Fingerprinting Geochemical Affinities of Magmatic Precursors. Geosciences 2017, 7, 14. [Google Scholar] [CrossRef] [Green Version]
- Jolivet, L.; Brun, J.P. Cenozoic geodynamic evolution of the Aegean region. Int. J. Earth Sci. 2010, 99, 109–138. [Google Scholar] [CrossRef]
- Coleman, M.J.; Schneider, D.A.; Grasemann, B.; Soukis, K.; Lozios, S.; Hollinetz, M.S. Lateral termination of a Cycladic-style detachment system (Hymittos, Greece). Tectonics 2020, 39, e2020TC006128. [Google Scholar] [CrossRef]
- Kruckenberg, S.C.; Vanderhaeghe, O.; Ferré, E.C.; Teyssier, C.; Whitney, D.L. Flow of partially molten crust and the internal dynamics of a migmatite dome, Naxos, Greece. Tectonics 2011, 30, TC3001. [Google Scholar] [CrossRef]
- Altherr, R.; Kreuzer, H.; Wendt, I.; Lenz, H.; Wagner, G.A.; Keller, J.; Harre, W.; Höndorf, A. A late Oligocene/early Miocene high temperature belt in the Attic-Cycladic crystalline complex (SE Pelagonian, Greece). Geol. Jahrb. 1982, 23, 97–164. [Google Scholar]
- Menant, A.; Jolivet, L.; Vrielynck, B. Kinematic reconstructions and magmatic evolution illuminating crustal and mantle dynamics of the eastern Mediterranean region since the late Cretaceous. Tectonophysics 2016, 675, 103–140. [Google Scholar] [CrossRef] [Green Version]
- Schneider, D.A.; Senkowski, C.; Vogel, H.; Grasemann, B.; Iglseder, C.; Schmitt, A.K. Eocene tectonometamorphism on Serifos (western Cyclades) deduced from zircon depth-profiling geochronology and mica thermochronology. Lithos 2011, 125, 151–172. [Google Scholar] [CrossRef]
- Salemink, J. On the Geology and Petrology of Serifos island (Cyclades, Greece). Ann. Geol. Pays Hell. 1980, 30, 342–365. [Google Scholar]
- Stouraiti, C. Geochemistry and Petrogenesis of the Serifos Granite, in Relation to Other Aegean Granitoids, Greece. Ph.D. Thesis, University of Leicester, Leicester, UK, 1995. [Google Scholar]
- Stouraiti, C.; Mitropoulos, P.; Tarney, J.; Barreiro, B.; McGrath, A.M.; Baltatzis, E. Geochemistry and petrogenesis of late Miocene granitoids, Cyclades, southern Aegean: Nature of source components. Lithos 2010, 114, 337–352. [Google Scholar] [CrossRef]
- Stouraiti, C.; Baziotis, I.; Asimow, P.D.; Downes, H. Geochemistry of the Serifos calc-alkaline granodiorite pluton, Greece: Constraining the crust and mantle contributions to I-type granitoids. Int. J. Earth Sci. 2018, 107, 1657–1688. [Google Scholar] [CrossRef]
- Voudouris, P.; Melfos, V.; Moritz, R.; Spry, P.G.; Ortelli, M.; Kartal, T. Molybdenite Occurrences in Greece: Mineralogy, Geochemistry and Rhenium Content. In Scientific Annals of the School of Geology AUTH, Proceedings of the XIX Congress of the Carpathian-Balkan Geological Association, Thessaloniki, Greece, 23–26 September 2010; Charis Ltd.: Thessaloniki, Greece, 2010; pp. 369–378. [Google Scholar]
- Vlachopoulos, N.; Voudouris, P. Geological and mining history of Serifos island, Greece: Current state and perspectives for protection of mineralogical and petrological geotopes. In Proceedings of the 15th Congress of the Geological Society of Greece, Athens, Greece, 22–24 May 2019. [Google Scholar]
- Voudouris, P.; Photiades, A.; Tarantola, A.; Scheffer, C.; Vanderhaeghe, O.; Morin, D.; Vlachopoulos, N. The Lavrion and Serifos mining centers: Two worldwide unique mineralogical and geological monuments and perspectives for their protection. In The Value Framework for the Protection and Management of Sites and Monuments Extracted during the Antiquity: Current Uses and Future Synergies, Proceedings of the Greek ICOMOS Conference, Athens-Lavrion, Greece, 29–30 November 2019; ResearchGate: Berlin, Germany, 2019. [Google Scholar] [CrossRef]
- Voudouris, P.; Katerinopoulos, A. New occurences of mineral megacrysts in tertiary magmatic-hydrothermal and epithermal environments in Greece. Doc. Nat. 2004, 151, 1–21. [Google Scholar]
- Maneta, V.; Voudouris, P. Quartz megacrysts in Greece: Mineralogy and environment of formation. Bull. Geol. Soc. Greece 2010, 43, 685–696. [Google Scholar] [CrossRef] [Green Version]
- Voudouris, P.; Maneta, V. Quartz in Greece; CreateSpace Publ.: Seattle, WA, USA; Amazon.com, Inc.: Seattle, WA, USA, 2017. (In Greek) [Google Scholar]
- Meinert, L.D. Variability of skarn deposits—Guides to exploration. In Revolution in the Earth Sciences; Boardman, S.J., Ed.; Kendall-Hunt Publishing: Dubuque, IA, USA, 1983; pp. 301–316. [Google Scholar]
- Meinert, L.; Dipple, G.; Nicolescu, S. World skarn deposits. In Economic Geology 100th Anniversary Volume; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 299–336. [Google Scholar]
- Mavrokordatou, D.; Balodimou, M.; Belavilas, N.; Papastefanaki, L.; Frangiskos, A.Z. Historical Mines in the Aegean, Laboratory of Urban Environment, School of Architecture, NTUA, Athens 2000–2006. Available online: https://www.elke.ntua.gr/en/research_project/historical-aegean-mines/ (accessed on 22 June 2021). (In Greek).
- Belavilas, N.; Papastefanaki, L. Historical Mines in the Aegean, 1st ed.; Melissa: Athens, Greece, 2009; Available online: http://courses.arch.ntua.gr/111992.html (accessed on 22 June 2021). (In Greek)
- Skonis, N. The Bloody Strike of the Miners of Serifos–21 August 1916, 1st ed.; Federation of Miners of Greece: Athens, Greece, 1990. (In Greek) [Google Scholar]
- Speras, K. The Strike of Serifos, 3rd ed.; Bibliopelagos: Athens, Greece, 2001. (In Greek) [Google Scholar]
- Katsilieri, M.; Louvi, A.; Mavrokordatou, D.; Belavilas, N.; Economou, M.; Trova, V.; Frangiskos, A.Z. Open Air Museum of Mining Activities and Mineral Wealth of Serifos, 1st ed.; Piraeus Group Cultural Foundation: Athens, Greece, 1998. (In Greek) [Google Scholar]
- Zouros, N. The European Geoparks Network. Episodes 2004, 27, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Velitzelos, E.; Mountrakis, D.; Zouros, N.; Soulakellis, N. Atlas of the Geological Monuments of the Aegean; Ministry of the Aegean: Athens, Greece, 2003; p. 352. (In Greek) [Google Scholar]
- Bruno, B.C.; Wallace, A. Interpretive Panels for Geoheritage Sites: Guidelines for Design and Evaluation. Geoheritage 2019, 11, 1315–1323. [Google Scholar] [CrossRef]
- Hose, T.A. European ‘geotourism’—Geological interpretation and geoconservation promotion for tourists. In Geological Heritage: Its Conservation and Management; Barretino, D., Wimbledon, W.P., Gallego, E., Eds.; Instituto Tecnologico Geominero de Espana: Madrid, Spain, 2000; pp. 127–146. [Google Scholar]
- Hose, T.A. Geotourism and interpretation. In Geotourism; Dowling, R.K., Newsome, D., Eds.; Elsevier: Oxford, UK, 2005; pp. 221–241. [Google Scholar]
- Hose, T.A.; Vasiljevic, D.A. Defining the nature and purpose of modern geotourism with particular reference to the United Kingdom and south-east Europe. Geoheritage 2012, 4, 25–43. [Google Scholar] [CrossRef]
- Tomić, N.; Marković, S.B.; Korać, M.; Mrđić, N.; Hose, T.A.; Vasiljević, D.A.; Jovičić, M.; Gavrilov, M.B. Exposing mammoths: From loess research discovery to public palaeontological park. Quat. Int. 2015, 372, 142–150. [Google Scholar] [CrossRef]
- Antić, A.; Tomić, N.; Đorđević, T.; Marković, S.B. Promoting palaeontological heritage of mammoths in Serbia through a cross-country thematic route. Geoheritage 2021, 13, 7. [Google Scholar] [CrossRef]
- Zouros, N. Lesvos petrified forest geopark, Greece: Geoconservation, geotourism, and local development. In The George Wright Forum; George Wright Society: Hancock, MI, USA, 2010; pp. 19–28. [Google Scholar]
- Fassoulas, C.; Zouros, N. Evaluating the influence of Greek geoparks to the local communities. Bull. Geol. Soc. Greece 2010, 43, 896–906. [Google Scholar] [CrossRef] [Green Version]
- Fassoulas, C.; Staridas, S.; Perakis, V.; Mavrokosta, C. Revealing the geoheritage of Eastern Crete, through the development of Sitia Geopark, Crete, Greece. Bull. Geol. Soc. Greece 2013, 47, 1004–1016. [Google Scholar] [CrossRef] [Green Version]
- Zafeiropoulos, G.; Drinia, H.; Antonarakou, A.; Zouros, N. From Geoheritage to Geoeducation, Geoethics and Geotourism: A Critical Evaluation of the Greek Region. Geosciences 2021, 11, 381. [Google Scholar] [CrossRef]
- Drinia, H.; Tsipra, T.; Panagiaris, G.; Patsoules, M.; Papantoniou, C.; Magganas, A. Geological Heritage of Syros Island, Cyclades Complex, Greece: An Assessment and Geotourism Perspectives. Geosciences 2021, 11, 138. [Google Scholar] [CrossRef]
- Rassios, A.E.; Ghikas, D.; Dilek, Y.; Vamvaka, A.; Batsi, A.; Koutsovitis, P. Meteora: A Billion Years of Geological History in Greece to Create a World Heritage Site. Geoheritage 2020, 12, 83. [Google Scholar] [CrossRef]
- Rassios, A.E.; Krikeli, A.; Dilek, Y.; Ghikas, C.; Batsi, A.; Koutsovitis, P.; Hua, J. The Geoheritage of Mount Olympus: Ancient Mythology and Modern Geology. Geoheritage 2022, 14, 15. [Google Scholar] [CrossRef]
- Spyrou, E.; Triantaphyllou, M.V.; Tsourou, T.; Vassilakis, E.; Asimakopoulos, C.; Konsolaki, A.; Markakis, D.; Marketou-Galari, D.; Skentos, A. Assessment of Geological Heritage Sites and Their Significance for Geotouristic Exploitation: The Case of Lefkas, Meganisi, Kefalonia and Ithaki Islands, Ionian Sea, Greece. Geosciences 2022, 12, 55. [Google Scholar] [CrossRef]
- Periferakis, A. The emery of Naxos: A multidisciplinary study of the effects of mining at a local and national context. J. NX-Multidiscip. Peer Rev. J. 2021, 7, 93–115. [Google Scholar]
- García-Sánchez, L.; Canet, C.; Cruz-Pérez, M.Á.; Morelos-Rodríguez, L.; Salgado-Martínez, E.; Corona-Chávez, P. A comparison between local sustainable development strategies based on the geoheritage of two post-mining areas of Central Mexico. Int. J. Geoheritage Parks 2021, 9, 391–404. [Google Scholar] [CrossRef]
- Kaźmierczak, U.; Strzałkowski, P.; Lorenc, M.W.; Szumska, E.; Sánchez, A.A.P.; Baker, K.A. Post-mining Remnants and Revitalization. Geoheritage 2019, 11, 2025–2044. [Google Scholar] [CrossRef] [Green Version]
- Costa, E.; Dino, G.A.; Benna, P.; Rossetti, P. The Traversella Mining Site as Piemonte Geosite. Geoheritage 2019, 11, 55–70. [Google Scholar] [CrossRef]
- Migoń, P.; Kasprzak, M.; Woo, K.S. Granite Landform Diversity and Dynamics Underpin Geoheritage Values of Seoraksan Mountains, Republic of Korea. Geoheritage 2019, 11, 751–764. [Google Scholar] [CrossRef] [Green Version]
- Rolfo, F.; Benna, P.; Cadoppi, P.; Castelli, D.; Favero-Longo, S.E.; Giardino, M.; Balestro, G.; Belluso, E.; Borghi, A.; Cámara, F.; et al. The Monviso Massif and the Cottian Alps as Symbols of the Alpine Chain and Geological Heritage in Piemonte, Italy. Geoheritage 2015, 7, 65–84. [Google Scholar] [CrossRef] [Green Version]
- Scoon, R.N.; Viljoen, M.J. Geoheritage of the Eastern Limb of the Bushveld Igneous Complex, South Africa: A Uniquely Exposed Layered Igneous Intrusion. Geoheritage 2019, 11, 1723–1748. [Google Scholar] [CrossRef]
- Natura 2000. Available online: https://natura2000.eea.europa.eu/Natura2000/SDF.aspx?site=GR4220009 (accessed on 22 June 2021).
Mineral | Chemical Formula |
---|---|
Primary minerals | |
Actinolite | Ca2(Mg4.5–2.5Fe2+0.5–2.5)5Si8O22(OH)2 |
Epidote | Ca2Fe3+Al2(Si2O7)(SiO4)O(OH) |
Andradite | Ca3Fe23+(SiO4)3 |
Hedenbergite | CaFe2+Si2O6 |
Ilvaite | CaFe3+Fe22+O(Si2O7)(OH) |
Quartz | SiO2 |
Chalcopyrite | Cu1+Fe3+S2 |
Galena | PbS |
Pyrite | FeS2 |
Hematite | Fe2O3 |
Magnetite | Fe2+Fe23+O4 |
Aragonite | CaCO3 |
Barite | BaSO4 |
Calcite | CaCO3 |
Fluorite | CaF2 |
Supergene minerals | |
Cuprite | Cu2O |
Malachite | Cu2CO3(OH)2 |
Brochantite | Cu4SO4(OH)6 |
Azurite | Cu3(CO3)2(OH)2 |
Chrysocolla | (Cu2-xAlx)H2-xSi2O5(OH)4 · nH2O |
Limonite | Fe,O,OH,H2O |
Slag minerals | |
Atacamite | Cu2Cl(OH)3 |
Malachite | Cu2CO3(OH)2 |
Nantokite | CuCl |
Paratacamite | Cu32+(Cu,Zn)(OH)6Cl2 |
Rouaite | Cu2NO3(OH)3 |
Spangolite | Cu6AlSO4(OH)12Cl · 3H2O |
Brochantite | Cu4SO4(OH)6 |
Buttgenbachite | Cu36(NO3)2Cl6(OH)64 · nH2O |
Chalcanthite | CuSO4 · 5H2O |
Connellite | Cu36(SO4)(OH)62Cl8 · 6H2 |
Chrysocolla | (Cu2-xAlx)H2-xSi2O5(OH)4 · nH2O |
Cuprite | Cu2O |
Delafosite | Cu1+Fe3+O2 |
Clinoatacamite | Cu2Cl(OH)3 |
Langite | Cu4SO4(OH)6 · 2H2O |
Linarite | PbCuSO4(OH)2 |
Fayalite | Fe22+SiO4 |
Goethite | FeO(OH) |
Gypsum | CaSO4 · 2H2O |
Route Number/Km | Route Description | Route Title | Geoheritage and Cultural Points of Interest | Petrological Types/Minerals |
---|---|---|---|---|
1/5, 8 | Pyrgos–Galani (galena mines)–Sykamia–Skala–Phournoi | Discovering the first mines, the geomorphosites and the copper slags | Paved path: Traditional settlement Galani (named after the ancient galena mines), Tafoni (cellular honeycomb geomorphological formations of weathering), copper slags (Phournoi). | Amphibolites with gneiss intercalations, greenschists, alluvial sediments/galena, sphalerite, pyrite, etc. |
2/4, 8 | Megalo Chorio–Skouries–Avessalos | On the copper road | Avessalos area is the best site in the world in respect to the mineral green quartz. Skouries: By far the largest known copper slag heap in the Aegean with estimates for 100,000 tons of slag present. | Amphibolites, mylonitic orthogneiss, dolomitic and calcitic marbles with boudinaged quartzites and schists/ilvaite, hedenbergite, green quartz, etc. |
3/4, 1 | Agia Marina–Kastro Grias–Koutalas–Megalo Chorio | Protecting the mines | Skarn-related mineralization: The area is characterized by splendid occurrences of garnets in association with quartz crystals. Koutalas area is characterized by the operations of mining activity, such as rail systems, ore transport, wagons and the workers residencies. Koutalas cave between the bays of Megalo Livadi and Koutalas with stalactites and stalagmites at Stavrakopoulos. | Granodiorite, amphibolites with gneiss intercalations, mylonitic orthogneiss, dolomitic and calcitic marbles with boudinaged quartzites and schists/andraditic garnets, quartz, barite crystals with galena and Fe-oxides, etc. |
4/3, 5 | Kastro Grias–Ganema- Chalara–Vagia Bay | Outdoor mining museum | Area with iconic mining infrastructure, and also best development of proximal high-T skarn. An outdoor mining museum, with underground mining galleries, iron rails, semi-destroyed bridges, wagons and a loading bridge. | Granodiorite, mylonitic orthogneiss, calcitic and impure marbles, alluvial sediments/andraditic garnets, quartz, epidote, etc. |
5/9, 4 | Megalo Chorio–Kalogeros–Kavos Kiklopas–Megalo Livadi–Koundouros | On the iron road | Ore mineralization along various extensional low-angle detachment fault systems. (Command) Village with miners: An outdoor mining museum, with underground mining galleries, iron rails, semi-destroyed bridges, wagons and a loading bridge, hot water springs. Koundouros area is characterized by hedenbergitic skarn including the best ilvaite crystals worldwide. Megalo Livadi and Kavos Kiklopas detachments. | Amphibolites with gneiss intercalations, mylonitic orthogneiss, dolomitic and calcitic marbles with boudinaged quartzites and schists, greenschists/ilvaite, green quartz, hematite, magnetite, barite, etc. |
6/2, 4 | Chora–Gyftika | The road of the miners | Stone-paved path used to be the only way for miners to get to the mines. | Granodiorite, mylonitic orthogneiss |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlachopoulos, N.; Voudouris, P. Preservation of the Geoheritage and Mining Heritage of Serifos Island, Greece: Geotourism Perspectives in a Potential New Global Unesco Geopark. Geosciences 2022, 12, 127. https://doi.org/10.3390/geosciences12030127
Vlachopoulos N, Voudouris P. Preservation of the Geoheritage and Mining Heritage of Serifos Island, Greece: Geotourism Perspectives in a Potential New Global Unesco Geopark. Geosciences. 2022; 12(3):127. https://doi.org/10.3390/geosciences12030127
Chicago/Turabian StyleVlachopoulos, Nikolaos, and Panagiotis Voudouris. 2022. "Preservation of the Geoheritage and Mining Heritage of Serifos Island, Greece: Geotourism Perspectives in a Potential New Global Unesco Geopark" Geosciences 12, no. 3: 127. https://doi.org/10.3390/geosciences12030127
APA StyleVlachopoulos, N., & Voudouris, P. (2022). Preservation of the Geoheritage and Mining Heritage of Serifos Island, Greece: Geotourism Perspectives in a Potential New Global Unesco Geopark. Geosciences, 12(3), 127. https://doi.org/10.3390/geosciences12030127