Glacier–Permafrost Interaction at a Thrust Moraine Complex in the Glacier Forefield Muragl, Swiss Alps
Abstract
:1. Introduction
2. Study Site
3. Materials and Methods
3.1. Electrical Resistivity Tomography (ERT)
3.2. Ground-Penetrating Radar
4. Results and Interpretation
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mathews, W.H.; Mackay, J.R. Deformation of soils by glacier ice and the influence of pore pressures and permafrost. Philos. Trans. R. Soc. Can. 1960, 54, 27–36. [Google Scholar]
- Kälin, M. The Active Push Moraine of the Thompson Glacier, Axel Heiberg Island, Canadian Arctic Archipelago. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 1971. [Google Scholar]
- Aber, J.; Croot, D.G.; Fenton, M.M. Glaciotectonic Landforms and Structures; Kluwer Academic Publishers: Boston, MA, USA; London, UK, 1989. [Google Scholar]
- Boulton, G.S.; Caban, P. Groundwater flow beneath ice sheets: Part II – Its impact on glacier tectonic structures and moraine formation. Quat. Sci. Rev. 1995, 14, 563–587. [Google Scholar] [CrossRef]
- Boulton, G.S.; Van der Meer, J.J.M.; Beets, D.J.; Hart, J.K.; Ruegg, G.H.J. The sedimentary and structural evolution of a recent push moraine complex: Holmstrømbreen, Spitsbergen. Quat. Sci. Rev. 1999, 18, 339–371. [Google Scholar] [CrossRef]
- Hambrey, M.J.; Huddart, D. Englacial and proglacial glaciotectonic processes at the snout of a thermally complex glacier in Svalbard. J. Quat. Sci. 1995, 10, 313–326. [Google Scholar] [CrossRef]
- Bennett, M.R. The morphology, structural evolution and significance of push moraines. Earth Sci. Rev. 2001, 53, 197–236. [Google Scholar] [CrossRef]
- Waller, R.I.; Murton, J.B.; Kristensen, L. Glacier–permafrost interactions: Processes, products and glaciological implications. Sediment. Geol. 2012, 255, 1–28. [Google Scholar] [CrossRef]
- Haeberli, W. Untersuchungen zur Verbreitung von Permafrost zwischen Flüelapass und Piz Grialetsch (Graubünden). In Mitt. d. Vers. für Wasserbau, Hydrologie und Glaziologie; ETH Zürich: Zürich, Switzerland, 1975; Volume 17. [Google Scholar]
- Haeberli, W. Holocene Push-Moraines in Alpine Permafrost. Geogr. Ann. 1979, 61A, 43–48. [Google Scholar] [CrossRef]
- Barsch, D. Refraktionsseismische Bestimmungen der Obergrenze des gefrorenen Schuttkörpers in verschiedenen Schuttkörpern Graubündens. Z. für Gletsch. und Glazialgeol. 1973, 9, 143–167. [Google Scholar]
- Fisch, W.; Fisch, W.; Haeberli, W. Electrical DC resistivity soundings with long profiles on rock glaciers and moraines in the Alps of Switzerland. Z. für Gletsch. und Glazialgeol. 1977, 13, 239–260. [Google Scholar]
- Haeberli, W.; Patzelt, G. Permafrostkartierung im Gebiet der Hochebenkar-Blockgletscher, Obergurgl, Ötztaler Alpen. Z. für Gletsch. und Glazialgeol. 1982, 18, 127–150. [Google Scholar]
- Kneisel, C. Occurrence of surface ice and ground ice/permafrost in recently deglaciated glacier forefields, St. Moritz area, Eastern Swiss Alps. In Proceedings of the seventh International Conference on Permafrost, Yellowknife, NT, Canada, 23–27 June 1998; pp. 575–581. [Google Scholar]
- Kneisel, C. Permafrost in Gletschervorfeldern–Eine vergleichende Untersuchung in den Ostschweizer Alpen und Nordschweden. Ph.D. Thesis, University of Trier, Trier, Germany, 1999. [Google Scholar]
- Kneisel, C. New Insights into Mountain Permafrost Occurrence and Characteristics in Glacier Forefields at High Altitude through the Application of 2D Resistivity Imaging. Permafr. Periglac. Process. 2004, 15, 221–227. [Google Scholar] [CrossRef]
- Lugon, R.; Delaloye, R.; Serrano, E.; Reynard, E.; Lambiel, C.; Gonzales-Trueba, J.J. Permafrost and Little Ice Age Glacier Relationships, Posets Massif, Central Pyrenees, Spain. Permafr. Periglac. Process. 2004, 15, 207–220. [Google Scholar] [CrossRef]
- Delaloye, R. Contribution à l’étude du pergélisol de montagne en zone marginale. Ph.D. Thesis, University Fribourg, Fribourg, Switzerland, 2004. [Google Scholar]
- Reynard, E.; Lambiel, C.; Delaloye, R.; Devaud, G.; Baron, L.; Chapellier, D.; Marescot, L.; Monnet, R. Glacier/permafrost relationships in forefields of small glaciers (Swiss Alps). In Proceedings of the 8th International Conference on Permafrost, Zurich, Switzerland, 20–25 July 2003; pp. 947–952. [Google Scholar]
- Vonder Mühll, D.S. Geophysikalische Untersuchungen im Permafrost des Oberengadins. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 1993. [Google Scholar]
- Rödder, T.; Kneisel, C. Permafrost mapping using quasi-3D resistivity imaging, Murtèl, Swiss Alps. Near Surf. Geophys. 2012, 10, 117–127. [Google Scholar] [CrossRef]
- Kneisel, C.; Emmert, A.; Kästl, J. Application of 3D electrical resistivity imaging for mapping frozen ground conditions exemplified by three case studies. Geomorphology 2014, 210, 71–82. [Google Scholar] [CrossRef]
- Emmert, A.; Kneisel, C. Internal structure of two alpine rock glaciers investigated by quasi-3-D electrical resistivity imaging. Cryosphere 2017, 11, 841–855. [Google Scholar] [CrossRef] [Green Version]
- King, L.; Fisch, W.; Haeberli, W.; Waechter, H.P. Comparison of resistivity and radio-echo soundings on rock glacier permafrost. Z. für Gletsch. und Glazialgeol. 1987, 23, 77–97. [Google Scholar]
- Degenhardt, J.J.; Giardino, J.R.; Junck, M.B. GPR survey of a lobate rock glacier in Yankee Boy Basin, Colorado, USA. Geol. Soc. Lond. Spec. Publ. 2003, 211, 167–179. [Google Scholar] [CrossRef]
- Hausmann, H.; Krainer, K.; Brückl, E.; Mostler, W. Internal structure and ice content of Reichenkar rock glacier (Stubai Alps, Austria) assessed by geophysical investigations. Permafr. Periglac. Process. 2007, 18, 351–367. [Google Scholar] [CrossRef] [Green Version]
- Monnier, S.; Camerlynck, C.; Rejiba, F. Ground penetrating radar survey and stratigraphic interpretation of the Plan du Lac rock glaciers, Vanoise Massif, northern French Alps. Permafr. Periglac. Process. 2008, 19, 19–30. [Google Scholar] [CrossRef]
- Monnier, S.; Camerlynck, C.; Rejiba, F.; Kinnard, C.; Feuillet, T.; Dhemaied, A. Structure and genesis of the Thabor rock glacier (Northern French Alps) determined from morphological and ground-penetrating radar surveys. Geomorphology 2011, 134, 269–279. [Google Scholar] [CrossRef]
- Lukas, S.; Sass, O. The formation of alpine lateral moraines inferred from sedimentology and radar reflection patterns: A case study from Gornergletscher, Switzerland. Geol. Soc. Lond. Spec. Publ. 2011, 354, 77–92. [Google Scholar] [CrossRef]
- Otto, J.C.; Keuschnig, M.; Götz, J.; Marbach, M.; Schrott, L. Detection of mountain permafrost by combining high resolution surface and subsurface information—An example from the Glatzbach catchment, Austrian Alps. Geogr. Ann. Ser. Physical Geogr. 2012, 94, 43–57. [Google Scholar] [CrossRef]
- Shumskii, P.A. Principles of Structural Glaciology; Dover Publivations: New York, NY, USA, 1964. [Google Scholar]
- Benediktsson, Í.Ö.; Schomacker, A.; Lokrantz, H.; Ingólfsson, Ó. The 1890 surge end moraine at Eyjabakkajökull, Iceland: A re-assessment of a classic glaciotectonic locality. Quat. Sci. Rev. 2010, 29, 484–506. [Google Scholar] [CrossRef]
- Kunz, J. Eine Untersuchung von Gletscher-Permafrost-Interaktion im Vorfeld Muragl (Schweizer Alpen). Bachelor’s Thesis, University of Wuerzburg, Würzburg, Germany, 2016. [Google Scholar]
- Federal Office of Meteorology and Climatology MeteoSwiss. Climate normals Samedan—Reference Period 1981–2010. Available online: https://www.meteoswiss.admin.ch/product/output/climate-data/climate-diagrams-normal-values-station-processing/SAM/climsheet_SAM_np8110_e.pdf (accessed on 23 March 2020).
- Federal Office of Meteorology and Climatology MeteoSwiss. Climate normals Piz Corvatsch—Reference period 1981–2010. Available online: https://www.meteoswiss.admin.ch/product/output/climate-data/climate-diagrams-normal-values-station-processing/COV/climsheet_COV_np8110_e.pdf (accessed on 23 March 2020).
- Kneisel, C.; Kääb, A. Mountain permafrost dynamics within a recently exposed glacier forefield inferred by a combined geomorphological, geophysical and photogrammetrical approach. Earth Surf. Process. Landf. 2007, 32, 1797–1810. [Google Scholar] [CrossRef]
- Hauck, C.; Kneisel, C. Applied Geophysics in Periglacial Environments; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Moorman, B.J.; Robinson, S.D.; Burgess, M.M. Imaging periglacial conditions with ground-penetrating radar. Permafr. Periglac. Process. 2003, 14, 319–329. [Google Scholar] [CrossRef]
- Neal, A. Ground-penetrating radar and its use in sedimentology: Principles, problems and progress. Earth Sci. Rev. 2004, 66, 261–330. [Google Scholar] [CrossRef]
- Davis, J.L.; Annan, A.P. Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy 1. Geophys. Prospect. 1989, 37, 531–551. [Google Scholar] [CrossRef]
- Dobiński, W.; Grabiec, M.; Glazer, M. Cold—Temperate transition surface and permafrost base (CTS-PB) as an environmental axis in glacier–permafrost relationship, based on research carried out on the Storglaciären and its forefield, northern Sweden. Quat. Res. 2017, 88, 551–569. [Google Scholar] [CrossRef]
- King, L. Permafrost in Skandinavien. Untersuchungsergebnisse aus Lappland, Jotunheimen und Dovre/Rondane; Geographisches Institut der Universität Heidelberg: Heidelberg, Germany, 1984. [Google Scholar]
- Mollaret, C.; Hilbich, C.; Pellet, C.; Flores-Orozco, A.; Delaloye, R.; Hauck, C. Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites. Cryosphere 2019, 13, 2557–2578. [Google Scholar] [CrossRef] [Green Version]
- Huddart, D.; Hambrey, M.J. Sedimentary and tectonic development of a high-arctic, thrust-moraine complex: Comfortlessbreen, Svalbard. Boreas 1996, 25, 227–243. [Google Scholar] [CrossRef]
- Overgaard, T.; Jakobsen, P.R. Mapping of glaciotectonic deformation in an ice marginal environment with ground penetrating radar. J. Appl. Geophys. 2001, 47, 191–197. [Google Scholar] [CrossRef]
- Woodward, J.; Murray, T.; Clark, R.A.; Stuart, G.W. Glacier surge mechanisms inferred from ground-penetrating radar: Kongsvegen, Svalbard. J. Glaciol. 2003, 49, 473–480. [Google Scholar] [CrossRef] [Green Version]
- Sadura, S.; Martini, I.P.; Endres, A.L.; Wolf, K. Morphology and GPR stratigraphy of a frontal part of an end moraine of the Laurentide Ice Sheet: Paris Moraine near Guelph, ON, Canada. Geomorphology 2006, 75, 212–225. [Google Scholar] [CrossRef]
- Larsen, N.K.; Kronborg, C.; Yde, J.C.; Knudsen, N.T. Debris entrainment by basal freeze-on and thrusting during the 1995–1998 surge of Kuannersuit Glacier on Disko Island, west Greenland. Earth Surf. Process. Landf. 2010, 35, 561–574. [Google Scholar] [CrossRef]
- Brandt, O.; Langley, K.; Kohler, J.; Hamran, S.E. Detection of buried ice and sediment layers in permafrost using multi-frequency Ground Penetrating Radar: A case examination on Svalbard. Remote Sens. Environ. 2007, 111, 212–227. [Google Scholar] [CrossRef]
- Midgley, N.G.; Cook, S.J.; Graham, D.J.; Tonkin, T.N. Origin, evolution and dynamic context of a Neoglacial lateral-frontal moraine at Austre Lovénbreen, Svalbard. Geomorphology 2013, 198, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Tonkin, T.N. Characteristics of lateral-frontal moraine formed at Arctic and Alpine glaciers. Ph.D. Thesis, Nottingham Trent University, Nottingham, UK, 2016. [Google Scholar]
- Lukas, S.; Graf, A.; Coray, S.; Schlüchter, C. Genesis, stability and preservation potential of large lateral moraines of Alpine valley glaciers–towards a unifying theory based on Findelengletscher, Switzerland. Quat. Sci. Rev. 2012, 38, 27–48. [Google Scholar] [CrossRef]
- Kjær, K.H.; Krüger, J. The final phase of dead-ice moraine development: Processes and sediment architecture, Kötlujökull, Iceland. Sedimentology 2001, 48, 935–952. [Google Scholar] [CrossRef]
- Ewertowski, M.W.; Tomczyk, A.M. Quantification of the ice-cored moraines’ short-term dynamics in the high-Arctic glaciers Ebbabreen and Ragnarbreen, Petuniabukta, Svalbard. Geomorphology 2015, 234, 211–227. [Google Scholar] [CrossRef] [Green Version]
- Tonkin, T.N.; Midgley, N.G.; Cook, S.J.; Graham, D.J. Ice-cored moraine degradation mapped and quantified using an unmanned aerial vehicle: A case study from a polythermal glacier in Svalbard. Geomorphology 2016, 258, 1–10. [Google Scholar] [CrossRef] [Green Version]
Profile | Profile Length (in m) | Used Iteration | Absolute Error (in %) | Used Datum Points (from a Total of 288) |
---|---|---|---|---|
C1 | 175 | 7 | 11.9 | 283 |
C2 | 175 | 7 | 13.3 | 287 |
L1 | 175 | 7 | 7.9 | 288 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunz, J.; Kneisel, C. Glacier–Permafrost Interaction at a Thrust Moraine Complex in the Glacier Forefield Muragl, Swiss Alps. Geosciences 2020, 10, 205. https://doi.org/10.3390/geosciences10060205
Kunz J, Kneisel C. Glacier–Permafrost Interaction at a Thrust Moraine Complex in the Glacier Forefield Muragl, Swiss Alps. Geosciences. 2020; 10(6):205. https://doi.org/10.3390/geosciences10060205
Chicago/Turabian StyleKunz, Julius, and Christof Kneisel. 2020. "Glacier–Permafrost Interaction at a Thrust Moraine Complex in the Glacier Forefield Muragl, Swiss Alps" Geosciences 10, no. 6: 205. https://doi.org/10.3390/geosciences10060205
APA StyleKunz, J., & Kneisel, C. (2020). Glacier–Permafrost Interaction at a Thrust Moraine Complex in the Glacier Forefield Muragl, Swiss Alps. Geosciences, 10(6), 205. https://doi.org/10.3390/geosciences10060205