Petrogenesis of Lava from Christmas Island, Northeast Indian Ocean: Implications for the Nature of Recycled Components in Non-Plume Intraplate Settings
Abstract
:1. Introduction
2. Methods
2.1. 40Ar–39Ar Radiometric Dating
2.2. Mineral Chemistry
2.3. Whole Rock Geochemistry
2.4. Osmium and Oxygen Isotopes
3. Results
3.1. Radiometric Ages
3.2. Petrography and Mineral Chemistry
3.3. Whole-Rock Geochemistry
3.4. Sr-Nd-Pb Isotopic Geochemistry
3.5. Osmium Isotopes
3.6. Olivine Phenocryst Oxygen Isotopes
4. Discussion
4.1. Are the UVS an Example of Petit-Spot Volcanism?
4.2. Are the LVS Plume-Related Volcanism?
4.3. Are the LVS Related to Recycled Oceanic Crust?
4.4. The Nature of Enriched Mantle Components
5. Conclusions
- (1)
- The variable Os isotopic compositions of the Christmas Island lava series, extending from subchondritic to superchondritic values but none have typical MORB type Os isotope values, are consistent with DUPAL components being present in Indian Ocean upper mantle. These components are likely to reflect the presence of recycled LCC and/or SCLM components within the ambient Indian MORB mantle due to Gondwana break-up and continental drift [10].
- (2)
- The geochemistry of the UVS lava of Christmas Island is consistent with a petrogenesis involving shallow-level melting of Indian MORB source mantle enriched with both LCC and SCLM components. The enrichment of the Indian MORB mantle by plume components, such as the EM1 Kerguelen mantle, is not required to explain the enriched trace element and isotopic composition of the UVS. This is supported by the MORB like olivine compositions (Mg#, Ni ppm) of the UVS and olivine δ18O values, which are similar to m-SCLM. Calculated primary mantle-derived melts for the UVS petit-spot lava are inferred to result from decompression melting along a MORB mantle adiabat of ~Tp 1360 °C with melt segregation at ~3.5 GPa. They do not originate from the LAB, although lithospheric flexure clearly plays a role in causing upwelling and the melting of small-scale heterogeneities present in the asthenospheric MORB source mantle as suggested by [10].
- (3)
- The geochemistry of the LVS is consistent with recycling plume and SCLM components related to Gondwana break-up. Calculated primary mantle-derived melts for the LVS lava require a MORB like adiabat of Tp ~1415 °C along with the Os isotopic evidence for the presence of r-SCLM supports the proposed idea that continental breakup causes recycling of lithospheric components into the ambient MORB mantle. As the LVS end member with radiogenic Pb represents a shallow recycled component, it provides a satisfactory explanation as to why there is no associated hotspot track or LIP associated with the LVS.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wessel, P.; Sandwell, D.T.; Kim, S.S. The global seamount census. Oceanography 2010, 23, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Morgan, W.J. Convection plumes in the lower mantle. Nature 1971, 230, 42–43. [Google Scholar] [CrossRef]
- Morgan, W.J. Deep mantle convection plumes and plate motions. AAPG Bull. 1972, 56, 203–213. [Google Scholar] [CrossRef]
- Morgan, W.J. Hotspot tracks and the opening of the Atlantic and Indian Oceans. In The Sea, The Oceanic Lithosphere; Emiliani, C., Ed.; Wiley Interscience: New York, NY, USA, 1981; Volume 7, pp. 443–487. [Google Scholar]
- Wilson, J.T. A possible origin of the Hawaiian Islands. Can. J. Phys. 1963, 41, 863–870. [Google Scholar] [CrossRef]
- Duncan, R. Age progressive volcanism in the New England seamounts and the opening of the Central Atlantic Ocean. J. Geophys. Res. 1984, 89, 9980–9990. [Google Scholar] [CrossRef]
- Richards, M.A.; Duncan, R.A.; Courtillot, V.E. Flood basalts and hot-spot tracks: Plume heads and tails. Science 1989, 246, 103–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNutt, M.K.; Caress, D.W.; Reynolds, J.; Jordahl, K.A.; Duncan, R.A. Failure of plume theory to explain mid plate volcanism in the southern Austral islands. Nature 1997, 389, 479–482. [Google Scholar] [CrossRef]
- Ballmer, M.D.; Ito, G.; van Hunen, J.; Tackley, P.J. Small-scale sub lithospheric convection reconciles geochemistry and geochronology of ‘Superplume’ volcanism in the western and south Pacific. Earth Planet. Sci. Lett. 2010, 290, 224–232. [Google Scholar] [CrossRef]
- Hoernle, K.; Hauff, F.; Werner, R.; van den Bogaard, P.; Gibbons, A.D.; Conrad, S.; Muller, R.D. Origin of Indian Ocean Seamount Province by shallow re-cycling of continental lithosphere. Nat. Geosci. 2011, 4, 883–887. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Milan, L.; Saunders, J.E.; Shi, X. Petrogenesis of basaltic lavas from the West Pacific Seamount Province: Geochemical and Sr-Nd-Pb-Hf isotopic constraints. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021598. [Google Scholar] [CrossRef]
- Hieronymus, C.F.; Bercovici, D. Non-hotspot formation of volcanic chains: Control of tectonic and flexural stresses on magma transport. Earth Planet. Sci. Lett. 2000, 181, 539–554. [Google Scholar] [CrossRef]
- Koppers, A.A.; Staudigel, H.; Pringle, M.S.; Wijbrans, J.R. Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism? Geochem. Geophys. Geosyst. 2003, 4, 1–49. [Google Scholar] [CrossRef]
- Natland, J.H.; Winterer, E.L. Fissure control on volcanic action in the Pacific. In Special Papers of the Geological Society of America; Geological Society of America: Boulder, CO, USA, 2005; Volume 388, pp. 687–688. [Google Scholar]
- Long, X.; Geldmacher, J.; Hoernle, K.; Hauff, F.; Wartho, J.A.; Garb-Schonberg, C.D. Origin of isolated seamounts in the Canary Basin (East Atlantic): The role of plume material in the origin of seamounts not associated with hotspot tracks. Terra Nova 2020, 32, 390–398. [Google Scholar] [CrossRef]
- Wei, X.; Shi, X.F.; Xu, Y.G.; Castillo, P.R.; Zhang, Y.; Zhang, L.; Zhang, H. Mid-Cretaceous Wake seamounts in NW Pacific originate from secondary mantle plumes with Arago hotspot composition. Chem. Geol. 2022, 587, 120632. [Google Scholar] [CrossRef]
- GeoMapApp. Marine Geoscience Data System. 2021. Available online: http://www.geomapapp.org/ (accessed on 1 December 2021).
- Clague, D.A.; Dalrymple, G.B. The Hawaiian-Emperor volcanic chain. Part I. Geologic evolution. In Volcanism in Hawaii; U.S. Geological Survey: Reston, VA, USA, 1987; Volume 1, pp. 5–54. [Google Scholar]
- White, W.M.; Duncan, R.A. Geochemistry and geochronology of the Society Islands: New evidence for deep mantle recycling. Geophys. Monogr. 1996, 95, 183–206. [Google Scholar]
- Garcia, M.O.; Swinnard, L.; Weis, D.; Greene, A.R.; Tagami, T.; Sano, H.; Gandy, C.E. Petrology, geochemistry and geochronology of Kaua’I lavas over 4 5Myr: Implications for the origin of Rejuvenated volcanism and the evolution of the Hawaiian Plume. J. Petrol. 2010, 51, 1507–1540. [Google Scholar] [CrossRef] [Green Version]
- Krishna, K.; Bull, J.; Ishizuka, O.; Scrutton, R.; Jaishankar, S.; Banakar, V. Growth of the Afanasy Nikitin seamount and its relationship with the 85 E Ridge, north-eastern Indian Ocean. J. Earth Syst. Sci. 2014, 123, 33–47. [Google Scholar] [CrossRef] [Green Version]
- Reinhard, A.A.; Jackson, M.G.; Blusztajn, J.; Koppers, A.A.P.; Simms, A.R.; Konter, J.G. “Petit Spot” rejuvenated volcanism superimposed on plume-derived Samoan shield volcanoes: Evidence from a 645-m drill core from Tutuila Island, America Samoa. Geochem. Geophys. Geosyst. 2019, 20, 1485–1507. [Google Scholar] [CrossRef]
- Jackson, M.G.; Halldorsson, S.A.; Price, A.; Kurz, M.D.; Konter, J.G.; Koppers, A.A.P.; Day, J.M.D. Contrasting Old and Young Volcanism from Aitutaki, Cook Islands: Implications for the Origins of the Cook-Austral Volcanic Chain. J. Petrol. 2020, 61, egaa037. [Google Scholar] [CrossRef]
- Hirano, N.; Sumino, H.; Morishita, T.; Machida, S.; Kawano, T.; Yasukawa, K.; Hirata, T.; Kato, Y.; Ishii, T. A Paleogene magmatic overprint on Cretaceous seamounts of the western Pacific. Isl. Arc 2021, 30, e12386. [Google Scholar] [CrossRef]
- Hamilton, W. Tectonics of the Indonesian region. In USGS Professional Paper; Geological Society of America: Boulder, CO, USA, 1979; 345p. [Google Scholar]
- Raghuram, G.; Capitanio, F.A.; Radhakrishna, M. Flexural analysis along the Sunda Trench: Bending, buckling and plate coupling. Tectonics 2018, 37, 3524–3544. [Google Scholar] [CrossRef]
- Hirano, N.; Takahashi, E.; Yamamoto, J.; Machida, S.; Abe, N.; Ingle, S.; Kaneoka, I.; Hi-rata, T.; Kimura, J.; Ishii, T.; et al. Volcanism in response to plate flexure. Science 2006, 313, 1426–1428. [Google Scholar] [CrossRef] [Green Version]
- Walker, R.J.; Carlson, R.W.; Shirey, S.B.; Boyd, F.R. Os, Sr, Nd and Pb isotope systematics of Southern African peridotite xenoliths: Implications for the chemical evolution of subcontinental mantle. Geochim. Cosmochim. Acta 1989, 53, 1583–1595. [Google Scholar] [CrossRef]
- Schaefer, B.F. Radiogenic Isotope Geochemistry: A Guide for Industry Professionals; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Ellam, R.M.; Carlson, R.W.; Shirey, S.B. Evidence from Re-Os isotopes for plume-lithosphere mixing in Karoo flood basalt genesis. Nature 1992, 359, 718–720. [Google Scholar] [CrossRef]
- Pearson, D.G.; Shirey, S.B.; Carlson, R.W.; Boyd, F.R.; Pokhilenko, N.P.; Shimizu, N.; Sobolev, N.V. Re-Os, Sm-Nd and Rb-Sr isotope evidence for thick Archean lithosphere beneath Siberia modified by multi-stage metasomatism. Geochim. Cosmochim. Acta 1995, 59, 959–977. [Google Scholar]
- Shirey, S.B.; Walker, R.J. The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annu. Rev. Earth Planet. Sci. 1998, 26, 423–500. [Google Scholar] [CrossRef]
- Lassiter, J.C.; Hauri, E.H. Osmium-isotope variations in Hawaiian lavas: Evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth Planet. Sci. Lett. 1998, 164, 483–496. [Google Scholar] [CrossRef]
- Graham, S.; Lambert, D.D.; Shee, S.R.; Smith, C.B.; Reeves, S. Re-Os isotopic evidence for Archean lithospheric mantle beneath the Kimberley block, Western Australia. Geology 1999, 27, 431–434. [Google Scholar] [CrossRef]
- Pearson, D.G.; Canil, D.; Shirey, S.B. Mantle samples included in volcanic rocks: Xenoliths and diamonds. In The Mantle and Core; Treatise on Geochemistry; Carlson, R.W., Ed.; Elsevier-Pergamon: Oxford, UK, 2003; Volume 2, pp. 171–275. [Google Scholar]
- Hart, S.R. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 1984, 309, 753–757. [Google Scholar] [CrossRef]
- Renne, P.R.; Swisher, C.C.; Deino, A.L.; Karner, D.B.; Owens, T.L.; DePaolo, D.J. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem. Geol. 1998, 145, 117–152. [Google Scholar] [CrossRef]
- Wijbrans, J.R.; Pringle, M.S.; Koppers, A.A.P.; Scheevers, R. Argon geochronology of small samples using the Vulkaan argon laser probe. Proc. K. Ned. Akad. Wet. Biol. Chem. Phys. Med. Sci. 1995, 98, 185–218. [Google Scholar]
- Steiger, R.H.; Jager, E. Subcommission on geochronology: Convention of the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 1977, 36, 359–362. [Google Scholar] [CrossRef]
- Min, K.; Mundil, R.; Renne, P.R.; Ludwig, K.R. A test for systematic errors in 40Ar/39Ar geochronology through comparison of U/Pb analysis of a 1.1 Ga rhyolite. Geochim. Cosmochim. Acta 2000, 64, 73–98. [Google Scholar] [CrossRef]
- Duncan, R.A. A timeframe for construction of the Kerguelen Plateau and Broken Ridge. Special Issue on Kerguelen Plateau Drilling. J. Petrol. 2002, 43, 1109–1119. [Google Scholar] [CrossRef] [Green Version]
- Reed, S.J.B.; Ware, N.G. Quantitative electron microprobe analysis of silicates using energy dispersive X-ray spectrometry. J. Petrol. 1975, 16, 499–519. [Google Scholar] [CrossRef]
- Hart, S.R. Heterogeneous mantle domains: Signatures, genesis and mixing chronologies. Earth Planet. Sci. Lett. 1988, 90, 273–296. [Google Scholar] [CrossRef]
- Norrish, K.; Hutton, J.T. An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochim. Cosmochim. Acta 1969, 33, 431–453. [Google Scholar] [CrossRef]
- Robinson, P.; Townsend, A.T.; Yu, Z.; Munker, C. Determination of scandium, yttrium and rare earth elements in rocks by high resolution inductively coupled plasma-mass spectrometry. Geostand. Newsl. 1999, 23, 31–46. [Google Scholar] [CrossRef]
- Yu, Z.; Robinson, P.; Townsend, A.T.; Munker, C.; Crawford, A.J. Determination of HFSE, Rb, Sr, Mo, Sb, Cs, Tl and Bi at ng g-1 levels in geological reference materials by magnetic sector ICP-MS after HF/HCLO4 high pressure digestion. Geostand. Newsl. 2000, 24, 39–50. [Google Scholar] [CrossRef]
- Taras, B.D.; Hart, S.R. Geochemical evolution of the New England seamount chain: Isotopic and trace-element constraints. Chem. Geol. 1987, 64, 35–54. [Google Scholar] [CrossRef]
- Pegram, W.J. Development of continental lithospheric mantle as reflected in the chemistry of the Mesozoic Appalachian tholeiites, USA. Earth Planet. Sci. Lett. 1990, 97, 316–331. [Google Scholar] [CrossRef]
- Kennedy, A.K.; Hart, S.R.; Frey, F.A. Composition and isotopic constraints on the petrogenesis of alkaline arc lavas, Lihir Island, Papua New Guinea. J. Geophys. Res. 1990, 95, 6929–6942. [Google Scholar] [CrossRef]
- Bindeman, I.N. Oxygen Isotopes in mantle and crustal magmas as revealed by single crystal analysis. Rev. Mineral. Geochem. 2008, 69, 445–478. [Google Scholar] [CrossRef]
- Taneja, R.; O’Neill, C.; Lackie, M.; Rushmer, T.; Schmidt, P.; Jourdan, F. 40Ar/39Ar geochronology and the paleoposition of Christmas Island (Australia), Northeast Indian Ocean. Gondwana Res. 2015, 28, 391–406. [Google Scholar] [CrossRef]
- Smith, W.C. The Volcanic rocks of Christmas Island (Indian Ocean). Q. J. Geol. Soc. Lond. 1926, 82, 44–66. [Google Scholar] [CrossRef]
- Sobolev, A.V.; Hofmann, A.W.; Kuzmin, D.V.; Yaxley, G.M.; Arndt, N.T.; Chung, S.-L.; Danyushevsky, L.V.; Elliott, T.; Frey, F.A.; Garcia, M.O.; et al. The amount of recycled crust in sources of mantle-derived melts. Science 2007, 316, 412–417. [Google Scholar] [CrossRef]
- Le Bas, M.J.; Le Maitre, R.W.; Streckeisen, A.; Zanettin, B. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Arevalo, R.; McDonough, W.F. Chemical variations and regional diversity observed in MORB. Chem. Geol. 2010, 271, 70–85. [Google Scholar] [CrossRef]
- Jackson, M.G.; Dasgupta, R. Compositions of HIMU, EM1 and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planet. Sci. Lett. 2008, 276, 175–186. [Google Scholar] [CrossRef]
- Barling, J.; Goldstein, S.L.; Nicholls, I.A. Geochemistry of Heard Island (Southern Indian Ocean): Characterization of an enriched mantle component and implications for enrichment of the sub-Indian Ocean mantle. J. Petrol. 1994, 35, 1017–1053. [Google Scholar] [CrossRef]
- GeoROC. Geochemistry of Rocks of the Oceans and Continents. 2013. Available online: http://georoc.mpch-mainz.gwdg.de/georoc/ (accessed on 1 December 2021).
- Clague, D.A.; Holcomb, R.T.; Sinton, J.M.; Detrick, R.S.; Torresan, M.E. Pliocene and Pleistocene alkalic flood basalts on the seafloor north of the Hawaiian islands. Earth Planet. Sci. Lett. 1990, 98, 175–191. [Google Scholar] [CrossRef]
- Sharaskin, A.Y.; Pustchin, I.K.; Zlobin, S.K.; Kolesov, G.M. Two ophiolite sequences from the basement of the northern Tonga arc. Ofioliti 1983, 8, 411–430. [Google Scholar]
- Falloon, T.J.; Danyushevsky, L.V.; Crawford, T.J.; Maas, R.; Woodhead, J.D.; Eggins, S.M.; Bloomer, S.H.; Wright, D.J.; Zlobin, S.K.; Stacey, A.R. Multiple mantle plume components involved in the petrogenesis of subduction-related lavas from the northern termination of the Tonga Arc and Lau Basin: Evidence from the geochemistry of arc and back-arc submarine volcanics. Geophys. Geochem. Geosys. 2007, 8, Q09003. [Google Scholar] [CrossRef] [Green Version]
- Regelous, M.; Turner, S.; Falloon, T.J.; Taylor, P.; Gamble, J.; Green, T. Mantle dynamics and mantle melting beneath Niuafo’ou Island and the northern Lau back-arc basin. Contrib. Mineral. Petrol. 2008, 156, 103–118. [Google Scholar] [CrossRef]
- Hirano, N.; Machida, S.; Sumino, H.; Shimizu, K.; Tamura, A.; Morishita, T.; Iwano, H.; Sakata, S.; Ishii, T.; Arai, S.; et al. Petit-spot volcanoes on the oldest portion of the Pacific plate. Deep-Sea Res. I 2019, 154, 103142. [Google Scholar] [CrossRef]
- Willbold, M.; Stracke, A. Formation of enriched mantle components by recycling of upper and lower continental crust. Chem. Geol. 2010, 276, 188–197. [Google Scholar] [CrossRef]
- Woodhead, J.D.; Greenwood, P.; Harmon, R.S.; Stoffers, P. Oxygen isotope evidence for recycled crust in the source of EM-type ocean island basalts. Nature 1993, 312, 809–813. [Google Scholar] [CrossRef]
- Eisele, J.; Sharma, M.; Galer, S.J.G.; Blichert-Toft, J.; Devey, C.W.; Hofmann, A.W. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet. Sci. Lett. 2002, 196, 197–212. [Google Scholar] [CrossRef]
- Jackson, M.G.; Hart, S.R.; Koppers, A.A.P.; Staudigel, H.; Konter, J.; Blusztajn, J.; Kurz, M.; Russell, J.A. The return of subducted continental crust in Samoan lavas. Nature 2007, 448, 684–687. [Google Scholar] [CrossRef]
- Sun, S.-S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Taneja, R.; Rushmer, T.; Blichert-Toft, J.; Turner, S.; O’Neill, C. Mantle heterogeneities beneath the Northeast Indian Ocean as sampled by intra-plate volcanism at Christmas Island. Lithos 2016, 262, 561–575. [Google Scholar] [CrossRef]
- PetDB. Information System for Geochemical Data of Igneous and Metamorphic Rocks from the Ocean Floor. 2011. Available online: http://www.earthchem.org/petdb (accessed on 1 December 2021).
- Chakrabarti, R.; Basu, A.R.; Paul, D.K. Nd-Hf-Sr-Pb isotopes and trace element geochemistry of Proterozoic lamproites from southern India: Subducted komatiite in the source. Chem. Geol. 2007, 236, 291–302. [Google Scholar] [CrossRef]
- Murphy, D.T.; Collerson, K.D.; Kamber, B.S. Lamproites from Gaussberg, Antarctica: Possible transition zone melts of Archaean subducted sediments. J. Petrol. 2002, 43, 981–1001. [Google Scholar] [CrossRef] [Green Version]
- Fraser, K.J.; Hawkesworth, C.J.; Erlank, A.J.; Mitchell, R.H.; Scott-Smith, B.H. Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites. Earth Planet. Sci. Lett. 1985, 76, 57–70. [Google Scholar] [CrossRef]
- Rasoazanamparany, C.; Widom, E.; Kuentz, D.; Raharimahefa, T.; Rakotondravelo, K.; Rakotondrazafy, A.M.F. Geochemistry and mantle source characteristics of the Itasy volcanic field: Implications for the petrogenesis of basaltic magmas in intra-continental-rifts. Geochim. Cosmochim. Acta 2021, 300, 137–163. [Google Scholar] [CrossRef]
- Machida, S.; Hirano, N.; Kimura, J.-I. Evidence for recycled plate material in Pacific upper mantle unrelated to plumes. Geochim. Cosmochim. Acta 2009, 73, 3028–3037. [Google Scholar] [CrossRef]
- Workman, R.K.; Hart, S.R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 2005, 231, 53–72. [Google Scholar] [CrossRef]
- Salters, V.J.M.; Stracke, A. Composition of the depleted mantle. Geochem. Geophys. Geosyst. 2004, 5, Q05B07. [Google Scholar] [CrossRef]
- Hanan, B.B.; Graham, D.W. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science 1996, 272, 991–995. [Google Scholar] [CrossRef]
- Widom, E.; Hoernle, K.A.; Shirey, S.B.; Schmincke, H.U. Os isotope systematics in the Canary Islands and Madeira: Lithospheric contamination and mantle plume signatures. J. Petrol. 1999, 40, 279–296. [Google Scholar] [CrossRef]
- Day, J.M.D. Hotspot volcanism and highly siderophile elements. Chem. Geol. 2013, 341, 50–74. [Google Scholar] [CrossRef]
- Class, C.; Goldstein, S.L.; Shirey, S.B. Osmium isotopes in Grande Comore lavas: A new extreme among a spectrum of EM-type mantle endmembers. Earth Planet. Sci. Lett. 2009, 284, 219–227. [Google Scholar] [CrossRef]
- Roy-Barman, M.; Allègre, C.J. 187Os/186Os in oceanic island basalts: Tracing oceanic crust recycling in the mantle. Earth Planet. Sci. Lett. 1985, 129, 145–161. [Google Scholar] [CrossRef]
- Schiano, P.; David, K.; Vlastélic, I.; Gannoun, A.; Klein, M.; Nauret, F.; Bonnand, P. Osmium isotope systematics of historical lavas from Piton de la Fournaise (Réunion Island, Indian Ocean). Contrib. Mineral. Petrol. 2012, 164, 805–820. [Google Scholar] [CrossRef]
- Peters, B.J.; Day, J.M.D.; Taylor, L.A. Early mantle heterogeneities in the Reunion hotspot source inferred from highly siderophile elements in cumulate xenoliths. Earth Planet. Sci. Lett. 2016, 448, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.-J.; Frey, F.A.; Weis, D.; Giret, A.; Pyle, D.; Michon, G. Petrogenesis of the flood basalts forming the Northern Kerguelen Archipelago: Implications for the Kerguelen Plume. J. Petrol. 1998, 39, 711–748. [Google Scholar] [CrossRef]
- Workman, R.K.; Hart, S.R.; Jackson, M.; Regelous, M.; Farley, A.K.; Blusztajn, J.; Kurz, M.; Staudigel, H. Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: Evidence from the Samoan Volcanic Chain. Geochem. Geophys. Geosyst. 2004, 5, Q04008. [Google Scholar] [CrossRef]
- Jackson, M.G.; Shirey, S.B. Re-Os isotope systematics in Samoan shield lavas and the use of Os-isotopes in olivine phenocrysts to determine primary magmatic compositions. Earth Planet. Sci. Lett. 2011, 312, 91–101. [Google Scholar] [CrossRef]
- Lassiter, J.C.; Blichert-Toft, J.; Hauri, E.H.; Barsczus, H.G. Isotope and trace element variations in lavas from Raivavae and Rapa, Cook-Austral islands: Constraints on the nature of HIMU- and EM-mantle and the origin of mid-plate volcanism in French Polynesia. Chem. Geol. 2003, 202, 115–138. [Google Scholar] [CrossRef]
- Snortum, E.; Day, J.M.D.; Jackson, M.G. Pacific lithosphere evolution inferred from Aitutaki mantle xenoliths. J. Petrol. 2019, 60, 1753–1772. [Google Scholar] [CrossRef]
- Chesley, J.; Righter, K.; Ruiz, J. Larger-scale mantle metasomatism: A Re-Os perspective. Earth Planet. Sci. Lett. 2004, 219, 49–60. [Google Scholar] [CrossRef]
- Reisberg, L.; Zindler, A.; Marcantonio, F.; White, W.; Wyman, D.; Weaver, B. Os isotope systematics in ocean island basalts. Earth Planet. Sci. Lett. 1993, 120, 149–167. [Google Scholar] [CrossRef]
- Hauri, E.H.; Hart, S.R. Re-Os isotope ystematics of HIMU and EMII oceanic island basalts from the south Pacific Ocean. Earth Planet. Sci. Lett. 1993, 114, 353–371. [Google Scholar] [CrossRef]
- Hart, G.L.; Johnson, C.M.; Hildreth, W.; Shirey, S.B. New osmium isotope evidence for intracrustal recycling of crustal domains with discrete ages. Geology 2003, 31, 427–430. [Google Scholar] [CrossRef] [Green Version]
- Mayer, B.; Jung, S.; Brauns, M.; Münker, C. The role of mantle-hybridization and crustal contamination in the petrogenesis of lithospheric mantle-derived alkaline rocks:constraints from Os and Hf isotopes. Contrib. Miner. Petrol. 2018, 173, 49. [Google Scholar] [CrossRef]
- Schiano, P.; Burton, K.W.; Dupré, B.; Birck, J.-L.; Guille, G.; Allègre, C.J. Correlated Os-Pb-Nd-Sr isotopes in the Austral-Cook chain basalts: The nature of mantle components in plume sources. Earth Planet. Sci. Lett. 2001, 186, 527–537. [Google Scholar] [CrossRef]
- Eiler, J.M.; Farley, K.A.; Valley, J.W.; Hauri, E.; Craig, H.; Hart, S.R.; Stolper, E.M. Oxygen isotope variations in ocean island basalt phenocrysts. Geochim. Cosmochim. Acta 1997, 61, 2281–2293. [Google Scholar] [CrossRef]
- Eiler, J.M. Oxygen isotope variations of basaltic lavas and upper mantle rocks. In Stable Isotope Geochemistry; Reviews in Mineralogy and Geochemistry; Valley, J.W., Cole, D.R., Eds.; Mineralogical Society of America: Washington, DC, USA, 2001; Volume 413, pp. 319–364. [Google Scholar]
- Gaffney, A.M.; Nelson, B.K.; Reisberg, L.; Eiler, J. Oxygen-osmium isotope systematics of West Maui lavas: A record of shallow-level magmatic processes. Earth Planet. Sci. Lett. 2005, 239, 122–139. [Google Scholar] [CrossRef]
- Wang, Z.; Eiler, J.M. Insights into the origin of low-δ18O basaltic magmas in Hawaii revealed from in situ measurements of oxygen isotope compositions of olivines. Earth Planet. Sci. Lett. 2008, 269, 377–387. [Google Scholar] [CrossRef]
- Ito, E.; White, W.M.; Gopel, C. The O, Sr, Nd and Pb isotope geochemistry of MORB. Chem. Geol. 1987, 62, 157–174. [Google Scholar] [CrossRef]
- Eiler, J.M.; Schiano, P.; Kitchen, N.; Stolper, E.M. Oxygen-isotope evidence for recycled crust in the sources of mid-ocean-ridge basalts. Nature 2000, 403, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Cooper, K.M.; Eiler, J.M.; Asimow, P.D.; Langmuir, C.H. Oxygen-isotope evidence for the origin of enriched mantle beneath the mid-Atlantic ridge. Earth Planet. Sci. Lett. 2004, 220, 297–316. [Google Scholar] [CrossRef]
- Cooper, K.M.; Eiler, J.M.; Sims, K.W.; Langmuir, C.H. Distribution of recycled crust within the upper mantle: Insights from the oxygen isotope composition of MORB from the Australian-Antarctic Discordance. Geochim. Geophys. Geosyst. 2009, 10, Q12004. [Google Scholar] [CrossRef] [Green Version]
- Bindeman, I.N.; Kamenetsky, V.S.; Palandri, J.; Vennemann, T. Hydrogen and oxygen isotope behaviors during variable degrees of upper mantle melting: Example from the basaltic glasses from Macquarie Island. Chem. Geol. 2012, 310–311, 126–136. [Google Scholar] [CrossRef]
- Mattey, D.; Lowry, D.; Macpherson, C. Oxygen isotope compositions of mantle peridotite. Earth Planet. Sci. Lett. 1994, 128, 231–241. [Google Scholar] [CrossRef]
- Eiler, J.M.; Farley, K.A.; Valley, J.W.; Stolper, E.M.; Hauri, E.H.; Craig, H. Oxygen isotope evidence against bulk recycled sediment in the mantle sources of Pitcairn Island lavas. Nature 1995, 377, 138–141. [Google Scholar] [CrossRef]
- Sun, Y.; Ying, J.; Su, B.; Zhou, X.; Shao, J. Contribution of crustal materials to the mantle sources of Xiaogulihe ultrapotassic volcanic rocks, Northeast China: New constraints from mineral chemistry and oxygen isotopes of olivine. Chem. Geol. 2015, 405, 10–18. [Google Scholar] [CrossRef]
- Day, J.M.D.; Pearson, D.G.; Macperson, C.G.; Lowry, D.; Carracedo, J.C. Pyroxenite-rich mantle formed by recycled oceanic lithosphere: Oxygen-osmium isotope evidence from Canary Islands. Geology 2009, 37, 555–558. [Google Scholar] [CrossRef]
- Workman, R.K.; Eiler, J.M.; Hart, S.R.; Jackson, M.G. Oxygen isotopes in Samoan lavas: Confirmation of continental recycling. Geology 2008, 36, 551–554. [Google Scholar] [CrossRef]
- Taylor, H.P.; Turi, B.; Cundari, A. 18O/16O and chemical relationships in K-rich volcanic rocks from Australia, East Africa, Antarctica, and San Venanzo-Cupaello, Italy. Earth Planet. Sci. Lett. 1984, 69, 273–276. [Google Scholar] [CrossRef]
- Downes, H.; Kempton, P.D.; Briot, D.; Harmon, R.S.; Leyreloup, A.F. Pb and Os isotope systematics in granulite facies xenoliths, French Massif Central: Implications for crustal processes. Earth Planet. Sci. Lett. 1991, 102, 342–357. [Google Scholar] [CrossRef]
- Kempton, P.D.; Harmon, R.S. Oxygen isotope evidence for large-scale hybridization of the lower crust during magmatic underplating. Geochim. Cosmochim. Acta 1992, 56, 971–986. [Google Scholar] [CrossRef]
- Hirano, N.; Koppers, A.A.P.; Takahashi, A.; Fujiwara, T.; Nakanishi, M. Seamounts, knolls and petit-spot monogenetic volcanoes on the subducting Pacific plate. Basin Res. 2008, 20, 543–553. [Google Scholar] [CrossRef]
- Yamamoto, J.; Korenaga, J.; Hirano, N.; Kagi, H. Melt-rich lithosphere–asthenosphere boundary inferred from petit-spot volcanoes. Geology 2014, 42, 967–970. [Google Scholar] [CrossRef]
- Machida, S.; Hirano, N.; Sumino, H.; Hirata, T.; Yoneda, S.; Kato, Y. Petit-spot geology reveals melts in upper-most asthenosphere dragged by lithosphere. Earth Planet. Sci. Lett. 2015, 426, 267–279. [Google Scholar] [CrossRef]
- Yamamoto, J.; Hirano, N.; Kurz, M.D. Noble gas isotopic compositions of seamount lavas from the central Chile trench: Implications for petit-spot volcanism and the lithosphere asthenosphere boundary. Earth Planet. Sci. Lett. 2020, 552, 116611. [Google Scholar] [CrossRef]
- Korenaga, J. Plate tectonics and surface environment: Role of the oceanic upper mantle. Earth-Sci. Rev. 2020, 205, 103185. [Google Scholar] [CrossRef]
- Green, D.H.; Liebermann, R.C. Phase equilibria and elastic properties of a pyrolite model for the oceanic upper mantle. Tectonophysics 1976, 32, 61–92. [Google Scholar] [CrossRef]
- Niu, Y.; Green, D.H. The petrological control on the lithosphere-asthenosphere boundary (LAB) beneath ocean basins. Earth -Sci. Rev. 2018, 185, 301–307. [Google Scholar] [CrossRef]
- Gardés, E.; Laumonier, M.; Massuyeau, M.; Gaillard, F. Unravelling partial melt distribution in the oceanic low velocity zone. Earth Planet. Sci. Lett. 2020, 116242. [Google Scholar] [CrossRef]
- Kovacs, I.J.; Liptai, N.; Koptev, A.; Cloetingh, S.A.P.L.; Lange, T.P.; Matenco, L.; Szakacs, A.; Radulian, M.; Berkesi, M.; Patko, L.; et al. The ‘pargasosphere’ hypothesis: Looking at global plate tectonics from a new perspective. Glob. Planet. Chang. 2021, 204, 103547. [Google Scholar] [CrossRef]
- Sheppard, S.; Taylor, W.R. Barium- and LREE-rich, olivine-mica-lamprophres with affinities to lamproites, Mt Bundey, Northern Territory, Australia. Lithos 1992, 28, 303–325. [Google Scholar] [CrossRef]
- Fraser, K.J.; Hawkesworth, C.J. The petrogenesis of group 2 ultrapotassic kimberlites from Finsch Mine, South Africa. Lithos 1992, 28, 327–345. [Google Scholar] [CrossRef]
- Rao, N.V.C. Chelima dykes, Cuddapah Basin, Southern India: A review of the age, petrology, geochemistry and petrogenesis of World’s oldest lamproites. J. Geol. Soc. India 2007, 69, 523–538. [Google Scholar]
- Homrighausen, S.; Hoernle, K.; Geldmacher, J.; Wartho, J.-A.; Hauff, F.; Portnyagin, M.; RWerner, R.; van den Bogaard, P.; Garbe-Schönberg, D. Unexpected HIMU-type late-stage volcanism on the Walvis Ridge. Earth Planet. Sci. Lett. 2018, 492, 251–263. [Google Scholar] [CrossRef]
- Pelleter, A.-A.; Caroff, M.; Cordier, C.; Bachelery, P.; Nehlig, P.; Debeuf, D.; Arnaud, N. Melilite-bearing lavas in Mayotte (France): An insight into the mantle source below the Comores. Lithos 2014, 208–209, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Melluso, L.; le Roex, A.P.; Morra, V. Petrogenesis and Nd-Pb-Sr- isotope geochemistry of the olivine melilitites and olivine nephelinites (“ankaratrites”) in Madagascar. Lithos 2011, 127, 505–521. [Google Scholar] [CrossRef]
- Rogers, N.W.; Hawkesworth, C.J.; Palacz, Z.A. Phlogopite in the generation of olivine-melilitites from Namaqualand, South Africa and implications for element fractionation processes in the upper mantle. Lithos 1992, 28, 347–365. [Google Scholar] [CrossRef]
- Hirano, N.; Kawamura, K.; Hattori, M.; Saito, K.; Ogawa, Y. A new type of intra-plate volcanism; young alkali-basalts discovered from the subducting Pacific Plate, northern Japan Trench. Geophys. Res. Lett. 2001, 28, 2719–2722. [Google Scholar] [CrossRef]
- Green, D.H.; Falloon, T.J. Pyrolite: A Ringwood concept and its current expression. In The Earth’s Mantle: Structure, Composition and Evolution; Jackson, I., Ed.; Cambridge University Press: Cambridge, UK, 1998; pp. 311–378. [Google Scholar]
- Green, D.H.; Falloon, T.J. Primary magmas at mid-ocean ridges, “hotspots” and other intraplate settings: Constraints on mantle potential temperature. In Plates, Plumes, and Paradigms; Foulger, G.R., Natland, J.H., Presnall, D.C., Anderson, D.L., Eds.; Geological Society of America, Special Publication: Boulder, CO, USA, 2005; Volume 388, pp. 217–247. [Google Scholar]
- Green, D.H.; Hibberson, W.O.; Kovacs, I.; Rosenthal, A. Water and its influence on the lithosphere-asthenosphere boundary. Nature 2010, 467, 448–451. [Google Scholar] [CrossRef] [PubMed]
- Richards, F.D.; Hoggard, M.J.; Cowton, L.R.; White, N.J. Reassessing the thermal structure of oceanic lithosphere with revised global inventories of basement depths and heat flow measurements. J. Geophys. Res. Solid Earth 2018, 123, 9136–9161. [Google Scholar] [CrossRef] [Green Version]
- Steinberger, B.; Becker, T.W. A comparison of lithospheric thickness models. Tectonophysics 2018, 746, 325–338. [Google Scholar] [CrossRef] [Green Version]
- Auer, L.; Becker, T.W.; Boschi, L.; Schmerr, N. Thermal structure, radial anisotropy, and dynamics of oceanic boundary layers. Geophys. Res. Lett. 2015, 42, 9740–9749. [Google Scholar] [CrossRef] [Green Version]
- Danyushevsky, L.V.; Plechov, P. Petrolog3: Integrated software for modeling crystallization processes. Geochem. Geophys. Geosyst. 2011, 12, Q07021. [Google Scholar] [CrossRef]
- Ballhaus, C.; Berry, R.F.; Green, D.H. Oxygen fugacity controls in the Earth’s upper mantle. Nature 1990, 348, 437–440. [Google Scholar] [CrossRef]
- Herzberg, C.; O’Hara, M.J. Plume-associated ultramafic magmas of Phanerozoic age. J. Petrol. 2002, 43, 1857–1883. [Google Scholar] [CrossRef] [Green Version]
- Borisov, A.A.; Shapkin, A.I. A new empirical equation rating Fe3+/Fe2+ in magmas to their composition, oxygen fugacity, and temperature. Geochem. Int. 1990, 27, 111–116. [Google Scholar]
- Dixon, J.; Clague, D.A.; Cousens, B.; Monsalve, M.L.; Uhl, J. Carbonatite and silicate melt metasomatism of the mantle surrounding the Hawaiian plume: Evidence from volatiles, trace elements, and radiogenic isotopes in rejuvenated stage lavas from Niihau, Hawaii. Geochem. Geophys. Geosyst. 2008, 9, Q09005. [Google Scholar] [CrossRef]
- Shimizu, K.; Ito, M.; Chang, Q.; Miyazaki, T.; Ueki, K.; Toyama, C.; Senda, R.; Vaglarov, B.S.; Ishikawa, T.; Kimura, J.-I. Identifying volatile mantle trend with the water–fluorine–cerium systematics of basaltic glass. Chem. Geol. 2019, 522, 283–294. [Google Scholar] [CrossRef]
- Rosenthal, A.; Hauri, E.H.; Hirschmann, M. Experimental determination of C, F, and H partitioning between mantle minerals and carbonated basalt, CO2/Ba and CO2/Nb systematics of partial melting, and the CO2 contents of basaltic source regions. Earth Planet. Sci. Lett. 2015, 425, 77–87. [Google Scholar] [CrossRef]
- Aubaud, C.; Pineau, F.; Hekinian, R.; Javoy, M. Degassing of CO2 and H2O in submarine lavas from the Society hotspot. Earth Planet. Sci. Lett. 2005, 235, 511–527. [Google Scholar] [CrossRef]
- Boudoire, G.; Rizzo, A.L.; Muro, A.D.; Grassa, F.; Liuzzo, M. Extensive CO2 degassing in the upper mantle beneath oceanic basaltic volcanoes: First insights from Piton de la Fournaise volcano (La Réunion Island). Geochim. Cosmochim. Acta 2018, 235, 376–401. [Google Scholar] [CrossRef] [Green Version]
- Moore, L.R.; Gazel, E.; Bodnar, R.J. The volatile budget of Hawaiian magmatism: Constraints from melt inclusions from Haleakala volcano, Hawaii. J. Volcanol. Geotherm. Res. 2021, 410, 107144. [Google Scholar] [CrossRef]
- Bultitude, R.J.; Green, D.H. Experimental study at high pressures on the origin of olivine-nephelinite and olivine-melilite-nephelenite magmas. Earth Planet. Sci. Lett. 1968, 3, 325–337. [Google Scholar] [CrossRef]
- Green, D.H. Conditions of melting of basanite magma from garnet peridotite. Earth Planet. Sci. Lett. 1973, 17, 456–465. [Google Scholar] [CrossRef]
- Brey, G.P.; Green, D.H. Systematic study of liquidus phase relations in olivine melilitite+H2O+CO2 at high pressures and petrogenesis of an olivine melilitite magma. Contrib. Mineral. Petrol. 1977, 61, 141–162. [Google Scholar] [CrossRef]
- Adam, J. The geochemistry and experimental petrology of sodic alkaline basalts from Oatlands, Tasmania. J. Petrol. 1990, 31, 1201–1223. [Google Scholar] [CrossRef]
- Hirschmann, M.M. Partial melt in the oceanic low velocity zone. Phys. Earth Planet. Inter. 2010, 179, 60–71. [Google Scholar] [CrossRef]
- Dasgupta, R.; Hirschmann, M.M.; Smith, N.D. Partial melting experiments of peridotite+CO2 at 3 GPa and genesis of alkalic ocean island basalts. J. Petrol. 2007, 48, 2093–2124. [Google Scholar] [CrossRef] [Green Version]
- Forbes, W.C.; Staarmer, R.J. Kaersutite is a possible source of alkali olivine basalts. Nature 1974, 250, 209–210. [Google Scholar] [CrossRef]
- Pilet, S.; Baker, M.B.; Stolper, E.M. Metasomatized lithosphere and the origin of alkaline lavas. Science 2008, 320, 916–919. [Google Scholar] [CrossRef] [Green Version]
- Green, D.H.; Hibberson, W.O.; Rosenthal, A.; Kovacs, I.; Yaxley, G.M.; Falloon, T.J.; Brink, F. Experimental study of the influence of water on melting and phase assemblages in the upper mantle. J. Petrol. 2014, 55, 2067–2096. [Google Scholar] [CrossRef] [Green Version]
- Falloon, T.J.; Green, D.H.; Hatton, C.J.; Harris, K.L. Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 kbars and application to basalt petrogenesis. J. Petrol. 1988, 29, 1257–1282. [Google Scholar] [CrossRef]
- Gurenko, A.A.; Geldmacher, J.; Hoernle, K.A.; Sobolev, A.V. A composite, isotopically-depleted peridotite and enriched pyroxenite source for Madeira magmas: Insights from olivine. Lithos 2013, 170–171, 224–238. [Google Scholar] [CrossRef]
- Falloon, T.J.; Green, D.H.; Danyushevsky, L.V. Crystallization temperatures of tholeiite parental liquids: Implications for the existence of thermally driven mantle plumes. In Plates, Plumes, and Planetary Processes; Geological Society of America Special Paper; Foulger, G.R., Jurdy, D.M., Eds.; Geological Society of America: Boulder, CO, USA, 2007; Volume 430, pp. 235–260. [Google Scholar] [CrossRef] [Green Version]
- Stein, C.A.; Stein, S. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 1992, 359, 123–129. [Google Scholar] [CrossRef]
- Asimov, P.D.; Hirschmann, M.M.; Stolper, E.M. Calculation of peridotite partial melting from thermodynamic models of minerals and melts, IV. Adiabatic decompression and the composition and mean properties of mid-ocean ridge basalts. J. Petrol. 2001, 42, 963–998. [Google Scholar] [CrossRef] [Green Version]
- Grose, C.J.; Afonso, J.C. Comprehensive plate models for the thermal evolution of oceanic lithosphere. Geochem. Geophys. Geosyst. 2013, 14, 3751–3778. [Google Scholar] [CrossRef]
- Sarafian, E.; Gaetani, G.A.; Hauri, E.H.; Sarafian, A.R. Experimental constraints on the damp peridotite solidus and oceanic mantle potential temperature. Science 2017, 355, 943–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machida, S.; Kogiso, T.; Hirano, N. Petit-spot as definitive evidence for partial melting in the asthenosphere caused by CO2. Nat. Commun. 2017, 8, 14302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, S.R.; Zindler, A. In search of a bulk-Earth composition. Chem. Geol. 1986, 57, 247–267. [Google Scholar] [CrossRef]
- Geldmacher, J.; Hoernle, K.; Klügel, A.; Bogaard, P.V.D.; Wombacher, F.; Berning, B. Origin and geochemical evolution of the Madeira-Tore Rise (eastern North Atlantic). J. Geophys. Res. 2006, 111, B09206. [Google Scholar] [CrossRef] [Green Version]
- Hoernle, K.; Carracedo, J.C. Canary Islands, geology. In Encyclopedia of Islands; Gillespie, R.G., Clague, D.A., Eds.; University of California Press: Berkeley, CA, USA, 2009; pp. 133–143. [Google Scholar]
- Jackson, M.G.; Weis, D.; Huang, S. Major element variations in Hawaiian shield lavas: Source features and perspectives from global ocean island basalt (OIB) systematics. Geochem. Geophys. Geosyst. 2012, 13, Q09009. [Google Scholar] [CrossRef]
- Eggins, S.M. Petrogenesis of Hawaiian tholeiites: 1. Phase equilibria constraints. Contrib. Mineral. Petrol. 1992, 110, 387–397. [Google Scholar] [CrossRef]
- Humphreys, E.R.; Niu, Y.L. On the composition of ocean island basalts (OIB): The effects of lithospheric thickness variation and mantle metasomatism. Lithos 2009, 112, 118–136. [Google Scholar] [CrossRef]
- Trela, J.; Gazel, E.; Sobolev, A.V.; Moore, L.; Bizimis, M.; Jicha, B.; Batanova, V.G. The hottest lavas of the Phanerozoic and the survival of deep Archaean reservoirs. Nat. Geosci. 2017, 10, 451–458. [Google Scholar] [CrossRef]
- Parsons, A.J.; Sigloch, K.; Hosseini, K. Australian plate subduction is responsible for Northward motion of the India-Asia collision zone and ~1000 km lateral migration of the Indian Slab. Geophys. Res. Lett. 2021, 48, e2021GL094904. [Google Scholar] [CrossRef]
- Pyle, D.G.; Christie, D.M.; Mahoney, J.J. Resolving an isotopic boundary within the Australian-Antarctic discordance. Earth Planet. Sci. Lett. 1992, 112, 161–178. [Google Scholar] [CrossRef]
- Stracke, A.; Bizimis, M.; Salters, V.J.M. Recycling oceanic crust: Quantitative constraints. Geochem. Geophys. Geosyst. 2003, 4, 8003. [Google Scholar] [CrossRef]
- Janney, P.E.; Le Roex, A.P.; Carlson, R.W.; Viljoen, K.S. A chemical and multi-isotope study of the Western Cape Olivine Melilitite Province, South Africa: Implications for the sources of kimberlites and the origin of the HIMU signature in Africa. J. Petrol. 2002, 43, 2339–2370. [Google Scholar] [CrossRef]
- Meyzen, C.M.; Blichert-Toft, J.; Ludden, J.N.; Humler, E.; Mével, C.; Albarède, F. Isotopic portrayal of the arth’s upper mantle flow field. Nature 2007, 447, 1069–1074. [Google Scholar] [CrossRef] [PubMed]
- Homrighausen, S.; Hoernle, L.; Zhou, H.; Geldmacher, J.; Wartho, J.-A.; Hauff, F.; Werner, R.; Jumg, S.; Morgan, J.P. Paired EMI-HIMU hotspots in the South Atlantic–starting plume heads trigger compositionally distinct secondary plumes? Sci. Adv. 2020, 6, eaba0282. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Pearson, D.G.; Wang, L.H.; Mather, K.A.; Kjarsgaard, B.A.; Schaeffer, A.J.; Irvine, G.J.; Kopylova, M.G.; Armstrong, J.P. Plume-driven recratonization of deep continental lithospheric mantle. Nature 2021, 592, 732–736. [Google Scholar] [CrossRef]
- Panza, G.; Doglioni, C.; Levshin, A. Asymmetric ocean basins. Geology 2010, 38, 59–62. [Google Scholar] [CrossRef]
- Doglioni, C.; Panza, G.F. Polarized plate tectonics. Adv. Geophys. 2015, 56, 1–167. [Google Scholar] [CrossRef]
- Chalot-Prat, F.; Doglioni, C.; Falloon, T. Westward migration of oceanic ridges and related asymmetric upper mantle differentiation. Lithos 2017, 268–271, 163–173. [Google Scholar] [CrossRef]
- Jackson, M.G.; Becker, T.W.; Konter, J.G. Evidence for a deep mantle source for EM and HIMU domains from integrated geochemical and geophysical constraints. Earth Planet. Sci. Lett. 2018, 484, 154–167. [Google Scholar] [CrossRef]
- Storey, M.; Saunders, A.D.; Tarney, J.; Gibson, I.L.; Norry, M.J.; Thirlwall, M.F.; Leat, P.; Thompson, R.N.; Menzies, M.A. Contamination of Indian Ocean asthenosphere by the Kerguelen-Heard mantle plume. Nature 1989, 338, 574–576. [Google Scholar] [CrossRef]
- Hofmann, A.W.; Jochum, K.P.; Suefert, M.; White, W.M. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth Planet. Sci. Lett. 1986, 79, 33–45. [Google Scholar] [CrossRef]
- Hofmann, A.W. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 1988, 90, 297–314. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, A.W. Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements. In The Mantle and Core; Treatise on Geochemistry; Carlson, R.W., Ed.; Elsevier-Pergamon: Oxford, UK, 2003; Volume 2, pp. 61–101. [Google Scholar]
- Sims, K.W.; DePaolo, D.J. Inferences about the mantle magma sources from incompatible element concentration ratios in oceanic basalts. Geochim. Cosmochim. Acta 1997, 61, 765–784. [Google Scholar] [CrossRef]
- Widom, E.; Shirey, S.B. Os isotope systematics in the Azores: Implications for mantle plume sources. Earth Planet. Sci. Lett. 1996, 142, 451–465. [Google Scholar]
- Escrig, S.; Campas, F.; Dupré, B.; Allègre, C.J. Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts. Nature 2004, 431, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In The Mantle and Core; Treatise on Geochemistry; Carlson, R.W., Ed.; Elsevier-Pergamon: Oxford, UK, 2003; Volume 2, pp. 1–64. [Google Scholar]
- Saha, A.; Hazra, A.; Santosh, M.; Ganguly, S.; Li, S.-S.; Manikyamba, C. Episodic recycling of ancient metasomatized continental lithosphere: Evidence from lower oceanic crust of the Central Indian Ridge. Lithos 2021, 400–401, 106424. [Google Scholar] [CrossRef]
- Mahoney, J.; Le Roex, A.P.; Peng, Z.; Fisher, R.L.; Natland, J.H. Southwestern limits of Indian Ocean Ridge Mantle and the Origin of Low 206Pb/204Pb in Mid-Ocean Ridge Basalt- Isotope systematics of the Central Southwest Indian Ridge (17°–50° E). J. Geophys. Res. 1992, 97, 19771–19790. [Google Scholar] [CrossRef]
- Douglass, J.; Schilling, J.-G. Systematics of three-component, pseudo-binary mixing lines in 2D isotope ratio space representations and implications for mantle plume–ridge interaction. Chem. Geol. 2000, 163, 1–23. [Google Scholar] [CrossRef]
- Meyzen, C.M.; Ludden, J.N.; Humler, E.; Luais, B.; Toplis, M.J.; Mevel, C.; Storey, M. New insights into the origin and distribution of the DUPAL isotope anomaly in the Indian Ocean mantle from MORB of the Southwest Indian Ridge. Geochem. Geophys. Geosyst. 2005, 6, Q11K11. [Google Scholar] [CrossRef]
- Schwindrofska, A.; Hoernle, K.; Hauff, F.; van den Bogaard, P.; Werner, R.; Garbe-Schönberg, D. Origin of enriched components in the South Atlantic: Evidence from 40 Ma geochemical zonation of the Discovery Seamounts. Earth Planet. Sci. Lett. 2016, 441, 167–177. [Google Scholar] [CrossRef]
- Homrighausen, S.; Hoernle, L.; Wartho, J.-A.; Hauff, F.; Werner, R. Do the 85° E Ridge and Conrad Rise form a hotspot track crossing the Indian Ocean? Lithos 2021, 398–399, 106234. [Google Scholar] [CrossRef]
- Konter, J.G.; Becker, T.W. Shallow lithospheric contribution to mantle plumes revealed by integrating seismic and geochemical data. Geochem. Geophys. Geosyst. 2012, 13, Q02004. [Google Scholar] [CrossRef] [Green Version]
- Hart, S.R.; Staudigel, H. Isotopic characterization and identification of recycled components. In Crust/Mantle Recycling at Convergence Zones; Hart, S.R., Gülen, L., Eds.; NATO ASI Series (Series C: Mathematical and Physical Sciences); Springer: Dordrecht, The Netherlands, 1989; Volume 258. [Google Scholar] [CrossRef]
- DePaolo, D.J.; Manton, W.I.; Grew, E.S.; Halpern, H. Sm-Nd, Rb-Sr and U-Th-Pb systematics of granulite facies rocks from Fyfe Hills, Enderby Land, Antarctica. Nature 1982, 298, 614–618. [Google Scholar] [CrossRef]
- Kempton, P.D.; Harmon, R.S.; Hawkesworth, C.J.; Moorbath, S. Petrology and geochemistry of lower crustal granulites from the Geronimo Volcanic Field, southeastern Arizona. Geochim. Cosmochim. Acta 1990, 54, 3401–3426. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Goldstein, S.L. The Pb isotopic compositions of lower crustal xenoliths and the evolution of lower crustal Pb. Earth Planet. Sci. Lett. 1990, 98, 192–207. [Google Scholar] [CrossRef]
- Cameron, K.L.; Robinson, J.V.; Niemeyer, S.; Nimz, G.J.; Kuentz, D.C.; Harmon, R.S.; Bohlen, S.R.; Collerson, K.D. Contrasting styles of pre-Cenozoic and mid-Tertiary crustal evolution in northern Mexico: Evidence from deep crustal xenoliths from La Olivina. J. Geophys. Res. 1992, 97, 17353–17376. [Google Scholar] [CrossRef]
- Lucassen, F.; Lewerenz, S.; Franz, G.; Viramonte, J.; Mezger, K. Metamorphism, isotopic ages and composition of lower crustal granulite xenoliths from the Cretaceous Salta Rift, Argentina. Contrib. Miner. Petrol. 1999, 134, 325–341. [Google Scholar] [CrossRef]
- Grimes, K.G. Karst features of Christmas Islands. Helictite 2001, 37, 41–58. [Google Scholar]
- Andrews, C.W. A Monograph of Christmas Island (Indian Ocean) Physical Features and Geology; British Museum (Natural History): London, UK, 1900. [Google Scholar]
- Trueman, N.A. The phosphate, volcanic and carbonate rocks of Christmas Island (Indian Ocean). J. Geol. Soc. Aust. 1965, 12, 261–283. [Google Scholar] [CrossRef]
- Barrett, P.J. Christmas Island (Indian Ocean) phosphate deposits. In Phosphate Deposits of the World; Phosphate Rock Resources; Notholt, A.J.G., Sheldon, R.P., Davidson, D.F., Eds.; Cambridge University Press: Cambridge, UK, 1989; Volume 2, pp. 558–563. [Google Scholar]
- Polak, E.J. Christmas Island (Indian Ocean), geophysical survey for groundwater, 1973. Bur. Miner. Resour. Geol. Geophys. Aust. Record 1976, 100, 13520. [Google Scholar]
- Shirey, S.B.; Walker, R.J. Carius tube digestion for low-blank rhenium-osmium analysis. Anal. Chem. 1995, 67, 2136–2141. [Google Scholar] [CrossRef]
- Cohen, A.S.; Waters, F.G. Separation of osmium from geological materials by solvent extraction for analysis by thermal ionization mass spectrometry. Anal. Chim. Acta 1996, 332, 269–275. [Google Scholar] [CrossRef]
- Bezard, R.; Turner, S.; Schaefer, B.; Yogodzinski, G.; Hoernle, K. Os isotopic composition of western Aleutian adakites: Implications for the Re/Os of oceanic crust processed through hot subduction zones. Geochim. Cosmochim. Acta 2021, 292, 452–467. [Google Scholar] [CrossRef]
- Day, J.M.; Waters, C.L.; Schaefer, B.F.; Walker, R.J.; Turner, S. Use of hydrofluoric acid desilicification in the determination of highly siderophile element abundances and Re-Pt-Os isotope systematics in magic-ultramafic rocks. Geostand. Geoanal. Res. 2016, 40, 49–65. [Google Scholar] [CrossRef]
- Falloon, T.J.; Green, D.H.; Jacques, A.L.; Hawkins, J.W. Refractory magmas in back-arc basin settings-experimental constraints on the petrogenesis of a Lau Basin example. J. Petrol. 1999, 40, 255–277. [Google Scholar] [CrossRef]
- Amante, C.; Eakins, B.W. ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. In NOAA Technical Memorandum NESDIS NGDC-24; National Geophysical Data Center: Boulder, CO, USA, 2009. [Google Scholar]
- Nuttall, W.L.F. A revision of the orbitoides of Christmas Island (Indian Ocean). Q. J. Geol. Soc. Lond. 1926, 82, 22–43. [Google Scholar] [CrossRef]
- Ludbrook, N.H. Tertiary fossils from Christmas Island (Indian Ocean). J. Geol. Soc. Aust. 1965, 12, 285–294. [Google Scholar] [CrossRef]
- Adams, C.G.; Belford, D.J. Formaniferal biostratigraphy of the Oligocene-Miocene limestones of Christmas Island (Indian Ocean). Paleontology 1974, 17, 475–506. [Google Scholar]
- Haq, B.U.; Hardenbol, J.; Vail, P.R. Chronology of fluctuating sea levels since the Triassic. Science 1987, 235, 1156–1167. [Google Scholar] [CrossRef] [Green Version]
- Woodriffe, C.D. Vertical movement of isolated oceanic islands at plate margins evidence from emergent reefs in Tonga (Pacific Ocean), Cayman islands (Caribbean Sea) and Christmas Island (lndian Ocean). Z. Geomorph. Suppl.-Bd. 1988, 69, 17–37. [Google Scholar]
- Korsch, M.J.; Gulson, B.L. Nd and Pb isotopic studies of an Archaean layered mafic-ultramafic complex, Western Australia, and implications for mantle heterogeneity. Geochim. Cosmochim. Acta 1986, 50, 1–10. [Google Scholar] [CrossRef]
- Borisova, A.Y.; Belyatsky, B.V.; Portnyagin, M.V.; Sushchevskaya, N.M. The petrogenesis of olivine-phyric basalts from the Aphanasey Nikitin Rise: Evidence for contamination by cratonic lower continental crust. J. Petrol. 2001, 43, 277–319. [Google Scholar] [CrossRef] [Green Version]
- Geldmacher, J.; Hoernle, K.; Klügel, A.; van den Bogaard, P.; Bindeman, I. Geochemistry of a new enriched mantle type locality in the northern hemisphere: Implications for the origin of the EM-I source. Earth Planet. Sci. Lett. 2008, 265, 167–182. [Google Scholar] [CrossRef]
- Mahoney, J.J.; Frei, R.; Tejada, M.L.G.; Mo, X.X.; Leat, P.T.; Nagler, T.F. Tracing the Indian Ocean mantle domain through time: Isotopic results from old West Indian, East Tethyan, and South Pacific seafloor. J. Petrol. 1998, 39, 1285–1306. [Google Scholar] [CrossRef]
- Falloon, T.J.; Varne, R.; Morris, J.D.; Hart, S.R. Alkaline lavas from Christmas Island and Nearby seamounts: Magmatism of the northeastern Indian Ocean. In Continental Magmatism, Abstracts, International Association of Volcanology and Chemistry of the Earth’s Interior, Santa Fe, Bulletin 131; New Mexico Bureau of Mines and Mineral Resources: Socorro, NM, USA, 1989; p. 86. [Google Scholar]
Sample | OSU Run# | % rad. 40Ar | Measured Age (Ma) | 2σ Errors | Locality |
---|---|---|---|---|---|
Lower Volcanic Series | |||||
70452 | B3009 | 47.0 | 40.10 | 0.30 | The Dales |
70480 | B3016 | 73.8 | 40.70 | 0.20 | Dolly Beach |
Upper Volcanic Series | |||||
70457 | B3011 | 49.2 | 5.08 | 0.30 | Winifried Beach |
70461 | B3012 | 41.6 | 4.95 | 0.06 | Winifried Beach |
70462 | B3013 | 57.4 | 3.06 | 0.14 | Winifried Beach |
Sample | Lava Series | 87Sr/86Sr | 143Nd/144Nd | 206Pb/204Pb | 207Pb/204Pb | 208Pb/204Pb | Leached |
---|---|---|---|---|---|---|---|
70472 | LVS | 0.703980 | 0.512806 | 19.151 | 15.675 | 39.334 | Y |
70480 | LVS | 0.703930 | 0.512724 | 18.915 | 15.637 | 39.071 | Y |
70480 | LVS | 18.937 | 15.615 | 39.056 | N | ||
70452 | LVS | 0.704090 | 0.512702 | 18.955 | 15.644 | 39.125 | Y |
70471 | LVS | 0.703770 | 0.512827 | 18.918 | 15.577 | 38.784 | Y |
70471 | LVS | 18.852 | 15.578 | 38.779 | N | ||
70457 | UVS | 0.705360 | 0.512544 | 18.043 | 15.566 | 38.128 | Y |
70453 | UVS | 0.705420 | 0.512498 | 17.846 | 15.566 | 38.071 | Y |
70461 | UVS | 0.705390 | 0.512511 | 17.905 | 15.573 | 38.134 | Y |
70462 | UVS | 0.705430 | 0.512460 | 17.904 | 15.568 | 38.118 | Y |
70488-2 | VM-1763m | 0.704670 | 0.512452 | 17.979 | 15.639 | 38.478 | Y |
70488-5 | VM-1763m | 0.704640 | 0.512470 | 17.960 | 15.625 | 38.427 | Y |
Sample No. | Lava Series | Age (Ma) | Os (ppb) | 2σ | 187Os/188Os | 2σ | Re (ppb) | 2σ | 187Re/188Os | 2σ | 187Os/188Osi | γ(Osi) | δ 18O |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CH7B | UVS | 4.4 | 0.0327 | 0.0001 | 0.145560 | 0.000136 | 0.0809 | 0.0012 | 11.94 | 0.01 | 0.144684 | 13.44 | 5.30 |
CH7B | UVS | 4.4 | 0.0178 | 0.0001 | 0.145236 | 0.000085 | 0.0806 | 0.0012 | 21.86 | 0.01 | 0.143633 | 12.62 | |
CH7A | UVS | 4.4 | 0.0052 | 0.0002 | 0.159383 | 0.000572 | 0.0537 | 0.0008 | 50.19 | 0.18 | 0.155703 | 22.08 | 5.28 |
CH3 | UVS | 4.5 | 0.0278 | 0.0001 | 0.169787 | 0.000100 | 0.1424 | 0.0021 | 24.78 | 0.02 | 0.167921 | 31.66 | 5.40 |
CH4 | UVS | 4.4 | 0.0150 | 0.0001 | 0.162934 | 0.000213 | 0.0984 | 0.0015 | 31.77 | 0.04 | 0.160632 | 25.94 | 5.41 |
CH1B | UVS | 4.4 | 5.40 | ||||||||||
CH1A | UVS | 4.3 | 5.47 | ||||||||||
CH9 | LVS | 37.0 | 0.0247 | 0.0001 | 0.133402 | 0.000060 | 0.0864 | 0.0013 | 16.88 | 0.01 | 0.123004 | −3.39 | 5.31 |
CH11 | LVS | 42.6 | 0.0820 | 0.0002 | 0.145955 | 0.000095 | 0.2629 | 0.004 | 15.49 | 0.01 | 0.134960 | 6.03 | 5.45 |
CH13 | LVS | 43.6 | 0.0520 | 0.0001 | 0.169542 | 0.000216 | 0.2948 | 0.0044 | 27.44 | 0.04 | 0.149601 | 17.54 | 5.28 |
CH12 | LVS | 43.0 | 0.0630 | 0.0002 | 0.152965 | 0.000106 | 0.1183 | 0.0018 | 8.93 | 0.01 | 0.146563 | 15.15 | 5.58 |
UVS | LVS | |
---|---|---|
SiO2 | 42.92 | 45.72 |
TiO2 | 2.19 | 2.78 |
Al2O3 | 10.57 | 9.41 |
Fe2O3 | 2.14 | 2.20 |
FeO | 9.48 | 10.30 |
MnO | 0.20 | 0.18 |
MgO | 17.00 | 16.71 |
CaO | 12.16 | 9.30 |
Na2O | 1.30 | 1.72 |
K2O | 1.44 | 1.17 |
P2O5 | 0.59 | 0.49 |
Mg# | 0.726 | 0.708 |
H2O | 2.38 | 1.66 |
CO2 | 2.83 | 2.53 |
Temp (0.2 GPa) | 1418 | 1415 |
Oliv Eq | 90.4 | 89.5 |
% Oliv | 4.94 | 9.11 |
Temp (3–3.5 GPa) | 1392 | 1551 |
F | 0.02 | 0.11 |
Tp | 1360 | 1415 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falloon, T.J.; Hoernle, K.; Schaefer, B.F.; Bindeman, I.N.; Hart, S.R.; Garbe-Schonberg, D.; Duncan, R.A. Petrogenesis of Lava from Christmas Island, Northeast Indian Ocean: Implications for the Nature of Recycled Components in Non-Plume Intraplate Settings. Geosciences 2022, 12, 118. https://doi.org/10.3390/geosciences12030118
Falloon TJ, Hoernle K, Schaefer BF, Bindeman IN, Hart SR, Garbe-Schonberg D, Duncan RA. Petrogenesis of Lava from Christmas Island, Northeast Indian Ocean: Implications for the Nature of Recycled Components in Non-Plume Intraplate Settings. Geosciences. 2022; 12(3):118. https://doi.org/10.3390/geosciences12030118
Chicago/Turabian StyleFalloon, Trevor J., Kaj Hoernle, Bruce F. Schaefer, Ilya N. Bindeman, Stanley R. Hart, Dieter Garbe-Schonberg, and Robert A. Duncan. 2022. "Petrogenesis of Lava from Christmas Island, Northeast Indian Ocean: Implications for the Nature of Recycled Components in Non-Plume Intraplate Settings" Geosciences 12, no. 3: 118. https://doi.org/10.3390/geosciences12030118