A 3D Geological Model as a Base for the Development of a Conceptual Groundwater Scheme in the Area of the Colosseum (Rome, Italy)
Abstract
:1. Introduction
2. Geological and Hydrogeological Overview of the Study Area
3. Hydrological Setting and Its Anthropogenic Modifications
4. Methods
Building the 3D Model
5. Results
5.1. Stratigraphic Updates
- -
- Anthropogenic deposits (h in Figure 4) were found in all the new boreholes, with thickness ranging between 1 and 6 m. They are composed of coarse to medium-sized fragments of bricks and stones (4–12 cm in diameter) within abundant sandy-silty matrix.
- -
- Alluvia of historical age (As in Figure 4A,B) were also found, blanketed between the anthropogenic deposits and the underlaying SFTba unit. They are composed of sandy silt (Figure 4B), with fragments of bricks and ceramics, charcoals and terrestrial gastropods. In the model this unit is grouped with the SFTba unit.
- -
- Fine scale texture and granulometric variations were detected inside the Upper Pleistocene-Holocene alluvium of the Labicano stream (SFTba unit). In particular, the logs provided geometric constraints (i.e., top and bottom surfaces, lateral extension) for the gravel bed at the base of the alluvium (SFTba 1 Complex), considering analogous examples of alluvial valley geometry (see References [84,85]). Given the thickness and the depth of the base of both the As and SFTba units found in logs S1_DH, S4 and S3 (Figure 4), the axis and the NW boundary of the Labicano Valley was moved southward, roughly along the S4-S1-DH line and the geological map subsequently changed. Therefore, it can be hypothesized that the WNW portion of the Colosseum foundation ring is anchored mainly in the Middle Pleistocene sands of the FTR 2 Complex, instead of being anchored to the Upper Pleistocene-Holocene alluvium of the Labicano stream, as considered in previous studies [10,11].
- -
- The S2 borehole log (Figure 4) show that at the NW boundary of the hypogea plain, the geological bedrock (i.e., MVA Fm) reaches a depth of −8 m a.s.l., therefore approximately 5 m deeper than previously considered.
- -
- At the uppermost portion of the MVA and CIL Fms, a 1–2 m thick alteration zone was detected, which can be ascribed to pedogenetic processes, that is, weathering because of the presence of diffuse beige-grey mottling (Figure 4B) and calcium carbonate glaebules. The weathering acted on the top of these formations prior to their subsequent burial below younger ones (i.e., FTR and SFTba units).
- -
- The S3 borehole log (Figure 4) allowed for an interpretation of the sedimentary Middle Pleistocene sequence at the northern boundary of the hypogea ellipse as being constituted entirely of a silty-gravelly lithotype (CIL 1), instead of also comprising a silty-clayey (CIL 3) lithotype as previously interpreted. As a consequence, in the eastern sector, the bottom of the Labicano Valley is carved into a potentially transmissive aquifer, with CIL1 K ranging between 0.02–2 m2/d (Table 2) and having a thickness of 4 m (Figure 4).
5.2. Hydrostratigraphic Updates and New Insights about Groundwater Circulation
6. Discussion
7. Conclusions
- -
- ensuring drainage under normal flow conditions necessary to the correct preservation of the Colosseum.
- -
- planning flood risk mitigation measures, both structural (such as the activation or reactivation of artificial drains) and non-structural (such as the precautionary closing of the area to tourists).
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Trajkovic, S.; Kisi, O.; Markus, M.; Tabari, H.; Gocic, M.; Shamshirband, S. Hydrological Hazards in a Changing Environment: Early Warning, Forecasting, and Impact Assessment. Adv. Meteorol. 2016, 2016. [Google Scholar] [CrossRef]
- Canuti, P.; Casagli, N.; Catani, F.; Fanti, R. Hydrogeological hazard and risk in archaeological sites: Some case studies in Italy. J. Cult. Herit. 2000, 1, 117–125. [Google Scholar] [CrossRef]
- Pousa, J.; Tosi, L.; Kruse, E.; Guaraglia, D.; Bonardi, M.; Mazzoldi, A.; Rizzetto, F.; Schnack, E. Coastal processes and environmental hazards: The Buenos Aires (Argentina) and Venetian (Italy) littorals. Environ. Geol. 2007, 51, 1307–1316. [Google Scholar] [CrossRef]
- Turner, R.J.; Mansour, M.M.; Dearden, R.; Dochartaigh, B.E.O.; Hughes, A.G. Improved understanding of groundwater flow in complex superficial deposits using three-dimensional geological-framework and groundwater models: An example from Glasgow, Scotland (UK). Hydrogeol. J. 2015, 23, 493–506. [Google Scholar] [CrossRef] [Green Version]
- De Beer, J.; Price, S.K.; Ford, J.R. 3Dmodelling of geological and anthropogenic deposits at the World Heritage Site of Bryggen in Bergen, Norway. Quat. Int. 2012, 251, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Ministero Dei Beni e Delle Attività Culturali e Del Turismo (MiBACT). Ministero Dei Beni e Delle Attività Culturali e Del Turismo. Direzione Generale Bilancio. Ufficio statistica. 2016-Visitatori e Introiti di Musei, Monumenti e Aree Archeologiche Statali, Tavola 8. Gli Istituti Museali Più Visitati. Available online: http://www.statistica.beniculturali.it/Visitatori_e_introiti_musei_16.htm (accessed on 8 February 2018).
- Di Salvo, C.; Ciotoli, G.; Pennica, F.; Cavinato, G.P. Pluvial flood hazard in the city of Rome (Italy). J. Maps 2017, 13, 545–553. [Google Scholar] [CrossRef] [Green Version]
- Di Salvo, C.; Pennica, F.; Ciotoli, G.; Cavinato, G.P. A GIS-based procedure for preliminary mapping of pluvial flood risk at metropolitan scale. Environ. Modell. Softw. 2018, 107, 64–84. [Google Scholar] [CrossRef]
- Carpentieri, E.; De Rita, D.; Della Monica, G. Geology of the Murcia Valley and flood plain modifications in the construction of the Circus Maximus, Rome, Italy. Geoarchaeol. Int. J. 2015, 30, 483–494. [Google Scholar] [CrossRef]
- Funiciello, R.; Lombardi, L.; Marra, F.; Parotto, M. Seismic damage and geological heterogeneity in Rome’s Colosseum area: Are they related? Ann. Geofis. 1995, 38, 5–6. [Google Scholar]
- Bozzano, F.; Funiciello, R.; Marra, F.; Rovelli, A.; Valentini, G. Il sottosuolo dell’area dell’Anfiteatro Flavio a Roma. Geol. Appl. Idrogeol. 1995, 30, 417–436. [Google Scholar]
- Sciotti, M. Ricostruzione schematica dei terreni di fondazione del Colosseo. In Il Colosseo; Electa: Roma, Italy, 2004. [Google Scholar]
- Moscatelli, M.; Cavinato, G.P.; Stigliano, F.; Mancini, M.; Bianchi, L.; Cavuoto, G.; Cecili, A.; Cicogna, A.; Cinnirella, A.; Corazza, A.; et al. Assetto geologico e idrogeologico del Colle Palatino valutazione delle pericolosità geologiche. In Roma Archeologica—Interventi per la Tutela e la Fruizione del Patrimonio Archeologico; Secondo rapporto; Cecchi, R., Ed.; Mondadori Electa: Milano, Italy, 2010; pp. 84–137. [Google Scholar]
- Mancini, M.; Marini, M.; Moscatelli, M.; Pagliaroli, A.; Stigliano, F.; Di Salvo, C.; Simionato, M.; Cavinato, G.P.; Corazza, A. A physical stratigraphy model for seismic microzonation of the Central Archaeological Area of Rome (Italy). Bull. Earthq. Eng. 2014, 12, 1339–1363. [Google Scholar] [CrossRef]
- Capelli, G.; Mastrorillo, L.; Mazza, R.; Petitta, M. Carta delle Unità Idrogeologiche della Regione Lazio, Scala 1:250.000; SELCA: Firenze, Italy, 2012. [Google Scholar]
- Capelli, G.; Mastrorillo, L.; Mazza, R.; Petitta, M.; Baldoni, T.; Banzato, F.; Cascone, D.; Di Salvo, C.; La Vigna, F.; Taviani, S.; et al. Carta Idrogeologica del Territorio della Regione Lazio, Scala 1:100.000; Regione Lazio, SELCA: Firenze, Italy, 2012. [Google Scholar]
- Meyer, J.R.; Parker, B.L.; Cherry, J.A. Detailed hydraulic head profiles as essential data for defining hydrogeologic units in layered fractured sedimentary rock. Environ. Geol. 2008, 56, 27–44. [Google Scholar] [CrossRef]
- Seaber, P.R. Hydrostratigraphic units. In The Geology of North America Volume O-2 Back W; Rosenshein, J.S., Seaber, P.R., Eds.; The Geological Society of America: Boulder, CO, USA, 1988; Volume 2, pp. 9–14. [Google Scholar]
- Mancini, M.; Marini, M.; Moscatelli, M.; Stigliano, F.; Cavinato, G.P.; Di Salvo, C.; Simionato, M. Stratigraphy of the Palatine hill (Rome, Italy): A record of repeated Middle Pleistocene-Holocene Paleovalley incision and infill. Alp. Mediterr. Quat. 2018, 31, 171–194. [Google Scholar] [CrossRef]
- Funiciello, R.; Parotto, M. Il substrato sedimentario nell’area dei Colli Albani: Considerazioni geodinamiche e paleogeografiche sul margine tirrenico dell’Appennino Centrale. Geol. Rom. 1978, 17, 233–287. [Google Scholar]
- Marra, F. Stratigrafia ed assetto geologico-strutturale dell’area romana compresa tra il Tevere e Rio Galeria. Geol. Rom. 1993, 29, 515–535. [Google Scholar]
- Marra, F.; Rosa, C. Stratigrafia ed assetto geologico dell’area romana. In La Geologia di Roma. Il Centro Storico-Memorie Descrittive della Carta Geologica d’Italia; Funiciello, R., Ed.; Istituto Poligrafico e Zecca dello Stato: Rome, Italy, 1995; Volume 50, pp. 49–112. [Google Scholar]
- Rovelli, A.; Caserta, A.; Malagnini, L.; Marra, F. Assessment if potential strong ground motion in the city of Rome. Ann. Geofis. 1994, 37, 1745–1769. [Google Scholar]
- Capelli, G.; Mazza, R.; Taviani, S. Acque sotterranee della città di Roma. In La Geologia di Roma dal Centro Storico alla Periferia-Memorie Descrittive della Carta Geologica d’Italia; Funiciello, R., Praturlon, A., Giordano, G., Eds.; Selca: Firenze, Italy, 2008; Volume 80, pp. 221–245. [Google Scholar]
- Bonilla, F.; Bozzano, F.; Gelis, C.; Giacomi, A.C.; Lenti, L.; Martino, S.; Santisi D’Avila, M.P.; Semblat, J.F. Numerical modelling of shaking effects due to strong motions on the Tiber alluvial deposits in Rome (Italy). In Proceedings of the Effects of Suface Geology on Seismic Motion, Santa Barbara, CA, USA, 23–26 August 2011. [Google Scholar]
- Funiciello, R.; Giordano, G. Note Illustrative della Carta Geologica d’Italia Alla Scala 1:50.000; Foglio 347; APAT—Servizio Geologico d’Italia: Roma, Italy, 2008. [Google Scholar]
- Giordano, G.; Mazza, R. The Geology of Rome and Urban Areas: The Legacy of Prof. Renato Funiciello. In The Geology of Italy: Tectonics and Life along Plate Margins. J. Virtual Explor. 2010, 36. [Google Scholar] [CrossRef]
- Bozzano, F.; Andreucci, A.; Gaeta, M.; Salucci, R. A geological model of the buried Tiber River valley beneath the historical centre of Rome. Bull. Eng. Geol. Environ. 2000, 59, 1–21. [Google Scholar] [CrossRef]
- Milli, S. Depositional setting and high-frequency sequence stratigraphy of the middle-upper Pleistocene to Holocene deposits of the Roman basin. Geol. Rom. 1997, 33, 99–136. [Google Scholar]
- Marra, F.; Florindo, F.; Boschi, E. History of glacial terminations from the Tiber River, Rome: Insights into glacial forcing mechanisms. Paleoceanography 2008, 23. [Google Scholar] [CrossRef]
- Milli, S.; Mancini, M.; Moscatelli, M.; Stigliano, F.; Marini, M.; Cavinato, G.P. From river to shelf, anatomy of a high-frequency depositional sequence: The Late Pleistocene-Holocene Tiber Depositional Sequence. Sedimentology 2016, 63, 1886–1928. [Google Scholar] [CrossRef] [Green Version]
- Ciotoli, G.; Stigliano, F.; Mancini, M.; Marconi, F.; Moscatelli, M.; Cavinato, G.P. Geostatistical interpolators for the estimation of the geometry of anthropogenic deposits in Rome (Italy) and related physical-mechanical characterization with implications on geohazard assessment. Environ. Earth Sci. 2015, 74, 2635–2658. [Google Scholar] [CrossRef]
- Campana, N.A.; Tucci, C.E.M. Predicting floods from urban development scenarios: Case study of the Diluvio basin, Porto Alegre, Brazil. Urban Water 2001, 3, 113–124. [Google Scholar] [CrossRef]
- Istomina, M.N.; Kocharyan, A.G.; Lebedeva, I.P. Floods: Genesis, socioeconomic and environmental impacts. Water Resour. 2005, 32, 349–358. [Google Scholar] [CrossRef]
- Nirupama, N.; Simonovic, S.P. Increase of flood risk due to urbanization: A Canadian example. Nat. Hazards 2007, 40, 25–41. [Google Scholar] [CrossRef]
- Ventriglia, U. La Geologia della Città di Roma; Amministrazione Provinciale di Roma: Roma, Italy, 1971; p. 417. [Google Scholar]
- Marra, F.; Rosa, C. Carta delle isobate della superficie di base dei depositi vulcanici. In La Geologia di Roma. Il Centro Storico-Memorie Descrittive della Carta Geologica d’Italia; Funiciello, R., Ed.; Istituto Poligrafico e Zecca dello Stato: Rome, Italy, 1995; Volume 50, Tavola 11. [Google Scholar]
- Corazza, A.; Lombardi, L. Idrogeologia del centro Storico di Roma. In La Geologia di Roma. Il Centro Storico-Memorie Descrittive della Carta Geologica d’Italia; Funiciello, R., Ed.; Istituto Poligrafico e Zecca dello Stato: Rome, Italy, 1995; Volume 50, pp. 179–208. [Google Scholar]
- Raspa, G.; Moscatelli, M.; Stigliano, F.; Patera, A.; Marconi, F.; Folle, D.; Vallone, R.; Mancini, M.; Cavinato, G.P.; Milli, S. Geotechnical characterization of the upper Pleistocene-Holocene alluvial deposits of Roma (Italy) by means of multivariate geostatistics: Cross-validation results. Eng. Geol. 2008, 101, 251–268. [Google Scholar] [CrossRef]
- Sbarra, P.; De Rubeis, M.; Di Luzio, E.; Mancini, M.; Moscatelli, M.; Stigliano, F.; Tosi, P.; Vallone, R. Macroseismic effects highlight site response in Rome and its geological signature. Nat. Hazards 2012, 62, 425–443. [Google Scholar] [CrossRef] [Green Version]
- Moscatelli, M.; Pagliaroli, A.; Mancini, M.; Stigliano, F.; Cavuoto, G.; Simionato, M.; Peronace, E.; Quadrio, B.; Tommasi, P.; Cavinato, G.P. Integrated subsoil model for seismic microzonation in the Central Archaeological Area of Rome (Italy). Disaster Adv. 2012, 5, 109–124. [Google Scholar]
- Di Salvo, C.; Di Luzio, E.; Mancini, M.; Moscatelli, M.; Capelli, G.; Cavinato, G.P.; Mazza, R. GIS-based hydrostratigraphic modeling of the city of Rome (Italy): Analysis of the geometric relationships between a buried aquifer in the Tiber Valley and the confining hydrostratigraphic complexes. Hydrogeol. J. 2012, 20, 1549–1567. [Google Scholar] [CrossRef]
- Campolunghi, M.P.; Capelli, G.; Funiciello, R.; Lanzini, M. Geotechnical studies for foundation settlement in Holocenic alluvial deposits in the City of Rome (Italy). Eng. Geol. 2007, 89, 9–35. [Google Scholar] [CrossRef]
- Pagliaroli, A.; Quadrio, B.; Lanzo, G.; Sanò, T. Numerical modelling of site effects in the Palatine Hill, Roman Forum, and Colosseum Archaeological Area. Bull. Earthq. Eng. 2014, 12, 1383–1403. [Google Scholar] [CrossRef]
- Moscatelli, M.; Pagliaroli, A.; Mancini, M.; Stigliano, F.; Marini, M.; Simionato, M.; Cavinato, G.P.; Colombi, A. Seismic microzonation of level 1 of the historic center of Rome. Rend. Online Soc. Geol. Ital. 2015, 33, 63–70. [Google Scholar] [CrossRef]
- Martino, S.; Lenti, L.; Gélis, C.; Giacomi, A.C.; Santisi d’Avila, M.P.; Bonilla, L.F.; Bozzano, F.; Semblat, J.F. Influence of lateral heterogeneities on strong motion shear strains: Simulations in the historical center of Rome (Italy). Bull. Seismol. Soc. Am. 2015. [Google Scholar] [CrossRef] [Green Version]
- La Vigna, F.; Capelli, G.; Mazza, R. Assetto idrogeologico del settore romano del bacino del Fiume Aniene. In La Geologia di Roma dal Centro Storico alla Periferia-Memorie Descrittive della Carta Geologica d’Italia; Funiciello, R., Praturlon, A., Giordano, G., Eds.; Selca: Firenze, Italy, 2008; Volume 80, pp. 121–134. [Google Scholar]
- Faccenna, C.; Funiciello, R.; Marra, F. Inquadramento geologico strutturale dell’area romana. In La Geologia di Roma. Il Centro Storico-Memorie Descrittive della Carta Geologica d’Italia; Funiciello, R., Ed.; Istituto Poligrafico e Zecca dello Stato: Rome, Italy, 1995; Volume 50, pp. 31–47. [Google Scholar]
- Marra, F.; Florindo, F.; Karner, D.B. Paleomagnetism and geochronology of early Middle Pleistocene depositional sequences near Rome: Comparison with the deep-sea δ18 O record. Earth Planet. Sci. Lett. 1998, 159, 147–164. [Google Scholar] [CrossRef]
- Moscatelli, M.; Pagliaroli, A.; Mancini, M.; Stigliano, F.; Colombi, A. Microzonazione sismica di livello 1 del centro storico di Roma. In Proceedings of the 34th National Conference of GNGTS, Trieste, Italy, 14–17 November 2013. [Google Scholar]
- Conato, V.; Esu, D.; Malatesta, A.; Zarlenga, F. New data of the Pleistocene of Rome. Quaternaria 1980, 22, 131–176. [Google Scholar]
- Heiken, G.; Funiciello, R.; de Rita, D. The Seven Hills of Rome: A Geological Tour of the Eternal City; Princeton University Press: Princeton, NJ, USA, 2007; p. 245. ISBN1 0691130388. ISBN2 978-06911303852007. [Google Scholar]
- D’Ossat, G.D.A. Geologia del Colle Palatino in Roma. Mem. Descr. Carta Geol. d’Italia 1956, 32, 5–95. [Google Scholar]
- Ammerman, A.J.; Miller, J.; Ramsay, S. The mid-Holocene environment of the Velabrum in Rome. In Società per la Preistoria e Protostoria della Regione Friuli Venezia Giulia; Quad: Trieste, Italy, 2000; Volume 8, pp. 9–20. [Google Scholar]
- La Vigna, F.; Mazza, R.; Amanti, M.; Di Salvo, C.; Petitta, M.; Pizzino, L.; Pietrosante, A.; Martarelli, L.; Bonfà, I.; Capelli, G.; et al. Groundwater of Rome. J. Maps 2016. [Google Scholar] [CrossRef]
- Karner, D.B.; Marra, F.; Renne, P. The history of the Monti Sabatini and Alban Hills Volcanoes: Groundwork for assessing volcanic-tectonic hazards for Rome. J. Volcanol. Geotherm. Res. 2001, 107, 185–219. [Google Scholar] [CrossRef]
- Wright, J.D. Global climate change in marine stable isotope records. In Quaternary Geochronology: Methods and Applications to Paleoseismology; Noller, J.S., Sowers, J.M., Lettis, W.R., Eds.; AGU Reference Shelf Series; American Geophysical Union: Washington, DC, USA, 2000; Volume 4, pp. 427–433. [Google Scholar]
- Brienza, E. Valle del Colosseo e Pendici Nord Orientali del Palatino, La via tra Valle e Foro. Dal Dato Stratigrafico alla Narrazione Virtuale (64 d.C.–138 d.C.); Edizioni Quasar: Roma, Italy, 2016; p. 217. ISBN 978-88-7140-746-3. [Google Scholar]
- Lanciani, R. Forma Urbis Romae; Quasar: Roma, Italy, 1990. [Google Scholar]
- Funiciello, R.; Lombardi, L.; Marra, F. La geologia della Valle dell’Anfiteatro. In Rota Colisei. La Valle del Colosseo Attraverso i Secoli; Rea, R., Ed.; Electa: Rome, Italy, 2002. [Google Scholar]
- Marra, F.; Rosa, C. Carta delle isobate della superficie di tetto dell’Unità di Monte Vaticano (substrato pliocenico) in scala 1:10000. In La Geologia di Roma. Il Centro Storico-Memorie Descrittive della Carta Geologica d’Italia; Funiciello, R., Ed.; Istituto Poligrafico e Zecca dello Stato: Rome, Italy, 1995; Volume 50, Tavola 10. [Google Scholar]
- Mazza, R.; La Vigna, F.; Capelli, G.; Dimasi, M.; Mancini, M.; Mastrorillo, L. Hydrogeology of Rome. Ital. J. Groundw. 2015, 4. [Google Scholar] [CrossRef] [Green Version]
- Suetonius, Dom. 4. I-2. Available online: http://penelope.uchicago.edu/Thayer/E/Roman/Texts/Suetonius/12Caesars/Domitian*.html (accessed on 9 July 2020).
- Rea, R. Le antiche raffigurazioni dell’Anfiteatro. In Anfiteatro Flavio. Immagine, Testimonianze, Spettacoli; Reggiani, A.M., Ed.; Edizioni Quasar: Roma, Italy, 1988; pp. 23–46. [Google Scholar]
- Coleman, K.M. Launching into History: Aquatic Displays in the Early Empire. J. Roman Stud. 1993, 83, 48–74. Available online: https://www.jstor.org/stable/300978 (accessed on 20 September 2018). [CrossRef]
- Rea, R.; Beste, H.J.; Lancaster, L.C. Il Cantiere del Colosseo, Boll; Istituto Archeologico Germanico: Romana, Italy; Verlag, Philipp von Zabern: Mainz, Germany, 2002; Volume 109. [Google Scholar]
- Martini, C. Campagna di analisi per la definizione delle infiltrazioni negli scavi del Circo Massimo. In La Cloaca Maxima ei Sistemi Fognari di Roma Dall’antichità ad Oggi; Bianchi, E., Ed.; Palombi Editori: Roma, Italy, 2014; pp. 182–183. [Google Scholar]
- Cocceianus, C.D.; Cary, E.; Foster, H.B.; Heineman, W. Dio’s Roman History; Harvard University Press: Cambridge, MA, USA; Volume 2, pp. 1914–1927, 79.25.2-3; Available online: http://www.perseus.tufts.edu/hopper/text?doc=79.25&fromdoc=Perseus%3Atext%3A2008.01.0593 (accessed on 11 June 2020).
- Parker, J.H. (Ed.) The archaeology of Rome: The aqueducts of ancient Rome, traced from their mouths, chiefly by the work of Frontinus, 1876; verified by a survey of the ground. In The Archaeology of Rome; Oxford: London, UK, 1874; Volume 8. [Google Scholar]
- Rea, R.; Beste, H.K.; Campagna, P.; del Vecchio, F. Sotterranei del Colosseo. Ricerca preliminare al progetto di ricostruzione del piano dell’arena. Rom. Mitt. 2002, 107, 311–339. [Google Scholar]
- Coarelli, F.; Gregori, G.L.; Lombardi, L.; Orlandi, S.; Rea, R.; Vismara, C. Il Colosseo, A Cura di Ada Gabucci; SBT—Sistema Bibliotecario Trentino: Trento, Italy, 1999. [Google Scholar]
- Lombardi, L.; Corazza, A. L’Impianto Idraulico. In Rota Colisei: La Valle del Colosseo Attraverso i Secoli; Rea, R., Ed.; Electa: Rome, Italy, 2002; pp. 46–65. [Google Scholar]
- Crapper, M. How Roman engineers could have flooded the Colosseum. In Civil Engineering; Institution of Civil Engineers: London, UK, 2007; Volume 160, Issue 4; pp. 184–191. ISSN1 0965-089X. ISSN2 1751-7672. [Google Scholar] [CrossRef]
- Mocchegiani Carpano, C. Nuovi dati sulle fondazioni dell’Anfiteatro Flavio. Antiqua 1977, 7, 10–16. [Google Scholar]
- Panella, C. La valle del Colosseo prima del Colosseo e la Meta Sudans. In Sangue e Arena; La Regina, A., Ed.; Martellago: Roma, Italy, 2001; pp. 49–67. [Google Scholar]
- Provinciali, B.; Marinelli, A.M.; Poggi, D.; Capitani, D.; Proietti, N.; Di Tullio, V. Il mitreo di San Clemente a Roma. Lo studio dei materiali costitutivi e la valutazione del loro degrado attraverso l’NMR Unilaterale. Bollettino di Archeologia Online. In Proceedings of the XVII International Congress of Classical Archaeology, Rome, Italy, 22–26 September 2008. [Google Scholar]
- Santolini Giordani, R. Il Celio sotto il Celio. Cave e gallerie antiche. Boll. d’arte 2010, 1, 213–220. [Google Scholar]
- Gradozzi, M. Cave Sotto al Tempio di Claudio al Celio Roma Sotterranea, Speleologia per L’archeologia. Available online: http://www.romasotterranea.it/sotterranei-del-tempio-di-claudio-al-celio.html (accessed on 16 January 2019).
- Schingo, G. Gli Sterri del 1939 per la Costruzione della Metropolitana. Dati Archeologici Inediti dalla Valle del Colosseo; Bollettino della Commissione Archeologica Comunale di Roma: Roma, Italy, 2001; Volume 102, pp. 129–146. [Google Scholar]
- Aug, C.; Chilès, J.P.; Courriux, G.; Lajaunie, C. 3D Geological modelling and uncertainty: The potential field method. In Geostatistics Banff; Leuangthong, O., Deutsc, C.V., Eds.; Springer: Dordrecht, The Netherladns, 2004; pp. 145–154. [Google Scholar]
- Lajaunie, C.; Courrioux, G.; Manuel, L. Foliation fields and 3D cartography in geology: Principles of a method based on potential interpolation. Math. Geol. 1997, 29, 571–584. [Google Scholar] [CrossRef]
- Calcagno, P.; Chilès, J.P.; Courrioux, G.; Guillen, A. Geological modelling from field data and geological knowledge, Part I—Modelling method coupling 3D potential-field interpolation and geological rules. Phys. Earth Planet. Inter. 2008, 171, 147–157. [Google Scholar] [CrossRef]
- Regione Lazio. Carta Tecnica Regionale Numerica scala 1:5.000—Provincia di Roma. 2017. Available online: http://dati.lazio.it/catalog/it/dataset/carta-tecnica-regionale-2002-2003-5k-roma (accessed on 8 February 2018).
- Milli, S.; Palombo, M.R.; Parlagreco, L.; Paciucci, M. Incised-valleys, their filling and mammal fossil record: A case study from Middle-Upper Pleistocene deposits of the Roman Basin (Latium, Italy). GeoActa 2008, 1, 129–149. [Google Scholar]
- Buonfiglio, M.; Carpentieri, E.; Della Monica, G.; De Rita, D.; Zanzi, G. Circo Massimo. Indagini geofisiche sulla Valle Murcia. Bcom 2014, 115, 345–354. [Google Scholar]
Non Marine Synthems (1) and 3rd Order Marine Sequence (2) | Formation (1) | Lithotypes | Hydrostratigraphic Complex |
---|---|---|---|
Tiber River Synthem (MIS 5-1) | Anthropogenic layer (Holocene) | hm: dominant masonry | h |
hb: dominant infill | |||
Alluvial deposit (Tiber River depositional system, Upper Pleistocene-Holocene) | SFTba 1: gravels | SFTba 1 | |
SFTba 2: sands | SFTba 2 | ||
SFTba 3: silts and clay | SFTba 3 | ||
Quartaccio Synthem (MIS 10-9) | Aurelia Fm. | AEL: sandy-silty | VTA-Q |
Villa Senni Fm.-Pozzolanelle | VSN2: poorly cemented, welded coarse scoriaceous ashes | ||
Villa Senni Fm.-Tufo Lionato (355 ± 2 ka (3)) | VSN1 a: lithoid tuff | ||
VSN1 b: poorly cemented, welded coarse scoriaceous ashes | |||
Fosso del Torrino Synthem (MIS 12-11) | Pozzolane nere Fm. (407 ± 4 ka (3)) + LTT | PNR: Black massive and chaotic pyroclastic unit | VTA-S |
La Storta Fm. (416 ± 6 ka (3)) | LTT: Ashy and scoriaceaous pyroclastic deposit | ||
Pozzolane Rosse Fm. (457 ± 4 ka (3)) | RED: massive semicoherent deposit with up to 24 cm diameter scoria | ||
Fosso del Torrino Fm. | FTR 1: sandy gravels | FTR 1 | |
FTR 2: silty sands and sandy silts | FTR 2 | ||
FTR 3: clayey silts and silty clays | FTR 3 | ||
Villa Glori Synthem (MIS 14-13) | Tufi stratificati varicolori di Sacrofano Fm. (488 ± 2 ka (3)) | SKF: pyroclastic deposit with interbedded volcano-sedimentary layers. | PTI-VGU |
Prima Porta Unit (518 ± 5 ka (3)) | PTI: lithoid tuff | ||
Palatino Unit (520 ± 8 ka (3)) | PPT: lithoid tuff | ||
Valle Giulia Fm. | VGU 1: gravels | ||
VGU 2: silty sands, sandy silts and clays | |||
Flaminia Synthem (MIS 16-15) | Santa Cecilia Fm. | CIL 1: gravels | CIL 1 |
CIL 2: interbedded silty sands and sandy silts | CIL 2 | ||
CIL 3: Clayey silt | CIL 3 | ||
Magliana Synthem | Ponte Galeria Fm. | PGLa: sands and silty sands | PGL * |
Monte Mario Sequence | Monte Mario Fm. | MTM: sands and silts | MTM * |
Vatican Sequence | Monte Vaticano Fm. (Lower–Upper Pliocene) | MVA | MVA |
Hydrogeological Unit (Capelli et al., 2012) | Hydrogeological Complex | Hydrostratigraphic Frame (Current Work) | k (m/d) (1) | Hydrogeological Condition in the Study Area | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Capelli et al., 2008 | Di Salvo et al., 2012 | La Vigna et al., 2016 | |||||||||
- | Anthropic backfill C. | Anthropic backfill—Complex 5 | Anthropogenic deposit C. | h | - | Uppermost aquifer; variable transmissivity depending upon local thickness, granulometry and texture | |||||
Alluvial | Alluvium deposits C. | Recent alluvium—Complex 4 | Alluvial deposit C. | SFTba 3 | 0.00003–0.5 | aquiclude | |||||
SFTba 2 | 0.032–43.2 | mostly unconfined perched aquifers | |||||||||
SFTba 1 | 0.003–6.5 | confined aquifer, buried at the bottom of alluvial valleys | |||||||||
Volcanic | Complexes owing to the Alban Hills Hydrogeological Unit | Volcanic units | Heterogeneous clastic deposit C., “Tufo Lionato” C., High permeability Alban Volcanic deposit. | VTA | 0.025–5.7 (2) | Multilayer aquifer | |||||
Pisolitic tuff and Sabatini Volcanic Complexes | Valle Giulia Formation Complex | Volcanic units | Coeval alluvial deposits | Low permeability volcanic deposits of Alban Hills; Sabatini volcanic C. | Valle Giulia Formation Complex | PTI_VGU | 0.02–2.6 | 0.002–0.02 | mostly aquifer; k values depending on texture, alteration state, fracture density | ||
Complex 3 | |||||||||||
Middle Tiber Valley detritical-alluvial | Fluvial-marshy complex of Santa Cecilia Fm C. | Ponte Galeria Unit-Complex 2 | Santa Cecilia Fm. C. (sandy silty portion) | FTR3 | 0.000397 | aquiclude | |||||
FTR2 | 0.14 | confined/unconfined aquifer | |||||||||
Santa Cecilia Fm. C. (gravelly portion) | FTR1 | 0.292 | confined aquifer | ||||||||
Santa Cecilia Fm. C. (sandy silty portion) | CIL3 | 0.0001–0.01 | aquiclude | ||||||||
CIL2 | |||||||||||
Santa Cecilia Fm. C. (gravelly portion) | CIL1 | 0.02–2 | confined/unconfined aquifer | ||||||||
Gravels and sands of Ponte Galeria Fm C. | Ponte Galeria Unit-Complex 2 | Gravelly-Sandy “Ponte Galeria” Complex | PGLa | 0.01–0.3 | (3) | ||||||
- | Coarse sands of Monte Mario and Ponte Galeria formations C. | Monte Mario Unit-Complex 1 | Coarse sands of Monte Mario and Ponte Galeria C. | MTM | 0.01 | (3) | |||||
- | Monte Vaticano clay C. | Mone Vaticano Unit—Complex 1 | Sandy-clayey basal C. | MVA | 0.0001–0.01 | regional basal aquiclude | |||||
(1) Adapted from Mancini et alii, 2014 | |||||||||||
(2) due to the scarce extention of AEL Fm. in the study area, k values are those of Volcanic Units | |||||||||||
(3) Complex not in the study area; appears in Figure 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Salvo, C.; Mancini, M.; Cavinato, G.P.; Moscatelli, M.; Simionato, M.; Stigliano, F.; Rea, R.; Rodi, A. A 3D Geological Model as a Base for the Development of a Conceptual Groundwater Scheme in the Area of the Colosseum (Rome, Italy). Geosciences 2020, 10, 266. https://doi.org/10.3390/geosciences10070266
Di Salvo C, Mancini M, Cavinato GP, Moscatelli M, Simionato M, Stigliano F, Rea R, Rodi A. A 3D Geological Model as a Base for the Development of a Conceptual Groundwater Scheme in the Area of the Colosseum (Rome, Italy). Geosciences. 2020; 10(7):266. https://doi.org/10.3390/geosciences10070266
Chicago/Turabian StyleDi Salvo, Cristina, Marco Mancini, Gian Paolo Cavinato, Massimiliano Moscatelli, Maurizio Simionato, Francesco Stigliano, Rossella Rea, and Antonio Rodi. 2020. "A 3D Geological Model as a Base for the Development of a Conceptual Groundwater Scheme in the Area of the Colosseum (Rome, Italy)" Geosciences 10, no. 7: 266. https://doi.org/10.3390/geosciences10070266
APA StyleDi Salvo, C., Mancini, M., Cavinato, G. P., Moscatelli, M., Simionato, M., Stigliano, F., Rea, R., & Rodi, A. (2020). A 3D Geological Model as a Base for the Development of a Conceptual Groundwater Scheme in the Area of the Colosseum (Rome, Italy). Geosciences, 10(7), 266. https://doi.org/10.3390/geosciences10070266