Aeolian Dust Preserved in the Guliya Ice Cap (Northwestern Tibet): A Promising Paleo-Environmental Messenger
Abstract
:1. Introduction
2. Study Site, Materials, and Methods
2.1. The Guliya Ice Cap and Surrounding Deserts
2.2. The Guliya Ice Cores
2.2.1. Chronology
2.2.2. Stratigraphic Observations
2.3. Sample Preparation and Analysis
2.3.1. Dust Filters
Mineralogy
Sr-Nd Isotope and Elemental Geochemistry Analysis by MC-ICPMS and ICPMS
2.3.2. Ice Samples
2.3.3. Enrichment Factor
3. Results and Discussion
3.1. Spatial and Temporal Variability of Dust Concentration, Size, and Mineralogy
3.1.1. Dust Concentration and Particle Size Distribution in Ice Samples
3.1.2. Mineralogy of the Deep GS Dust Filter (T50): Dry Conditions and Proximal Influence
3.1.3. Mineralogy of the Deep GP Dust (T309): Grey Clay from a Weathered Source
3.2. Elemental and Isotopic Composition of the Dust: Paleo-Environmental Implications
3.2.1. Trace Element Geochemistry
3.2.2. REE and Sr and Nd Isotopic Composition of Dust Filter Samples: Provenance Keys
3.3. GP Grey Clays: A Possible Biological Influence
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
TE | T49 | T233 | T225 | T292 | T308 |
---|---|---|---|---|---|
Li | 1.57 | 2.22 | 1.90 | 1.85 | 3.80 |
Ti | 1.00 | 1.00 | 1.00 | 100 | 1.00 |
V | 1.24 | 1.19 | 1.12 | 1.22 | 1.64 |
Cr | 1.43 | 1.33 | 1.13 | 1.30 | 1.93 |
Co | 0.81 | 0.80 | 0.74 | 0.80 | 102 |
Ni | 1.28 | 1.32 | 1.13 | 1.27 | 1.84 |
Cu | 1.36 | 1.57 | 1.49 | 1.63 | 1.80 |
Zn | 1.12 | 1.23 | 1.38 | 1.26 | 1.60 |
Ga | 0.86 | 0.85 | 0.64 | 0.72 | 1.16 |
Rb | 0.89 | 0.95 | 0.74 | 0.82 | 1.72 |
Sr | 0.74 | 0.35 | 0.22 | 0.27 | 0.22 |
Zr | 0.39 | 0.36 | 0.41 | 0.32 | 0.37 |
Nb | 0.46 | 0.46 | 0.36 | 0.36 | 0.40 |
Cs | 0.85 | 1.51 | 1.44 | 1.31 | 6.07 |
Ba | 0.38 | 0.26 | 0.19 | 0.22 | 0.32 |
Nd | 0.83 | 0.84 | 0.58 | 0.61 | 0.52 |
Ta | 0.57 | 0.60 | 0.50 | 0.49 | 0.52 |
Pb | 0.96 | 1.02 | 0.87 | 101 | 1.60 |
U | 1.09 | 0.84 | 0.78 | 0.70 | 0.84 |
Ti (ppm) | 4518 | 2133 | 3516 | 2209 | 3863 |
PSA | Summit (GS) | Plateau (GP) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Warm | Cold | Warm | Cold | Warm | Cold | Warm | Warm | Cold | Warm | Brown | Brown | Grey | Grey | ||||
TE | TE/Fe (ppt) | T41 (n = 11) | T50 (n = 10) | T136 (n = 9) | T173 (n = 9) | T181 (n = 7) | T197 (n = 5) | T209 (n = 7) | T227 (n = 8) | T232 (n = 9) | T262 (n = 9) | T273 (n = 9) | T278 (n = 10) | T290 (n = 16) | T292 (n = 16) | T305 (n = 17) | T306 (n = 16) |
Li | 1.8 × 10−3 | 1.13 | 0.78 | 1.23 | 1.39 | 1.42 | 1.67 | 1.54 | 1.68 | 1.19 | 1.26 | 1.48 | 1.19 | 1.14 | 1.15 | 1.21 | 102 |
Na | 2.7 × 10−1 | 4.26 | 2.37 | 2.89 | 1.37 | 3.45 | 2.47 | 5.31 | 2.06 | 2.11 | 3.43 | 2.23 | 2.14 | 1.95 | 2.64 | 1.44 | 0.46 |
Mg | 5.7 × 10−1 | 1.60 | 1.50 | 1.55 | 1.22 | 1.43 | 1.38 | 1.77 | 1.18 | 1.45 | 1.45 | 1.39 | 1.48 | 1.41 | 1.49 | 1.28 | 1.20 |
Al | 6.8 × 10−1 | 1.23 | 1.03 | 1.10 | 1.14 | 1.22 | 0.99 | 1.13 | 0.99 | 1.12 | 102 | 1.05 | 1.06 | 101 | 1.04 | 1.08 | 1.06 |
Ti | 3.1 × 10−2 | 1.90 | 163 | 1.65 | 1.32 | 1.69 | 1.35 | 2.10 | 1.30 | 163 | 1.60 | 1.45 | 1.58 | 1.38 | 1.47 | 1.23 | 1.19 |
V | 1.2 × 10−3 | 1.43 | 1.37 | 1.25 | 1.21 | 1.40 | 1.09 | 1.38 | 1.07 | 1.27 | 1.23 | 1.17 | 1.22 | 1.16 | 1.23 | 1.17 | 1.13 |
Cr | 1.0 × 10−3 | 1.29 | 1.25 | 1.20 | 1.16 | 1.33 | 1.10 | 1.30 | 107 | 1.22 | 1.18 | 1.15 | 1.18 | 1.11 | 1.19 | 1.12 | 1.09 |
Mn | 3.5 × 10−2 | 0.97 | 0.92 | 0.97 | 0.99 | 0.99 | 1.03 | 1.00 | 1.00 | 0.89 | 0.95 | 0.97 | 0.96 | 103 | 0.98 | 0.99 | 0.92 |
Fe | 1.0 × 100 | 1.00 | 1.00 | 100 | 1.00 | 1.00 | 1.00 | 1.00 | 100 | 1.00 | 100 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 100 |
Co | 5.0 × 10−4 | 1.04 | 0.99 | 103 | 1.04 | 1.08 | 1.08 | 1.14 | 1.01 | 1.01 | 1.04 | 1.01 | 1.02 | 104 | 1.04 | 0.99 | 1.01 |
Ni | 1.2 × 10−3 | 1.11 | 1.06 | 1.08 | 1.12 | 1.12 | 1.10 | 1.18 | 1.06 | 1.07 | 1.12 | 1.11 | 1.11 | 1.08 | 1.11 | 1.08 | 1.05 |
Cu | 1.4 × 10−3 | 1.12 | 0.91 | 1.05 | 0.90 | 1.12 | 0.94 | 1.09 | 0.83 | 0.96 | 1.29 | 0.95 | 0.98 | 0.86 | 0.97 | 0.94 | 0.85 |
Zn | 2.8 × 10−3 | 1.05 | 0.97 | 106 | 1.11 | 1.13 | 1.16 | 1.10 | 1.08 | 1.05 | 1.08 | 1.14 | 1.10 | 1.08 | 1.09 | 1.11 | 1.10 |
Ga | 2.3 × 10−4 | 2.09 | 1.59 | 1.98 | 1.79 | 2.11 | 1.60 | 2.30 | 1.65 | 1.95 | 1.91 | 1.70 | 1.76 | 104 | 1.07 | 103 | 1.10 |
As | 1.2 × 10−3 | 0.51 | 0.32 | 0.49 | 0.67 | 0.57 | 0.63 | 0.62 | 0.80 | 0.45 | 0.62 | 0.69 | 0.54 | 0.65 | 0.64 | 0.73 | 0.64 |
Rb | 2.0 × 10−3 | 1.15 | 1.04 | 1.01 | 1.17 | 1.14 | 1.01 | 1.27 | 1.12 | 1.06 | 1.10 | 1.08 | 1.06 | 0.98 | 1.06 | 1.11 | 0.97 |
Sr | 8.2 × 10−3 | 3.63 | 2.61 | 3.10 | 1.65 | 2.74 | 2.60 | 4.61 | 2.07 | 2.29 | 3.17 | 2.56 | 2.45 | 2.15 | 238 | 1.61 | 1.14 |
Nb | 7.4 × 10−5 | 1.47 | 0.80 | 1.13 | 1.21 | 1.42 | 1.12 | 1.58 | 1.31 | 1.34 | 1.31 | 1.31 | 1.47 | 1.28 | 1.35 | 101 | 0.94 |
Mo | 2.4 × 10−5 | 2.15 | 1.33 | 1.93 | 0.85 | 1.96 | 1.09 | 2.43 | 103 | 1.52 | 1.83 | 1.10 | 1.55 | 1.23 | 1.47 | 1.33 | 0.91 |
Ag | 3.7 × 10−6 | 107 | 0.66 | 0.86 | 1.09 | 0.95 | 1.09 | 1.13 | 1.27 | 0.74 | 0.89 | 0.97 | 0.87 | 0.89 | 0.88 | 1.44 | 1.07 |
Cd | 9.8 × 10−6 | 0.99 | 0.97 | 0.93 | 1.09 | 1.07 | 1.09 | 1.09 | 0.98 | 0.72 | 1.05 | 1.00 | 0.86 | 1.06 | 1.06 | 1.03 | 1.06 |
Sn | 2.1 × 10−5 | 1.69 | 0.88 | 1.33 | 1.36 | 1.86 | 1.55 | 1.63 | 163 | 1.46 | 1.79 | 1.45 | 1.58 | 1.30 | 1.59 | 1.33 | 1.08 |
Sb | 7.0× 10−5 | 0.50 | 0.31 | 0.58 | 0.84 | 0.54 | 0.76 | 0.65 | 0.81 | 0.52 | 0.63 | 0.68 | 0.57 | 0.56 | 0.63 | 0.70 | 0.53 |
Cs | 6.4 × 10−4 | 0.57 | 0.41 | 0.66 | 1.13 | 0.63 | 1.01 | 0.76 | 1.11 | 0.65 | 0.73 | 0.99 | 0.73 | 0.72 | 0.69 | 1.13 | 0.89 |
Ba | 6.4 × 10−3 | 1.36 | 1.50 | 1.23 | 1.12 | 1.32 | 1.06 | 1.52 | 1.08 | 1.18 | 1.35 | 1.10 | 1.12 | 1.15 | 1.33 | 1.11 | 107 |
Tl | 1.9 × 10−5 | 0.86 | 0.78 | 0.86 | 1.12 | 0.90 | 0.97 | 0.99 | 0.98 | 0.83 | 0.92 | 0.94 | 0.86 | 0.85 | 0.87 | 1.08 | 0.92 |
Pb | 1.2 × 10−3 | 0.67 | 0.61 | 0.72 | 0.86 | 0.70 | 0.82 | 0.70 | 0.84 | 0.60 | 0.67 | 0.83 | 0.64 | 0.76 | 0.71 | 0.78 | 0.72 |
Bi | 1.9 × 10−5 | 0.80 | 0.60 | 0.80 | 0.79 | 0.80 | 0.84 | 0.78 | 1.29 | 0.77 | 0.81 | 0.79 | 0.70 | 0.84 | 0.80 | 0.75 | 0.71 |
U | 6.1× 10−5 | 1.78 | 1.56 | 167 | 1.16 | 1.35 | 1.40 | 2.46 | 1.36 | 1.27 | 1.41 | 1.43 | 1.21 | 1.37 | 1.40 | 0.93 | 0.84 |
Sample ID | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Sc | Y | Hf | Th | L/HREE | δEuN | (La/Yb)N |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T49 | 150.7 | 115.0 | 92.4 | 69.3 | 42.5 | 22.9 | 29.7 | 25.0 | 21.1 | 18.7 | 18.5 | 18.4 | 17.1 | 16.4 | 2.4 | 20.4 | 35.1 | 449.5 | 2.99 | 0.64 | 8.83 |
T225 | 53.3 | 41.0 | 30.1 | 22.8 | 13.4 | 7.5 | 9.4 | 8.7 | 7.4 | 6.6 | 6.9 | 7.1 | 6.7 | 6.7 | 0.8 | 7.1 | 17.8 | 156.8 | 2.83 | 0.67 | 8.00 |
T233 | 121.4 | 96.1 | 74.0 | 54.1 | 32.3 | 15.6 | 21.0 | 17.1 | 14.2 | 12.2 | 12.2 | 12.0 | 11.2 | 11.2 | 1.6 | 13.1 | 25.7 | 361.3 | 3.54 | 0.60 | 10.87 |
T292 | 54.4 | 43.1 | 323 | 24.7 | 14.9 | 8.2 | 10.7 | 9.2 | 7.7 | 6.8 | 6.7 | 6.8 | 6.4 | 6.3 | 1.0 | 7.1 | 14.3 | 174.7 | 2.93 | 0.65 | 8.54 |
T308 | 86.1 | 65.9 | 50.5 | 37.0 | 22.5 | 13.6 | 16.2 | 14.4 | 13.1 | 11.9 | 12.5 | 12.6 | 12.4 | 12.5 | 2.3 | 12.9 | 29.3 | 347.4 | 2.61 | 0.71 | 6.93 |
References
- Satheesh, S.K.; Moorthy, K.K. Radiative effects of natural aerosols: A review. Atmos. Environ. 2005, 39, 2089–2110. [Google Scholar] [CrossRef]
- Textor, C.; Schulz, M.; Guibert, S.; Kinne, S.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Berglen, T.; Boucher, O.; Chin, M.; et al. Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys. 2006, 6, 1777–1813. [Google Scholar] [CrossRef]
- Choobari, O.A.; Zawar-Reza, P.; Sturman, A. The global distribution of mineral dust and its impacts on the climate system: A review. Atmos. Res. 2014, 138, 152–165. [Google Scholar] [CrossRef]
- Kohfeld, K.E.; Harrison, S.P. DIRTMAP: The geological record of dust. Earth-Sci. Rev. 2001, 54, 81–114. [Google Scholar] [CrossRef]
- Gassó, S.; Grassian, V.H.; Miller, R.L. Interactions between mineral dust, climate, and ocean ecosystems. Elements 2010, 6, 247–252. [Google Scholar] [CrossRef]
- Marx, S.K.; Kamber, B.S.; McGowan, H.A.; Petherick, L.M.; McTainsh, G.H.; Stromsoe, N.; Hooper, J.N.; May, J.H. Palaeo-dust records: A window to understanding past environments. Glob. Planet. Chang. 2018, 165, 13–43. [Google Scholar] [CrossRef]
- Thompson, L.G.; Mosley-Thompson, E. Temporal variability of microparticle properties in polar ice sheets. J. Volcanol. Geotherm. Res. 1981, 11, 11–27. [Google Scholar] [CrossRef]
- Petit, J.R.; Briat, M.; Royer, A. Ice age aerosol content from East Antarctic ice core samples and past wind strength. Nature 1981, 293, 391–394. [Google Scholar] [CrossRef]
- De Angelis, M.; Barkoy, N.; Petrov, V. Sources of continental dust over Antarctica during the last glacial cycle. J. Atmos. Chem. 1992, 14, 233–244. [Google Scholar] [CrossRef]
- Delmonte, B.; Paleari, C.I.; Andò, S.; Garzanti, E.; Andersson, P.S.; Petit, J.R.; Crosta, X.; Narcisi, B.; Baroni, C.; Salvatore, M.C.; et al. Causes of dust size variability in central East Antarctica (Dome B): Atmospheric transport from expanded South American sources during Marine Isotope Stage 2. Quat. Sci. Rev. 2017, 168, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Thompson, L.O.; Yao, T.; Davis, M.; Henderson, K.; Mosley-Thompson, E.; Lin, P.N.; Beer, J.; Synal, H.A.; Cole-Dai, J.; Bolzan, J. Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core. Science 1997, 276, 1821–1825. [Google Scholar] [CrossRef]
- Condie, K.C.; Dengate, J.; Cullers, R.L. Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA. Geochim. Cosmochim. Acta 1995, 59, 279–294. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Laveuf, C.; Cornu, S. A review on the potentiality of rare earth elements to trace pedogenetic processes. Geoderma 2009, 154, 1–12. [Google Scholar] [CrossRef]
- Gallet, S.; Jahn, B.M.; Lanoë, B.V.V.; Dia, A.; Rossello, E. Loess geochemistry and its implications for particle origin and composition of the upper continental crust. Earth Planet. Sci. Lett. 1998, 156, 157–172. [Google Scholar] [CrossRef]
- Basile, I.; Grousset, F.E.; Revel, M.; Petit, J.R.; Biscaye, P.E.; Barkov, N.I. Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6. Earth Planet. Sci. Lett. 1997, 146, 573–589. [Google Scholar] [CrossRef]
- Delmonte, B.; Basile-Doelsch, I.; Petit, J.R.; Maggi, V.; Revel-Rolland, M.; Michard, A.; Jagoutz, E.; Grousset, F. Comparing the Epica and Vostok dust records during the last 220,000 years: Stratigraphical correlation and provenance in glacial periods. Earth-Sci. Rev. 2004, 66, 63–87. [Google Scholar] [CrossRef]
- Delmonte, B.; Petit, J.R.; Andersen, K.K.; Basile-Doelsch, I.; Maggi, V.; Lipenkov, V.Y. Dust size evidence for opposite regional atmospheric circulation changes over east Antarctica during the last climatic transition. Clim. Dyn. 2004, 23, 427–438. [Google Scholar] [CrossRef]
- Delmonte, B.; Andersson, P.S.; Hansson, M.; Schöberg, H.; Petit, J.R.; Basile-Doelsch, I.; Maggi, V. Aeolian dust in East Antarctica (EPICA-Dome C and Vostok): Provenance during glacial ages over the last 800 kyr. Geophys. Res. Lett. 2008, 35, L07703. [Google Scholar] [CrossRef]
- Grousset, F.E.; Biscaye, P.E. Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes. Chem. Geol. 2005, 222, 149–167. [Google Scholar] [CrossRef]
- Yang, J.; Li, G.; Rao, W.; Ji, J. Isotopic evidences for provenance of East Asian Dust. Atmos. Environ. 2009, 43, 4481–4490. [Google Scholar] [CrossRef]
- Lupker, M.; Aciego, S.M.; Bourdon, B.; Schwander, J.; Stocker, T.F. Isotopic tracing (Sr, Nd, U and Hf) of continental and marine aerosols in an 18th century section of the Dye-3 ice core (Greenland). Earth Planet. Sci. Lett. 2010, 295, 277–286. [Google Scholar] [CrossRef]
- Aarons, S.M.; Aciego, S.M.; Arendt, C.A.; Blakowski, M.A.; Steigmeyer, A.; Gabrielli, P.; Sierra-Hernández, M.R.; Beaudon, E.; Delmonte, B.; Baccolo, G.; et al. Dust composition changes from Taylor Glacier (East Antarctica) during the last glacial- interglacial transition: A multi-proxy approach. Quat. Sci. Rev. 2017, 162, 60–71. [Google Scholar] [CrossRef]
- Wolff, E.W.; Fischer, H.; Fundel, F.; Ruth, U.; Twarloh, B.; Littot, G.C.; Mulvaney, R.; Röthlisberger, R.; Angelis, M.D.; Boutron, C.F.; et al. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 2006, 440, 491–496. [Google Scholar] [CrossRef]
- Aarons, S.M.; Aciego, S.M.; Gabrielli, P.; Delmonte, B.; Koornneef, J.M.; Wegner, A.; Blakowski, M.A. The impact of glacier retreat from the Ross Sea on local climate: Characterization of mineral dust in the Taylor Dome ice core, East Antarctica. Earth Planet. Sci. Lett. 2016, 444, 34–44. [Google Scholar] [CrossRef]
- Biscaye, P.E.; Grousset, F.E.; Revel, M.; Gaast, S.V.D.; Zielinski, G.A.; Vaars, A.; Kukla, G. Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland. J. Geophys. Res. Ocean. 1997, 102, 26765–26781. [Google Scholar] [CrossRef]
- Svensson, A.; Biscaye, P.E.; Grousset, F.E. Characterization of late glacial continental dust in the Greenland Ice Core Project ice core. J. Geophys. Res. Atmos. 2000, 105, 4637–4656. [Google Scholar] [CrossRef]
- Bory, A.J.; Biscaye, P.E.; Grousset, F.E. Two distinct seasonal Asian source regions for mineral dust deposited in Greenland (NorthGRIP). Geophys. Res. Lett. 2003, 30, 1167. [Google Scholar] [CrossRef]
- Újvári, G.; Stevens, T.; Svensson, A.; Klötzli, U.S.; Manning, C.; Németh, T.; Kovács, J.; Sweeney, M.R.; Gocke, M.; Wiesenberg, G.L.; et al. Two possible source regions for central Greenland last glacial dust. Geophys. Res. Lett. 2015, 42, 10399–10408. [Google Scholar] [CrossRef]
- Újvári, G.; Stevens, T.; Molnár, M.; Demény, A.; Lambert, F.; Varga, G.; Jull, A.J.T.; Páll-Gergely, B.; Buylaert, J.P.; Kovács, J. Coupled European and Greenland last glacial dust activity driven by North Atlantic climate. Proc. Natl. Acad. Sci. USA 2017, 114, E10632–E10638. [Google Scholar] [CrossRef] [Green Version]
- Újvári, G.; Klötzli, U.; Stevens, T.; Svensson, A.; Ludwig, P.; Vennemann, T.; Gier, S.; Horschinegg, M.; Palcsu, L.; Hippler, D.; et al. Greenland ice core record of last glacial dust sources and atmospheric circulation. J. Geophys. Res. Atmos. 2022, 127, e2022JD036597. [Google Scholar] [CrossRef]
- Han, Y.; Fang, X.; Kang, S.; Wang, H.; Kang, F. Shifts of dust source regions over central Asia and the Tibetan Plateau: Connections with the Arctic oscillation and the westerly jet. Atmos. Environ. 2008, 42, 2358–2368. [Google Scholar] [CrossRef]
- Wei, T.; Dong, Z.; Kang, S.; Rostami, M.; Ulbrich, S.; Shao, Y. Hf-Nd-Sr isotopic fingerprinting for aeolian dust deposited on glaciers in the northeastern Tibetan Plateau region. Glob. Planet. Chang. 2019, 177, 69–80. [Google Scholar] [CrossRef]
- Zdanowicz, C.; Hall, G.; Vaive, J.; Amelin, Y.; Percival, J.; Girard, I.; Biscaye, P.; Bory, A. Asian dustfall in the St. Elias Mountains, Yukon, Canada. Geochim. Cosmochim. Acta 2006, 70, 3493–3507. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, C.; Zhang, X.; Tian, L.; Yao, T. Sr and Nd isotopic composition of dust in Dunde ice core, Northern China: Implications for source tracing and use as an analogue of long-range transported Asian dust. Earth Planet. Sci. Lett. 2010, 299, 409–416. [Google Scholar] [CrossRef]
- Honda, M.; Yabuki, S.; Shimizu, H. Geochemical and isotopic studies of aeolian sediments in China. Sedimentology 2004, 51, 211–230. [Google Scholar] [CrossRef]
- Chen, J.; Li, G.; Yang, J.; Rao, W.; Lu, H.; Balsam, W.; Sun, Y.; Ji, J. Nd and Sr isotopic characteristics of Chinese deserts: Implications for the provenances of Asian dust. Geochim. Cosmochim. Acta 2007, 71, 3904–3914. [Google Scholar] [CrossRef]
- Wei, T.; Brahney, J.; Dong, Z.; Kang, S.; Zong, C.; Guo, J.; Yang, L.; Qin, X. Hf-Nd-Sr Isotopic Composition of the Tibetan Plateau Dust as a Fingerprint for Regional to Hemispherical Transport. Environ. Sci. Technol. 2021, 55, 10121–10132. [Google Scholar] [CrossRef]
- Tripathi, J.K.; Bock, B.; Rajamani, V. Nd and Sr isotope characteristics of Quaternary Indo-Gangetic plain sediments: Source distinctiveness in different geographic regions and its geological significance. Chem. Geol. 2013, 344, 12–22. [Google Scholar] [CrossRef]
- Kumar, A.; Suresh, K.; Rahaman, W. Geochemical characterization of modern aeolian dust over the Northeastern Arabian Sea: Implication for dust transport in the Arabian Sea. Sci. Total Environ. 2020, 729, 138576. [Google Scholar] [CrossRef]
- Jin, Z.; Yu, J.; Wang, S.; Zhang, F.; Shi, Y.; You, C.F. Constraints on water chemistry by chemical weathering in the Lake Qinghai catchment, northeastern Tibetan Plateau (China): Clues from Sr and its isotopic geochemistry. Hydrogeol. J. 2009, 17, 2037–2048. [Google Scholar] [CrossRef]
- Doebbert, A.C.; Johnson, C.M.; Carroll, A.R.; Beard, B.L.; Pietras, J.T.; Carson, M.R.; Norsted, B.; Throckmorton, L.A. Controls on Sr isotopic evolution in lacustrine systems: Eocene green river formation, Wyoming. Chem. Geol. 2014, 380, 172–189. [Google Scholar] [CrossRef]
- Du, Z.; Xiao, C.; Liu, Y.; Wu, G. Geochemical characteristics of insoluble dust as a tracer in an ice core from Miaoergou Glacier, east Tien Shan. Glob. Planet. Chang. 2015, 127, 12–21. [Google Scholar] [CrossRef]
- Xu, J.; Hou, S.; Chen, F.; Ren, J.; Qin, D. Tracing the sources of particles in the East Rongbuk ice core from Mt. Qomolangma. Chin. Sci. Bull. 2009, 54, 1781–1785. [Google Scholar] [CrossRef]
- Kreutz, K.J.; Sholkovitz, E.R. Major element, rare earth element, and sulfur isotopic composition of a high-elevation firn core: Sources and transport of mineral dust in central Asia. Geochem. Geophys. Geosyst. 2000, 1, 1048. [Google Scholar] [CrossRef]
- Wu, G.; Xu, B.; Zhang, C.; Gao, S.; Yao, T. Geochemistry of dust aerosol over the Eastern Pamirs. Geochim. Cosmochim. Acta 2009, 73, 977–989. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, C.; Zhang, X.; Xu, T.; Yan, N.; Gao, S. The environmental implications for dust in high-alpine snow and ice cores in Asian mountains. Glob. Planet. Chang. 2015, 124, 22–29. [Google Scholar] [CrossRef]
- Xu, J.; Yu, G.; Kang, S.; Hou, S.; Zhang, Q.; Ren, J.; Qin, D. Sr-Nd isotope evidence for modern aeolian dust sources in mountain glaciers of western China. J. Glaciol. 2012, 58, 859–865. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Huang, J.; Cozzi, G.; Turetta, C.; Barbante, C.; Xiong, L. Variations of trace elements and rare earth elements (REEs) treated by two different methods for snow-pit samples on the Qinghai-Tibetan Plateau and their implications. Sci. Cold Arid Reg. 2018, 9, 568–579. [Google Scholar]
- Wei, T.; Dong, Z.; Kang, S.; Qin, X.; Guo, Z. Geochemical evidence for sources of surface dust deposited on the Laohugou glacier, Qilian Mountains. Appl. Geochem. 2017, 79, 1–8. [Google Scholar] [CrossRef]
- Prospero, J.M.; Ginoux, P.; Torres, O.; Nicholson, S.E.; Gill, T.E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 2002, 40, 2-1–2-31. [Google Scholar] [CrossRef]
- Sun, J. Source regions and formation of the loess sediments on the high mountains regions of northwestern China. Quat. Res. 2002, 58, 341–351. [Google Scholar] [CrossRef]
- Zeng, X.; Xu, X.; Yi, C.; Sun, Y.; Li, J. Extensive glaciations between MIS 8 and MIS 5 on the eastern side of the Guliya ice cap, West Kunlun Mountains. Quat. Int. 2021, 604, 28–37. [Google Scholar] [CrossRef]
- Thompson, L.G.; Yao, T.; Davis, M.E.; Mosley-Thompson, E.; Wu, G.; Porter, S.E.; Xu, B.; Lin, P.N.; Wang, N.; Beaudon, E.; et al. Ice core records of climate variability on the Third Pole with emphasis on the Guliya ice cap, western Kunlun Mountains. Quat. Sci. Rev. 2018, 188, 1–14. [Google Scholar] [CrossRef]
- Sierra-Hernández, M.R.; Gabrielli, P.; Beaudon, E.; Wegner, A.; Thompson, L.G. Atmospheric depositions of natural and anthropogenic trace elements on the Guliya ice cap (northwestern Tibetan Plateau) during the last 340 years. Atmos. Environ. 2018, 176, 91–102. [Google Scholar] [CrossRef]
- Bradley, R.S. Are there optimum sites for global paleotemperature reconstruction? In Proceedings of the Climatic Variations and Forcing Mechanisms of the Last 2000 Years; Jones, P.D., Bradley, R.S., Jouzel, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 603–624. [Google Scholar]
- Thompson, L.G. Ice core evidence for climate change in the Tropics: Implications for our future. Quat. Sci. Rev. 2000, 19, 19–35. [Google Scholar] [CrossRef]
- Yao, T.; Shi, Y.; Thompson, L. High resolution record of paleoclimate since the Little Ice Age from the Tibetan ice cores. Quat. Int. 1997, 37, 19–23. [Google Scholar] [CrossRef]
- Herzschuh, U. Palaeo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quat. Sci. Rev. 2006, 25, 163–178. [Google Scholar] [CrossRef]
- Tison, J.L.; de Angelis, M.; Littot, G.; Wolff, E.; Fischer, H.; Hansson, M.; Bigler, M.; Udisti, R.; Wegner, A.; Jouzel, J.; et al. Retrieving the paleoclimatic signal from the deeper part of the EPICA Dome C ice core. Cryosphere 2015, 9, 1633–1648. [Google Scholar] [CrossRef]
- Vinati, A.; Mahanty, B.; Behera, S. Clay and clay minerals for fluoride removal from water: A state-of-the-art review. Appl. Clay Sci. 2015, 114, 340–348. [Google Scholar] [CrossRef]
- Kamenov, G.D.; Mueller, P.A.; Gilli, A.; Coyner, S.; Nielsen, S. A simple method for rapid, high-precision isotope measurements of small samples with MC-ICP-MS. Proc. AGU Fall Meet. Abstr. 2006, 2006, V21A-0542. [Google Scholar]
- McArthur, J.; Howarth, R.; Shields, G.; Zhou, Y. Strontium isotope stratigraphy. In Geologic Time Scale 2020; Elsevier: Amsterdam, The Netherlands, 2020; pp. 211–238. [Google Scholar]
- Tanaka, T.; Togashi, S.; Kamioka, H.; Amakawa, H.; Kagami, H.; Hamamoto, T.; Yuhara, M.; Orihashi, Y.; Yoneda, S.; Shimizu, H.; et al. JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 2000, 168, 279–281. [Google Scholar] [CrossRef]
- Jacobsen, S.B.; Wasserburg, G. Sm-Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett. 1980, 50, 139–155. [Google Scholar] [CrossRef]
- Uglietti, C.; Gabrielli, P.; Olesik, J.W.; Lutton, A.; Thompson, L.G. Large variability of trace element mass fractions determined by ICP-SFMS in ice core samples from worldwide high altitude glaciers. Appl. Geochem. 2014, 47, 109–121. [Google Scholar] [CrossRef]
- Sierra-Hernández, M.R.; Beaudon, E.; Gabrielli, P.; Thompson, L. 21st-century Asian air pollution impacts glacier in northwestern Tibet. Atmos. Chem. Phys. 2019, 19, 15533–15544. [Google Scholar] [CrossRef]
- Beaudon, E.; Gabrielli, P.; Sierra-Hernández, M.R.; Wegner, A.; Thompson, L.G. Central Tibetan Plateau atmospheric trace metals contamination: A 500-year record from the Puruogangri ice core. Sci. Total Environ. 2017, 601–602, 1349–1363. [Google Scholar] [CrossRef]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Shaw, D.; Reilly, G.; Muysson, J.; Pattenden, G.; Campbell, F. An estimate of the chemical composition of the Canadian Precambrian Shield. Can. J. Earth Sci. 1967, 4, 829–853. [Google Scholar] [CrossRef]
- Shaw, D.M.; Dostal, J.; Keays, R.R. Additional estimates of continental surface Precambrian shield composition in Canada. Geochim. Cosmochim. Acta 1976, 40, 73–83. [Google Scholar] [CrossRef]
- Wu, G.; Yao, T.; Thompson, L.G.; Li, Z. Microparticle record in the Guliya ice core and its comparison with polar records since the last interglacial. Chin. Sci. Bull. 2004, 49, 607–611. [Google Scholar] [CrossRef]
- Qian, W.; Quan, L.; Shi, S. Variations of the dust storm in China and its climatic control. J. Clim. 2002, 15, 1216–1229. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, A.; Zhu, X.; Zhou, Y.; Huang, Y. The impact of the winter North Atlantic Oscillation on the frequency of spring dust storms over Tarim Basin in northwest China in the past half-century. Environ. Res. Lett. 2013, 8, 024026. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y.; Gong, S.L.; Shen, Z.X.; Mei, F.M.; Xi, X.X.; Liu, L.C.; Zhou, Z.J.; Wang, D.; Wang, Y.Q.; Cheng, Y. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 1. Network observations. J. Geophys. Res. Atmos. 2003, 108, 4261. [Google Scholar] [CrossRef]
- Ferrat, M.; Weiss, D.J.; Strekopytov, S.; Dong, S.; Chen, H.; Najorka, J.; Sun, Y.; Gupta, S.; Tada, R.; Sinha, R. Improved provenance tracing of Asian dust sources using rare earth elements and selected trace elements for palaeomonsoon studies on the eastern Tibetan Plateau. Geochim. Cosmochim. Acta 2011, 75, 6374–6399. [Google Scholar] [CrossRef]
- Scheinost, A.; Schwertmann, U. Color Identification of Iron Oxides and Hydroxysulfates. Soil Sci. Soc. Am. J. 1999, 63, 1463–1471. [Google Scholar] [CrossRef]
- Scheinost, A.C. Metal oxides. In Encyclopedia of Soils in the Environment; Elsevier Academic Press: Amsterdam, The Netherlands, 2005; pp. 428–438. [Google Scholar]
- Jahn, B.M.; Gallet, S.; Han, J. Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: Eolian dust provenance and paleosol evolution during the last 140 ka. Chem. Geol. 2001, 178, 71–94. [Google Scholar] [CrossRef]
- Sun, J.; Li, S.H.; Muhs, D.R.; Li, B. Loess sedimentation in Tibet: Provenance, processes, and link with Quaternary glaciations. Quat. Sci. Rev. 2007, 26, 2265–2280. [Google Scholar] [CrossRef]
- Li, C.; Kang, S.; Zhang, Q.; Wang, F. Rare earth elements in the surface sediments of the Yarlung Tsangbo (Upper Brahmaputra River) sediments, southern Tibetan Plateau. Quat. Int. 2009, 208, 151–157. [Google Scholar] [CrossRef]
- Zheng, M. A new type of cesium ore in Tibet. In Proceedings of the 11th New Zealand Geothermal Workshop, Auckland, New Zealand, 8–10 November 1989; pp. 325–326. [Google Scholar]
- Gu, L.X.; Zhang, Z.Z.; Wu, C.Z.; Gou, X.Q.; Liao, J.J.; Yang, H. A topaz-and amazonite-bearing leucogranite pluton in eastern Xinjiang, NW China and its zoning. J. Asian Earth Sci. 2011, 42, 885–902. [Google Scholar] [CrossRef]
- Wampler, J.M.; Krogstad, E.J.; Elliott, W.C.; Kahn, B.; Kaplan, D.I. Long-term selective retention of natural Cs and Rb by highly weathered coastal plain soils. Environ. Sci. Technol. 2012, 46, 3837–3843. [Google Scholar] [CrossRef]
- Brunt, R.; Vasak, L.; Griffioen, J. Fluoride in Groundwater: Probability of Occurrence of Excessive; Netherlands Institute of Applied Geoscience TNO—National Geological Survey: Utrecht, The Netherlands, 2004. [Google Scholar]
- García, M.; Borgnino, L. Chapter 1: Fluoride in the context of the environment. In Fluorine: Chemistry, Analysis, Function and Effects; Royal Society of Chemistry: London, UK, 2015; pp. 3–21. [Google Scholar]
- Grimaud, D.; Huang, S.; Michard, G.; Zheng, K. Chemical study of geothermal waters of Central Tibet (China). Geothermics 1985, 14, 35–48. [Google Scholar] [CrossRef]
- Zheng, M.; Liu, X. Hydrochemistry of Salt Lakes of the Qinghai-Tibet Plateau, China. Aquat. Geochem. 2009, 15, 293–320. [Google Scholar] [CrossRef]
- Tan, H.; Chen, J.; Rao, W.; Zhang, W.; Zhou, H. Geothermal constraints on enrichment of boron and lithium in salt lakes: An example from a river-salt lake system on the northern slope of the eastern Kunlun Mountains, China. J. Asian Earth Sci. 2012, 51, 21–29. [Google Scholar] [CrossRef]
- Reddy, K.J.; Gloss, S.P. Geochemical speciation as related to the mobility of F, Mo and Se in soil leachates. Appl. Geochem. 1993, 8, 159–163. [Google Scholar] [CrossRef]
- Wichard, T.; Mishra, B.; Myneni, S.C.; Bellenger, J.P.; Kraepiel, A.M. Storage and bioavailability of molybdenum in soils increased by organic matter complexation. Nat. Geosci. 2009, 2, 625–630. [Google Scholar] [CrossRef]
- Chang, Q.; Mishima, T.; Yabuki, S.; Takahashi, Y.; Shimizu, H. Sr and Nd isotope ratios and REE abundances of moraines in the mountain areas surrounding the Taklimakan Desert, NW China. Geochem. J. 2000, 34, 407–427. [Google Scholar] [CrossRef]
- Anders, E.; Grevesse, N. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 1989, 53, 197–214. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Pub.: Palo Alto, CA, USA, 1985. [Google Scholar]
- Song, Y.; Chen, X.; Qian, L.; Li, C.; Li, Y.; Li, X.; Chang, H.; An, Z. Distribution and composition of loess sediments in the Ili Basin, Central Asia. Quat. Int. 2014, 334–335, 61–73. [Google Scholar] [CrossRef]
- Zan, J.; Fang, X.; Yang, S.; Nie, J.; Li, X. A rock magnetic study of loess from the West Kunlun Mountains. J. Geophys. Res. Solid Earth 2010, 115, B10101. [Google Scholar] [CrossRef]
- Nickel, E. Experimental dissolution of light and heavy minerals in comparison with weathering and intrastratal solution. Contrib. Sedimentol. 1973, 1, 1–68. [Google Scholar]
- Panahi, A.; Young, G.M.; Rainbird, R.H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada. Geochim. Cosmochim. Acta 2000, 64, 2199–2220. [Google Scholar] [CrossRef]
- Roy, P.D.; Smykatz-Kloss, W. REE geochemistry of the recent playa sediments from the Thar Desert, India: An implication to playa sediment provenance. Chem. Der Erde 2007, 67, 55–68. [Google Scholar] [CrossRef]
- Delmonte, B.; Andersson, P.S.; Schöberg, H.; Hansson, M.; Petit, J.R.; Delmas, R.; Gaiero, D.M.; Maggi, V.; Frezzotti, M. Geographic provenance of aeolian dust in East Antarctica during Pleistocene glaciations: Preliminary results from Talos Dome and comparison with East Antarctic and new Andean ice core data. Quat. Sci. Rev. 2010, 29, 256–264. [Google Scholar] [CrossRef]
- Chen, J.; Li, G. Geochemical studies on the source region of Asian dust. Sci. China Earth Sci. 2011, 54, 1279–1301. [Google Scholar] [CrossRef]
- Schettler, G.; Romer, R.L.; Qiang, M.; Plessen, B.; Dulski, P. Size-dependent geochemical signatures of Holocene loess deposits from the Hexi Corridor (China). J. Asian Earth Sci. 2009, 35, 103–136. [Google Scholar] [CrossRef]
- Saini, H.S.; Mujtaba, S.A. Depositional history and palaeoclimatic variations at the northeastern fringe of Thar Desert, Haryana plains, India. Quat. Int. 2012, 250, 37–48. [Google Scholar] [CrossRef]
- Inglett, P.; Reddy, K.; Corstanje, R. Anaerobic Soils; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Zhong, Z.P.; Tian, F.; Roux, S.; Gazitúa, M.C.; Solonenko, N.E.; Li, Y.F.; Davis, M.E.; Etten, J.L.V.; Mosley-Thompson, E.; Rich, V.I.; et al. Glacier ice archives nearly 15,000-year-old microbes and phages. Microbiome 2021, 9, 160. [Google Scholar] [CrossRef]
Core Site | Sample ID (n Subsamples) | Depth (m) | Age (kyr) | Dust Extraction Method | Dust Color | 1m-Section Mean δ18O (‰) | Mineralogy | Geochemistry (TE, REE *) | 87Sr/⁸⁶Sr 143Nd/144Nd |
---|---|---|---|---|---|---|---|---|---|
Fiters (>0.22 μm bulk size faction) | |||||||||
Summit (GS) | T49 | 47.7–48.6 | ~16 | Filtration | brown | −10.5 | - | ICPMS * | MC-ICPMS |
T50 | 48.6–49.5 | ~16 | Filtration | brown | −10.9 | XRD SEM-EDXS | |||
Plateau (GP) | T225 | 223.3–224.3 | ~70 | Filtration | - | −19.4 | - | ICPMS * | MC-ICPMS |
T233 | 231.5–232.5 | ~77 | Filtration | - | −15 | - | ICPMS * | MC-ICPMS | |
T292 | 290.2–291.2 | >110 | Filtration | brown | −12.9 | - | ICPMS * | MC-ICPMS | |
T308 | 305.5–306.4 | >110 | Filtration | grey | −13 | - | ICPMS * | MC-ICPMS | |
T309 | 306.4–307.5 | >110 | Filtration | grey | −12.9 | XRD SEM-EDXS | |||
Ice samples (<2 μm size fraction) | |||||||||
Summit (GS) | T41(11) | 40.1–41.1 | ~16 | Acid leaching | - | −11.4 | ICP-SF-MS | ||
T50 (10) | 48.6–49.5 | ~16 | Acid leaching | brown | −10.9 | ICP-SF-MS | |||
Plateau (GP) | T136 (9) | 136.3–137.2 | ~15 | Acid leaching | - | −13.2 | ICP-SF-MS | ||
T173 (9) | 173.1–174.1 | ~32 | Acid leaching | - | −18.9 | ICP-SF-MS | |||
T181 (7) | 180.9–181.9 | ~35 | Acid leaching | - | −12.7 | ICP-SF-MS | |||
T197 (5) | 196.3–197.1 | ~44 | Acid leaching | - | −16.1 | ICP-SF-MS | |||
T209 (7) | 207.3–208.3 | ~55 | Acid leaching | - | −12.5 | ICP-SF-MS | |||
T227 (8) | 225.3–226.3 | ~72 | Acid leaching | - | −18.7 | ICP-SF-MS | |||
T232 (9) | 230.4–231.5 | ~76 | Acid leaching | - | −13 | ICP-SF-MS | |||
T262 (9] | 260.4–261.3 | ~101 | Acid leaching | - | −13.7 | ICP-SF-MS | |||
T273 (9) | 271.2–272.2 | ~107 | Acid leaching | - | −18.2 | ICP-SF-MS | |||
T278 (10) | 276.2–277.3 | >110 | Acid leaching | - | −13.8 | ICP-SF-MS | |||
T290 (16) | 288.3–289.3 | >110 | Acid leaching | brown | −13.5 | ICP-SF-MS | |||
T292 (16) | 290.2–291.2 | >110 | Acid leaching | brown | −12.9 | ICP-SF-MS | |||
T305 (17) | 302.4–303.4 | >110 | Acid leaching | brown & grey | −13.4 | ICP-SF-MS | |||
T306 (16) | 303.4–304.4 | >110 | Acid leaching | grey | −13.6 | ICP-SF-MS |
Sample ID | Size (μm) | Sr (ppm) | 87Sr/⁸⁶Sr | Error (2 ) | Nd (ppm) | 143Nd/144Nd | Error (2 ) | Nd |
---|---|---|---|---|---|---|---|---|
T49 | >0.2 | 339.75 | 0.71457 | 0.00003 | 31.33 | 0.51217 | 0.00001 | −9.14 |
T233 | >0.2 | 126.1 | 0.71775 | 0.00002 | 24.48 | 0.51216 | 0.00001 | −9.33 |
T225 | >0.2 | 47.05 | 0.71832 | 0.00002 | 10.3 | 0.51215 | 0.00001 | −9.55 |
T292 | >0.2 | 61.01 | 0.71820 | 0.00003 | 11.15 | 0.51217 | 0.00001 | −9.04 |
T308 | >0.2 | 84.94 | 0.72425 | 0.00003 | 16.76 | 0.51215 | 0.00002 | −9.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beaudon, E.; Sheets, J.M.; Martin, E.; Sierra-Hernández, M.R.; Mosley-Thompson, E.; Thompson, L.G. Aeolian Dust Preserved in the Guliya Ice Cap (Northwestern Tibet): A Promising Paleo-Environmental Messenger. Geosciences 2022, 12, 366. https://doi.org/10.3390/geosciences12100366
Beaudon E, Sheets JM, Martin E, Sierra-Hernández MR, Mosley-Thompson E, Thompson LG. Aeolian Dust Preserved in the Guliya Ice Cap (Northwestern Tibet): A Promising Paleo-Environmental Messenger. Geosciences. 2022; 12(10):366. https://doi.org/10.3390/geosciences12100366
Chicago/Turabian StyleBeaudon, Emilie, Julia M. Sheets, Ellen Martin, M. Roxana Sierra-Hernández, Ellen Mosley-Thompson, and Lonnie G. Thompson. 2022. "Aeolian Dust Preserved in the Guliya Ice Cap (Northwestern Tibet): A Promising Paleo-Environmental Messenger" Geosciences 12, no. 10: 366. https://doi.org/10.3390/geosciences12100366
APA StyleBeaudon, E., Sheets, J. M., Martin, E., Sierra-Hernández, M. R., Mosley-Thompson, E., & Thompson, L. G. (2022). Aeolian Dust Preserved in the Guliya Ice Cap (Northwestern Tibet): A Promising Paleo-Environmental Messenger. Geosciences, 12(10), 366. https://doi.org/10.3390/geosciences12100366