Characterization of Upper Jurassic Organic-Rich Caprock Shales in the Norwegian Continental Shelf
Abstract
:1. Introduction
2. Structural Settings and Lithostratigraphy
3. Materials and Methods
3.1. Geochemical Data
3.2. Rock Physics Model
3.3. Brittleness Indices
4. Results
4.1. Mineralogy and Brittleness
4.2. Caprock Property
4.3. Comparative Analysis of Brittleness Indices
5. Discussion
5.1. Brittleness Indices Template
5.2. Seal Integrity
5.2.1. Effect of Mineral Composition
5.2.2. Effect of Exhumation
5.2.3. Effect of Microfracture
6. Conclusions
- There is no trend between the studied upper and lower units; rather, the geomechanical property of each unit depends on its composition and processes. However, compared to the basin, the lower unit is comparatively stiffer except for in the Norwegian–Danish basin.
- Ductile and brittle mineral assemblages varied between the studied basins, influencing the value of mineralogy-based brittleness. The highly ductile minerals significantly increase the ductile behavior of caprock shale.
- The normalized Young’s modulus and Poisson’s ratio-based empirical equation underestimated the brittleness indices compared with mineralogy and acoustic properties-based brittleness values.
- The clay volume decreasing trend has a considerable match with the acoustic properties-based brittleness increasing trend. A similar trend is also observed in the proposed NCS brittleness template.
- Mineralogy of the caprock shale significantly influences the exhumation processes. Clay-rich shale reduces the possibility of shear failure during uplift than quartz-rich shale.
- Understanding the major drivers (e.g., kerogen conversion, mineral conversion) for microfracturing may indicate the likelihood of seal failure. Clay mineralogy composition and kerogen type may define the extent of microfracturing, connectivity, and the ability to heal.
- The moderate correlation between mineralogy and acoustic property-based brittleness indices indicated the complexities of brittleness indices estimation. However, an integrated approach during caprock integrity assessment is suggested due to the specific limitations of different BI estimation methods. In addition, additional lab measurements with petrographic analysis might improve the mechanical behavior of caprock shales.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, J.R. Applications of Geostatistical Seismic Inversion to the Vaca Muerta, Neuquen Basin, Argentina; Colorado School of Mines: Golden, CO, USA, 2017. [Google Scholar]
- Hart, B.S.; Macquaker, J.H.S.; Taylor, K.G. Mudstone (“shale”) depositional and diagenetic processes: Implications for seismic analyses of source-rock reservoirs. Interpretation 2013, 1, B7–B26. [Google Scholar] [CrossRef]
- Mondol, N.H.; Bjørlykke, K.; Jahren, J. Experimental compaction of clays: Relationship between permeability and petrophysical properties in mudstones. Pet. Geosci. 2008, 14, 319–337. [Google Scholar] [CrossRef]
- Mondol, N.H.; Jahren, J.; Berre, T.; Grande, L.; Bjørlykke, K. Permeability Anisotropy in Synthetic Mudstones—An Experimental Study. In Proceedings of the 73rd EAGE Conference and Exhibition incorporating SPE EUROPEC 2011. European Association of Geoscientists & Engineers, Vienna, Austria, 23–27 May 2011. [Google Scholar] [CrossRef]
- Storvoll, V.; Bjørlykke, K.; Mondol, N.H. Velocity-depth trends in Mesozoic and Cenozoic sediments from the Norwegian Shelf. AAPG Bull. 2005, 89, 359–381. [Google Scholar] [CrossRef]
- Hawkes, C.; McLellan, P.; Bachu, S. Geomechanical Factors Affecting Geological Storage of CO2 in Depleted Oil and Gas Reservoirs. J. Can. Pet. Technol. 2005, 44. [Google Scholar] [CrossRef]
- Rutqvist, J.; Birkholzer, J.; Tsang, C.-F. Coupled reservoir–geomechanical analysis of the potential for tensile and shear failure associated with CO2 injection in multilayered reservoir–caprock systems. Int. J. Rock Mech. Min. Sci. 2008, 45, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Rutqvist, J.; Birkholzer, J.; Cappa, F.; Tsang, C.-F. Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Convers. Manag. 2007, 48, 1798–1807. [Google Scholar] [CrossRef] [Green Version]
- Soltanzadeh, H.; Hawkes, C.D. Semi-analytical models for stress change and fault reactivation induced by reservoir production and injection. J. Pet. Sci. Eng. 2008, 60, 71–85. [Google Scholar] [CrossRef]
- E Streit, J.; Hillis, R.R. Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock. Energy 2004, 29, 1445–1456. [Google Scholar] [CrossRef]
- Liu, B.; Yang, Y.; Li, J.; Chi, Y.; Li, J.; Fu, X. Stress sensitivity of tight reservoirs and its effect on oil saturation: A case study of Lower Cretaceous tight clastic reservoirs in the Hailar Basin, Northeast China. J. Pet. Sci. Eng. 2019, 184, 106484. [Google Scholar] [CrossRef]
- Guo, Z.; Chapman, M.; Li, X. Exploring the effect of fractures and microstructure on brittleness index in the Barnett Shale. In SEG Technical Program Expanded Abstracts 2012; Society of Exploration Geophysicists: Houston, TX, USA, 2012. [Google Scholar] [CrossRef] [Green Version]
- Josh, M.; Esteban, L.; Piane, C.D.; Sarout, J.; Dewhurst, D.; Clennell, M. Laboratory characterisation of shale properties. J. Pet. Sci. Eng. 2012, 88-89, 107–124. [Google Scholar] [CrossRef] [Green Version]
- Kivi, I.R.; Ameri, M.; Molladavoodi, H. Shale brittleness evaluation based on energy balance analysis of stress-strain curves. J. Pet. Sci. Eng. 2018, 167, 1–19. [Google Scholar] [CrossRef]
- Arthur, M. Strength of Materials; Longmans, Green, Co.: New York, NY, USA, 1913; p. 497. [Google Scholar]
- Hetenyi, M. Handbook of Experimental Stress Analysis; John Wiley & Sons: New York, NY, USA, 1950; p. 773. [Google Scholar]
- Ramsay, J.G. Folding and Fracturing of Rocks; Mc Graw Hill B Co.: San Francisco, CA, USA, 1967; p. 568. [Google Scholar]
- Obert, L.; Duvall, W.I. Rock Mechanics and the Design of Structures in Rock; J. Wiley: New York, NY, USA, 1967. [Google Scholar]
- Tarasov, B.; Potvin, Y. Universal criteria for rock brittleness estimation under triaxial compression. Int. J. Rock Mech. Min. Sci. 2013, 59, 57–69. [Google Scholar] [CrossRef]
- Tarasov, B.; Randolph, M. Superbrittleness of rocks and earthquake activity. Int. J. Rock Mech. Min. Sci. 2011, 48, 888–898. [Google Scholar] [CrossRef]
- Andreev, G.E. Brittle Failure of Rock Materials; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Grieser, W.V.; Bray, J.M. Identification of production potential in unconventional reservoirs. In Proceedings of the Production and Operation Symposium, Oklahoma City, OK, USA, 31 March 2007. [Google Scholar]
- Hucka, V.; Das, B. Brittleness determination of rocks by different methods. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 1974, 11, 389–392. [Google Scholar] [CrossRef]
- Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull. 2007, 91, 475–499. [Google Scholar] [CrossRef]
- Quinn, J.B.; Quinn, G.D. Indentation brittleness of ceramics: A fresh approach. J. Mater. Sci. 1997, 32, 4331–4346. [Google Scholar] [CrossRef]
- Wang, F.P.; Gale, J.F.W. Screening criteria for shale-gas systems. Gulf Coast Assoc. Geol. Soc. Trans. 2009, 59, 779–793. [Google Scholar]
- Glorioso, J.C.; Rattia, A. Unconventional Reservoirs: Basic Petrophysical Concepts for Shale Gas. In Proceedings of the SPE/EAGE European Unconventional Resources Conference and Exhibition from Potential to Production, Vienna, Austria, 20–22 March 2012. [Google Scholar] [CrossRef]
- Rybacki, E.; Meier, T.; Dresen, G. What controls the mechanical properties of shale rocks?–Part II: Brittleness. J. Pet. Sci. Eng. 2016, 144, 39–58. [Google Scholar] [CrossRef]
- Mews, K.S.; Alhubail, M.M.; Barati, R.G. A Review of Brittleness Index Correlations for Unconventional Tight and Ultra-Tight Reservoirs. Geosciences 2019, 9, 319. [Google Scholar] [CrossRef] [Green Version]
- Rickman, R.; Mullen, M.J.; Petre, J.E.; Grieser, W.V.; Kundert, D. A Practical Use of Shale Petrophysics for Stimulation Design Optimization: All Shale Plays Are Not Clones of the Barnett Shale. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 21–24 September 2008. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Ranjith, P.; Perera, M. The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing: A review. J. Pet. Sci. Eng. 2016, 143, 158–170. [Google Scholar] [CrossRef]
- Chen, T.; Feng, X.-T.; Cui, G.; Tan, Y.; Pan, Z. Experimental study of permeability change of organic-rich gas shales under high effective stress. J. Nat. Gas Sci. Eng. 2019, 64, 1–14. [Google Scholar] [CrossRef]
- Tan, Y.; Pan, Z.; Feng, X.-T.; Zhang, D.; Connell, L.D.; Li, S. Laboratory characterisation of fracture compressibility for coal and shale gas reservoir rocks: A review. Int. J. Coal Geol. 2019, 204, 1–17. [Google Scholar] [CrossRef]
- Bjørlykke, K. Petroleum Migration; Petroeum Geosciences: From Sedimentary Environments to Rock Physics Book; Springer: Berlin/Heidelberg, Germany, 2015; pp. 373–384. [Google Scholar]
- Hansen, J.A.; Mondol, N.H.; Tsikalas, F.; Faleide, J.I. Caprock characterization of Upper Jurassic organic-rich shales using acoustic properties, Norwegian Continental Shelf. Mar. Pet. Geol. 2020, 121, 104603. [Google Scholar] [CrossRef]
- Ingram, G.; Urai, J.; Naylor, M. Sealing processes and top seal assessment. In Norwegian Petroleum Society Special Publications; Elsevier: Amsterdam, The Netherlands, 1997; Volume 7, pp. 165–174. [Google Scholar] [CrossRef]
- Nygård, R.; Gutierrez, M.; Bratli, R.K.; Høeg, K. Brittle–ductile transition, shear failure and leakage in shales and mudrocks. Mar. Pet. Geol. 2006, 23, 201–212. [Google Scholar] [CrossRef]
- Faleide, J.I.; Tsikalas, F.; Breivik, A.J.; Mjelde, R.; Ritzmann, O.; Engen, O.; Wilson, J.; Eldholm, A.O. Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes 2008, 31, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Faleide, J.I.; Bjørlykke, K.; Gabrielsen, R.H. Geology of the Norwegian Continental Shelf; Petroeum Geosciences: From Sedimentary Environments to Rock Physics book; Springer: Berlin/Heidelberg, Germany, 2015; pp. 603–637. [Google Scholar]
- Rahman, J.; Fawad, M.; Mondol, N.H. Organic-rich shale caprock properties of potential CO2 storage sites in the northern North Sea, offshore Norway. Mar. Pet. Geol. 2020, 122, 104665. [Google Scholar] [CrossRef]
- Johnson, J.R.; Hansen, J.A.; Rahman, M.D.J.; Renard, F.; Mondol, N.H. Mapping the maturity of organic-rich shale with combined geochemical and geophysical data, Draupne Formation, Norwegian Continental Shelf. Mar. Pet. Geol. 2022, 138, 105525. [Google Scholar] [CrossRef]
- Baig, I.; Faleide, J.I.; Jahren, J.; Mondol, N.H. Cenozoic exhumation on the southwestern Barents Shelf: Estimates and uncertainties constrained from compaction and thermal maturity analyses. Mar. Pet. Geol. 2016, 73, 105–130. [Google Scholar] [CrossRef]
- Henriksen, E.; Bjørnseth, H.M.; Hals, T.K.; Heide, T.; Kiryukhina, T.; Kløvjan, O.S.; Larssen, G.B.; Ryseth, A.E.; Rønning, K.; Sollid, K.; et al. Chapter 17 Uplift and erosion of the greater Barents Sea: Impact on perspectivity and petroleum systems. Geol. Soc. Lond. Mem. 2011, 35, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Baig, I.; Faleide, J.I.; Mondol, N.H.; Jahren, J. Burial and exhumation history controls on shale compaction and thermal maturity along the Norwegian North Sea basin margin areas. Mar. Pet. Geol. 2019, 104, 61–85. [Google Scholar] [CrossRef]
- Hansen, J.A.; Yenwongfai, H.; Fawad, M.; Mondol, N. Estimating exhumation using experimental compaction trends and rock physics relations, with continuation into analysis of source and reservoir rocks: Central North Sea, offshore Norway. In Proceedings of the 2017 SEG International Exposition and Annual Meeting, Houston, TX, USA, 24–27 September 2017. [Google Scholar] [CrossRef] [Green Version]
- Fawad, M.; Rahman, J.; Mondol, N.H. Seismic reservoir characterization of potential CO2 storage reservoir sandstones in Smeaheia area, Northern North Sea. J. Pet. Sci. Eng. 2021, 205, 108812. [Google Scholar] [CrossRef]
- Dalland, A.; Worsley, D.; Ofstad, K. A Lithostratigraphic Scheme for the Mesozoic and Cenozoic and Succession Offshore Mid-and Northern Norway; Oljedirektoratet: Stavanger, Norway, 1988. [Google Scholar]
- NPD. NPD FactPages 2022. Available online: https://npdfactpages.npd.no/factpages/Default.aspx?culture=en (accessed on 15 July 2022).
- Vollset, J.; Doré, A.G. A revised Triassic and Jurassic Lithostratigraphic Nomenclature for the Norwegian North Sea; Oljedirektoratet: Stavanger, Norway, 1984. [Google Scholar]
- Hansen, J.A.; Mondol, N.H.; Fawad, M. Organic content and maturation effects on elastic properties of source rock shales in the Central North Sea. Interpretation 2019, 7, T477–T497. [Google Scholar] [CrossRef] [Green Version]
- Kalani, M.; Jahren, J.; Mondol, N.H.; Faleide, J.I. Petrophysical implications of source rock microfracturing. Int. J. Coal Geol. 2015, 143, 43–67. [Google Scholar] [CrossRef]
- Koochak Zadeh, M.; Haque Mondol, N.; Jahren, J. Velocity anisotropy of Upper Jurassic organic-rich shales, Norwegian continental shelf. Geophysics 2017, 82, C61–C75. [Google Scholar] [CrossRef]
- Nooraiepour, M.; Mondol, N.H.; Hellevang, H.; Bjørlykke, K. Experimental mechanical compaction of reconstituted shale and mudstone aggregates: Investigation of petrophysical and acoustic properties of SW Barents Sea cap rock sequences. Mar. Pet. Geol. 2017, 80, 265–292. [Google Scholar] [CrossRef]
- Fjar, E.; Holt, R.M.; Raaen, A.M.; Horsrud, P. Petroleum Related Rock Mechanics; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Peters, K.E. Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis. AAPG Bull. 1986, 70, 318–329. [Google Scholar] [CrossRef]
- Hunt, J.M. Petroleum geology and geochemistry. EmanandCompanyt San Fr. 1996, 273, 197. [Google Scholar]
- Passey, Q.R.; Creaney, S.; Kulla, J.B.; Moretti, F.J.; Stroud, J.D. A practical model for organic richness from porosity and resistivity logs. Am. Assoc. Pet. Geol. Bull. 1990, 74, 1777–1794. [Google Scholar]
- Alfred, D.; Vernik, L. A new petrophysical model for organic shales. Petrophysics 2013, 54, 240–247. [Google Scholar]
- Dang, S.T.; Sondergeld, C.H.; Rai, C.S. A new approach to measuring organic density. Petrophysics 2016, 57, 112–120. [Google Scholar]
- Vernik, L.; Landis, C. Elastic Anisotropy of Source Rocks: Implications for Hydrocarbon Generation and Primary Migration. Am. Assoc. Pet. Geol. Bull. 1996, 80, 531–544. [Google Scholar]
- Vernik, L.; Milovac, J. Rock physics of organic shales. Lead Edge 2011, 30, 318–323. [Google Scholar] [CrossRef]
- Carcione, J.M.; Avseth, P. Rock-physics templates for clay-rich source rocksRPTs for clay-rich source rocks. Geophysics 2015, 80, D481–D500. [Google Scholar] [CrossRef] [Green Version]
- Isaksen, G.H.; Bohacs, K.M. Geological Controls of Source Rock Geochemistry through Relative Sea Level. Triassic, Barents Sea. In Petroleum Source Rocks Book; Springer: Berlin, Germany, 1995; pp. 25–50. [Google Scholar] [CrossRef]
- Peters, K.E.; Walters, C.C.; Moldowan, J.M. Geochemical Screening; Cambridge University Press: Cambridge, UK, 2004; pp. 72–118. [Google Scholar] [CrossRef]
- Avseth, P.; Mukerji, T.; Mavko, G. Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Perez Altamar, R.; Marfurt, K. Mineralogy-based brittleness prediction from surface seismic data: Application to the Barnett Shale. Interpretation 2014, 2, T1–T17. [Google Scholar] [CrossRef] [Green Version]
- Alzahabi, A.; AlQahtani, G.; Soliman, M.Y.; Bateman, R.M.; Asquith, G.; Vadapalli, R. Fracturability Index is a Mineralogical Index: A New Approach for Fracturing Decision. In Proceedings of the SPE Saudi Arabia Section Annual Technical Symposium and Exhibition, Al-Khobar, Saudi Arabia, 21–23 April 2015. [Google Scholar] [CrossRef]
- Jin, X.; Shah, S.N.; Roegiers, J.-C.; Zhang, B. Fracability Evaluation in Shale Reservoirs—An Integrated Petrophysics and Geomechanics Approach. In Proceeding of the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, USA, 4–6 February 2014. [Google Scholar] [CrossRef]
- Gholami, R.; Rasouli, V.; Sarmadivaleh, M.; Minaeian, V.; Fakhari, N. Brittleness of gas shale reservoirs: A case study from the north Perth basin, Australia. J. Nat. Gas Sci. Eng. 2016, 33, 1244–1259. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhang, G.; Chen, H.; Yin, X. The construction of shale rock physics effective model and prediction of rock brittleness. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Tulsa, OK, USA, 2014; pp. 2861–2865. [Google Scholar] [CrossRef]
- Sharma, R.K.; Chopra, S. New attribute for determination of lithology and brittleness. In SEG Technical Program Expanded Abstracts 2012; Society of Exploration Geophysicists: Tulsa, OK, USA, 2012; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Fawad, M.; Mondol, N.H. Method for Estimating Rock Brittleness from Well-Log Data. U.S. Patent US20210255359A1, 19 August 2021. [Google Scholar]
- Horsrud, P. Estimating Mechanical Properties of Shale From Empirical Correlations. SPE Drill. Complet. 2001, 16, 68–73. [Google Scholar] [CrossRef] [Green Version]
- Bjørlykke, K. Sedimentary Geochemistry; Springer: Berlin/Heidelberg, Germany, 2015; pp. 91–117. [Google Scholar] [CrossRef]
- Bjørlykke, K. Mudrocks, Shales, Silica Deposits and Evaporites; Springer: Berlin/Heidelberg, Germany, 2015; pp. 217–229. [Google Scholar]
- Bjørlykke, K. Compaction of Sedimentary Rocks: Shales, Sandstones and Carbonates; Springer: Berlin/Heidelberg, Germany, 2015; pp. 351–360. [Google Scholar] [CrossRef]
- Fawad, M.; Mondol, N.H.; Jahren, J.; Bjørlykke, K. Microfabric and rock properties of experimentally compressed silt-clay mixtures. Mar. Pet. Geol. 2010, 27, 1698–1712. [Google Scholar] [CrossRef]
- Voltolini, M.; Wenk, H.-R.; Mondol, N.H.; Bjørlykke, K.; Jahren, J. Anisotropy of experimentally compressed kaolinite-illite-quartz mixtures. Geophysics 2009, 74, D13–D23. [Google Scholar] [CrossRef] [Green Version]
- Bjørlykke, K. Clay mineral diagenesis in sedimentary basins—A key to the prediction of rock properties. Examples from the North Sea Basin. Clay Miner 1998, 33, 15–34. [Google Scholar]
- Zadeh, M.K.; Mondol, N.H.; Jahren, J. Compaction and rock properties of Mesozoic and Cenozoic mudstones and shales, northern North Sea. Mar. Pet. Geol. 2016, 76, 344–361. [Google Scholar] [CrossRef]
- Baldwin, B.; Butler, C.O. Compaction curves. Am. Assoc. Pet. Geol. Bull. 1985, 69, 622–626. [Google Scholar]
- Magara, K. Comparison of porosity-depth relationships of shale and sandstone. J. Pet. Geol. 1980, 3, 175–185. [Google Scholar] [CrossRef]
- Mondol, N.H.; Bjørlykke, K.; Jahren, J.; Høeg, K. Experimental mechanical compaction of clay mineral aggregates—Changes in physical properties of mudstones during burial. Mar. Pet. Geol. 2007, 24, 289–311. [Google Scholar] [CrossRef]
- Mondol, N.H.; Grande, L.; Aker, E.; Berre, T.; Ørbech, T.; Duffaut, K.; Jahren, J.; Bjørlykke, K. Velocity anisotropy of a shallow mudstone core. In Second EAGE Work. Shales; European Association of Geoscientists & Engineers: Houten, The Netherlands, 2010; p. cp-158. [Google Scholar]
- Mondol, N.H. Velocity anisotropy in experimentally compacted clay-silt and clay-clay mixtures. In SEG Technical Program Expanded Abstracts 2012; Society of Exploration Geophysicists: Tulsa, OK, USA, 2012. [Google Scholar] [CrossRef]
- Rahman, M.J.; Fawad, M.; Jahren, J.; Mondol, N.H. Influence of depositional and diagenetic processes on caprock properties of CO2 storage sites in the northern North Sea, offshore Norway. Geoscience 2022, 12, 181. [Google Scholar] [CrossRef]
- Rahman, J.; Fawad, M.; Jahren, J.; Mondol, N.H. Top seal assessment of Drake Formation shales for CO2 storage in the Horda Platform area, offshore Norway. Int. J. Greenh. Gas Control. 2022, 119, 103700. [Google Scholar] [CrossRef]
- Pepper, A.S.; Corvi, P.J. Simple kinetic models of petroleum formation. Part I: Oil and gas generation from kerogen. Mar. Pet. Geol. 1995, 12, 291–319. [Google Scholar] [CrossRef]
- Prasad, M.; Mba, K.C.; McEvoy, T.E.; Batzle, M.L. Maturity and Impedance Analysis of Organic-Rich Shales. SPE Reserv. Eval. Eng. 2011, 14, 533–543. [Google Scholar] [CrossRef] [Green Version]
- Brochard, L.; Hantal, G.; Laubie, H.; Ulm, F.J.; Pellenq, R.J.-M. Fracture Mechanisms in Organic-Rich Shales: Role of Kerogen. In Proceedings of the Fifth Biot Conference on Poromechanics, Vienna, Austria, 10–12 July 2013. [Google Scholar] [CrossRef]
- Allan, A.; Vanorio, T.; Dahl, J.E.P. Pyrolysis-induced P-wave velocity anisotropy in organic-rich shales. Geophysics 2014, 79, D41–D53. [Google Scholar] [CrossRef]
- Johnson, J.R.; Kobchenko, M.; Mondol, N.H.; Renard, F. Multiscale synchrotron microtomography imaging of kerogen lenses in organic-rich shales from the Norwegian Continental Shelf. Int. J. Coal Geol. 2022, 253, 103954. [Google Scholar] [CrossRef]
- Johnson, J.R.; Renard, F.; Mondol, N.H. Salt remobilization timing and its impact on two Norwegian Continental Shelf organic-rich shale formations. In Proceedings of the GeoConvention, Virtual, 13–15 September 2021. [Google Scholar]
- Anders, M.H.; Laubach, S.E.; Scholz, C.H. Microfractures: A review. J. Struct. Geol. 2014, 69, 377–394. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, M.G.; Donzé, F.; Renard, F.; Panahi, H.; Papachristos, E.; Scholtès, L. Microfracturing during primary migration in shales. Tectonophysics 2017, 694, 268–279. [Google Scholar] [CrossRef] [Green Version]
- Vidal, O.; Dubacq, B. Thermodynamic modelling of clay dehydration, stability and compositional evolution with temperature, pressure and H2O activity. Geochim. Cosmochim. Acta 2009, 73, 6544–6564. [Google Scholar] [CrossRef]
- Rabbel, O.; Mair, K.; Galland, O.; Grühser, C.; Meier, T. Numerical Modeling of Fracture Network Evolution in Organic-Rich Shale With Rapid Internal Fluid Generation. J. Geophys. Res. Solid Earth 2020, 125, e2020JB019445. [Google Scholar] [CrossRef]
- Rummel, L.; Kaus, B.J.P.; Baumann, T.S.; White, R.; Riel, N. Insights into the Compositional Evolution of Crustal Magmatic Systems from Coupled Petrological-Geodynamical Models. J. Pet. 2020, 61, egaa029. [Google Scholar] [CrossRef]
- Fan, Z.Q.; Jin, Z.-H.; Johnson, S.E. Subcritical propagation of an oil-filled penny-shaped crack during kerogen-oil conversion. Geophys. J. Int. 2010, 182, 1141–1147. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.-H.; Johnson, S.E.; Fan, Z.Q. Subcritical propagation and coalescence of oil-filled cracks: Getting the oil out of low-permeability source rocks. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; He, B.; Li, F.; Shi, A.; Chen, J.; Xie, L.; Ning, W. Fractal Characterization of Complex Hydraulic Fractures in Oil Shale via Topology. Energies 2021, 14, 1123. [Google Scholar] [CrossRef]
- Ougier-Simonin, A.; Renard, F.; Boehm, C.; Vidal-Gilbert, S. Microfracturing and microporosity in shales. Earth-Sci. Rev. 2016, 162, 198–226. [Google Scholar] [CrossRef] [Green Version]
- Voltolini, M.; Ajo-Franklin, J.B. The Sealing Mechanisms of a Fracture in Opalinus Clay as Revealed by in situ Synchrotron X-ray Micro-Tomography. Front. Earth Sci. 2020, 8, 207. [Google Scholar] [CrossRef]
- Montes, H.G.; Duplay, J.; Martinez, L.; Escoffier, S.; Rousset, D. Structural modifications of Callovo-Oxfordian argillite under hydration/dehydration conditions. Appl. Clay Sci. 2004, 25, 187–194. [Google Scholar] [CrossRef]
Well Name | Basin | Net Uplift (km) | Primary Caprock Formation | XRD Analysis |
---|---|---|---|---|
32/2-1 | Northern North Sea | 1.3 | Draupne & Heather | Rahman et al. [41] |
32/4-1 | 1.1 | |||
15/12-21 | South Viking Graben | 0 | Hansen et al. [51] | |
15/3-8 | 0 | Draupne | ||
16/8-3 S | 0 | Zadeh et al. [53] | ||
9/2-1 | Norwegian-Danish Basin | 0.5 | Tau & Egersund | Kalani et al. [52] |
9/4-3 | 0.38 | |||
9/4-5 | 0.39 | |||
17/12-4 | 0.4 | Hansen et al. [51] | ||
7122/7-3 | SW Barents Sea | 1.2 | Hekkingen & Fuglen | Nooraiepour et al. [54] |
7220/10-1 | 1.2 | |||
7122/7-6 | 1.2 | x | ||
7224/6-1 | 1.4 | x | ||
7125/1-1 | 1.3 | Hekkingen | Zadeh et al. [53] |
Es | ν | |||||
---|---|---|---|---|---|---|
p10 | p50 | p90 | p10 | p50 | p90 | |
Upper unit | 1.46 | 1.83 | 4.14 | 0.26 | 0.34 | 0.37 |
Lower unit | 1.86 | 2.33 | 4.52 | 0.28 | 0.32 | 0.37 |
Combined | 1.76 | 2.57 | 4.09 | 0.27 | 0.33 | 0.37 |
Well Name | Basin | Formation | MBI a | EBI 1 a | EBI 2 a | EBI 3 a |
---|---|---|---|---|---|---|
15/3-8 | SVG | Draupne | 0.59 | 0.25 | 0.64 | 0.56 |
15/12-21 | 0.47 | - | - | - | ||
16/8-3 S | 0.44 | 0.15 | 0.07 | 0.29 | ||
32/2-1 | NNS | 0.27 | - | - | 0.27 | |
32/4-1 | 0.31 | - | - | 0.28 | ||
15/12-21 | SVG | Heather | 0.59 | 0.24 | 0.71 | 0.59 |
32/2-1 | NNS | 0.43 | - | - | 0.37 | |
32/4-1 | 0.49 | - | - | 0.43 | ||
9/2-1 | NDB | Tau | 0.26 | - | - | 0.48 |
9/4-5 | 0.21 | - | - | - | ||
17/12-4 | 0.41 | 0.15 | 0.06 | 0.32 | ||
9/2-1 | Egersund | 0.22 | - | - | 0.63 | |
17/12-4 | 0.38 | 0.16 | 0.22 | 0.42 | ||
7122/7-3 | SWBS | Hekkingen | 0.43 | - | - | - |
7220/10-1 | 0.47 | - | - | - | ||
7125/1-1 | 0.33 | - | - | 0.39 | ||
7122/7-3 | Fuglen | 0.45 | - | - | - | |
7220/10-1 | 0.43 | - | - | - |
Well Name | Basin | Present Temperature | Paleo Temperature |
---|---|---|---|
15/3-8 | South Viking Graben | 124.31 | 124.31 |
16/8-3 S | 86.29 | 86.29 | |
17/12-4 | Norwegian–Danish Basin | 59.57 | 70.37 |
7122/7-6 | SW Barents Sea | 25.98 | 65.80 |
7224/6-1 | 25.48 | 71.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.J.; Johnson, J.R.; Fawad, M.; Mondol, N.H. Characterization of Upper Jurassic Organic-Rich Caprock Shales in the Norwegian Continental Shelf. Geosciences 2022, 12, 407. https://doi.org/10.3390/geosciences12110407
Rahman MJ, Johnson JR, Fawad M, Mondol NH. Characterization of Upper Jurassic Organic-Rich Caprock Shales in the Norwegian Continental Shelf. Geosciences. 2022; 12(11):407. https://doi.org/10.3390/geosciences12110407
Chicago/Turabian StyleRahman, Md Jamilur, James Ronald Johnson, Manzar Fawad, and Nazmul Haque Mondol. 2022. "Characterization of Upper Jurassic Organic-Rich Caprock Shales in the Norwegian Continental Shelf" Geosciences 12, no. 11: 407. https://doi.org/10.3390/geosciences12110407
APA StyleRahman, M. J., Johnson, J. R., Fawad, M., & Mondol, N. H. (2022). Characterization of Upper Jurassic Organic-Rich Caprock Shales in the Norwegian Continental Shelf. Geosciences, 12(11), 407. https://doi.org/10.3390/geosciences12110407