A Review of Hydrological Models Applied in the Permafrost-Dominated Arctic Region
Abstract
:1. Introduction
1.1. Extreme Global Climate Change in the Arctic Region
1.2. The Presence of Permafrost and Its Relation to Hydrological Processes in the Arctic Region
1.3. The Impacts of Permafrost Thawing on the Arctic Hydrological Processes
1.4. Importance of Choosing the Suitable Modeling Tools for the Arctic Region
- 1.
- Do the models consider the important processes in permafrost environments, including the following factors:
- Surface energy balance;
- Snow processes, snow insulation, and snow melt;
- Infiltration processes;
- The dynamics of soil thermal and soil moisture fluxes;
- Soil heterogeneities;
- The dynamics (seasonal thawing) of the active layer;
- Subsidence;
- A three-phase change of water (ice, liquid, and gas) during the freezing and thawing of near-surface soil.
- 2.
- Can the models be widely applied for Arctic permafrost, particularly considering the following requirements:
- Requirement for input data, i.e., large or small requirement;
- Requirement for computation processes, i.e., strong or low requirement;
- Ability to be applied with different sizes of watersheds, i.e., small-scale and/or large-scale.
2. Some Well-Known Hydrological Models Applied in the Arctic
2.1. Topoflow Model
2.2. DMHS Model
2.3. HBV Model
2.4. SWAT Model
2.5. WaSiM
- is the thaw depth (m);
- is an empirical coefficient (~0.02, …, 0.05);
- is the number of snow-free days.
2.6. ECOMAG Model
2.7. CRHM Model
- is the frost/thaw front depth (m);
- k is the thermal conductivity of the soil (W m−1 k−1);
- F is the surface freeze/thaw index (°C degree days);
- L is the latent heat of fusion (J kg−1);
- w is volumetric water content (m3 m−3);
- is the bulk density of the soil (kg m−3).
2.8. ATS Model
2.9. CryoGrid 3 Model
- are the short-wave radiation input and output, respectively (W m−2);
- are the long-wave radiation input and output, respectively (W m−2);
- are the sensible, latent, and ground heat fluxes, respectively (W m−2).
- is the effective volume capacity (J m−3 K−1);
- is the thermal conductivity (W m−1 K−1).
- is the snow heat capacity (J m−3 K−1);
- is the thermal conductivity of the snow (W m−1 K−1);
- is the snow temperature (°C).
2.10. GEOtop Model
2.11. SUTRA-ICE Model
2.12. PFLOTRAN-ICE Model
- Subscripts l, g, and i, are the liquid, gas, and ice phases, respectively;
- ∅ is the porosity (-);
- (constraint: = 1) are saturation indices of the liquid, gas, and ice phases, respectively (m3 m−3);
- are the molar densities of the liquid, gas, and ice phases, respectively (kmol m−3);
- is the mole fraction of H2O in the gas phase (-);
- is tortuosity of the gas phase (-);
- is the diffusion coefficient in the gas phase (-);
- T is the temperature (it is assumed that all the phases and soil are in thermal equilibrium) (K);
- is the heat capacity of the soil (J K−1);
- is the density of the soil (kg m−3);
- are the molar internal energies of the liquid, gas, and ice phases, respectively (kJ mol−1);
- is the molar enthalpy of the liquid phase (kJ mol−1);
- is the mass source of H2O (kmol m−3 s−1);
- is the heat source (kmol m−3 s−1);
- is the gradient operator (-);
- is the divergence operator (-);
- is Darcy velocity of the liquid phase (m s−1);
- is the relative permeability of the liquid phase (-);
- is the absolute permeability (m2);
- is mass density of the liquid phase (kg m−3);
- is the partial pressure of the liquid phase (Pa);
- is acceleration because of gravity (m s−2);
- is the vertical distance from a reference datum (m).
2.13. The Present Capacities and Challenges of Hydrological Models to Deal with Permafrost Hydrology in the Arctic
2.13.1. Surface Hydrological Models
2.13.2. Subsurface Hydrological Models/Groundwater Models/Cryo-Hydrogeological Models
2.14. Model Comparison Regarding the Capacities of the Models to Deal with Permafrost Hydrology in the Arctic
2.15. Model(s) Selection for the Arctic
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere; Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 2011.
- Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere; Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 2017.
- Romanovsky, V.; Burgess, M.; Smith, S.; Yoshikawa, K.; Brown, J. Permafrost temperature records: Indicators of climate change. Eos 2002, 83, 589–594. [Google Scholar] [CrossRef]
- Woo, M.-K. Introduction. In Permafrost Hydrology; Springer Science and Business Media LLC: Berlin, Germany, 2012; pp. 1–34. [Google Scholar]
- Woo, M.-K. Active Layer Dynamics. In Permafrost Hydrology; Springer Science and Business Media LLC: Berlin, Germany, 2012; pp. 163–227. [Google Scholar]
- Schramm, I.; Boike, J.; Bolton, W.R.; Hinzman, L.D. Application of TopoFlow, a spatially distributed hydrological model, to the Imnavait Creek watershed, Alaska. J. Geophys. Res. Space Phys. 2007, 112, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Walsh, J.E.; Anisimov, O.; Hagen, J.O.M.; Jakobsson, T.; Oerlemans, J.; Prowse, T.D.; Romanovsky, V.; Savelieva, N.; Serreze, M.; Shiklomanov, A.; et al. Cryosphere and hydrology, Chapter 6. In Arctic Climate Impact Assessment; Cambridge University Press: London, UK, 2005; pp. 184–242. [Google Scholar]
- Walvoord, M.A.; Voss, C.I.; Wellman, T.P. Influence of permafrost distribution on groundwater flow in the context of climate-driven permafrost thaw: Example from Yukon Flats Basin, Alaska, United States. Water Resour. Res. 2012, 48, 1–17. [Google Scholar] [CrossRef]
- Frampton, A.; Destouni, G. Impact of degrading permafrost on subsurface solute transport pathways and travel times. Water Resour. Res. 2015, 51, 7680–7701. [Google Scholar] [CrossRef]
- McNamara, J.P.; Kane, D.L.; Hinzman, L.D. An analysis of streamflow hydrology in the Kuparuk River Basin, Arctic Alaska: A nested watershed approach. J. Hydrol. 1998, 206, 39–57. [Google Scholar] [CrossRef]
- Hinzman, L.D.; Kane, D.L.; Benson, C.S.; Everett, K.R. Energy Balance and Hydrological Processes in an Arctic Watershed. In Ecological Studies; Springer Science and Business Media LLC: Berlin, Germany, 1996; Volume 120, pp. 131–154. [Google Scholar]
- Hinzman, L.D.; Bolton, R.W.; Petrone, K.; Jones, J.; Adams, P. Watershed hydrology and chemistry in the Alaskan boreal forest: The central role of permafrost. In Alaska’s Changing Boreal Forest; Chapin, F.S., III, Ed.; Oxford University Press: New York, NY, USA, 2006; pp. 269–284. [Google Scholar]
- Boike, J.; Roth, K.; Overduin, P.P. Thermal and hydrologic dynamics of the active layer at a continuous permafrost site (Taymyr Peninsula, Siberia). Water Resour. Res. 1998, 34, 355–363. [Google Scholar] [CrossRef]
- Bowling, L.C.; Kane, D.L.; Gieck, R.E.; Hinzman, L.D.; Lettenmaier, D.P. The role of surface storage in a low-gradient Arctic watershed. Water Resour. Res. 2003, 39, 1087. [Google Scholar] [CrossRef]
- Kane, D.L.; Hinzman, L.D.; Zarling, J. Thermal response of the active layer in a permafrost environment to climatic warming. Cold Reg. Sci. Technol. 1991, 19, 111–122. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Hinzman, L.D.; Peterson, B.J.; Bromwich, D.H.; Hamilton, L.C.; Morison, J.; Romanovsky, V.E.; Sturm, M.; Webb, R.S. The Hydrologic Cycle and its Role in the Arctic and Global Environmental Change: A Rationale and Strategy for Synthesis Study; Arctic Research Consortium of the United States: Fairbanks, AL, USA, 2001; pp. 1–84. [Google Scholar]
- Slaughter, C.W.; Kane, D.L. Hydrologic role of shallow organic soils in cold climates. In Proceedings of the Canadian Hydrology Symposium 79: Cold Climate Hydrology, Vancouver, BC, Canada, 10–11 May 1979; pp. 380–389. [Google Scholar]
- Hinzman, L.D.; Bettez, N.D.; Bolton, W.R.; Chapin, F.S.; Dyurgerov, M.B.; Fastie, C.L.; Griffith, B.; Hollister, R.D.; Hope, A.; Huntington, H.P.; et al. Evidence and Implications of Recent Climate Change in Northern Alaska and Other Arctic Regions. Clim. Chang. 2005, 72, 251–298. [Google Scholar] [CrossRef]
- Lachenbruch, A.H.; Marshall, B.V. Changing Climate: Geothermal Evidence from Permafrost in the Alaskan Arctic. Science 1986, 234, 689–696. [Google Scholar] [CrossRef]
- Osterkamp, T. A thermal history of permafrost in Alaska. In Proceedings of the 8th International Conference on Permafrost, Zurich, Switzerland, 21–25 July 2003; pp. 863–868. [Google Scholar]
- Osterkamp, T.E. Characteristics of the recent warming of permafrost in Alaska. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, T. Recent permafrost warming on the Qinghai-Tibetan Plateau. J. Geophys. Res. Space Phys. 2008, 113, 13108. [Google Scholar] [CrossRef]
- Batir, J.F.; Hornbach, M.J.; Blackwell, D.D. Ten years of measurements and modeling of soil temperature changes and their effects on permafrost in Northwestern Alaska. Glob. Planet. Chang. 2017, 148, 55–71. [Google Scholar] [CrossRef] [Green Version]
- Farquharson, L.M.; Romanovsky, V.E.; Cable, W.L.; Walker, D.A.; Kokelj, S.V.; Nicolsky, D. Climate Change Drives Widespread and Rapid Thermokarst Development in Very Cold Permafrost in the Canadian High Arctic. Geophys. Res. Lett. 2019, 46, 6681–6689. [Google Scholar] [CrossRef] [Green Version]
- Åkerman, H.J.; Johansson, M. Thawing permafrost and thicker active layers in sub-arctic Sweden. Permafr. Periglac. Process. 2008, 19, 279–292. [Google Scholar] [CrossRef]
- Mazhitova, G.G.; Malkova, G.; Chestnykh, O.; Zamolodchikov, D. Recent decade thaw depth dynamics in the European Russian Arctic based on the Circumpolar Active Layer Monitoring (CALM) data. In Proceedings of the 9th International Conference on Permafrost, Fairbanks, AL, USA, 29 June–3 July 2008; Institute of Northern Engineering, University of Alaska: Fairbanks, AL, USA, 2008; pp. 1155–1160. [Google Scholar]
- Brutsaert, W.; Hiyama, T. The determination of permafrost thawing trends from long-term streamflow measurements with an application in eastern Siberia. J. Geophys. Res. Space Phys. 2012, 117, 1–10. [Google Scholar] [CrossRef]
- Overeem, I.; Jafarov, E.; Wang, K.; Schaefer, K.; Stewart, S.; Clow, G.; Piper, M.; Elshorbany, Y. A Modeling Toolbox for Permafrost Landscapes. Eos 2018, 99, 1–11. [Google Scholar] [CrossRef]
- Smith, L.C.; Sheng, Y.; Macdonald, G.M.; Hinzman, L.D. Disappearing Arctic Lakes. Science 2005, 308, 1429. [Google Scholar] [CrossRef] [Green Version]
- Jepsen, S.M.; Voss, C.I.; Walvoord, M.A.; Minsley, B.J.; Rover, J. Linkages between lake shrinkage/expansion and sublacustrine permafrost distribution determined from remote sensing of interior Alaska, USA. Geophys. Res. Lett. 2013, 40, 882–887. [Google Scholar] [CrossRef]
- Walvoord, M.A.; Kurylyk, B.L. Hydrologic impacts of thawing permafrost—A review. J. Vadose Zone 2016, 15, 1–20. [Google Scholar] [CrossRef]
- Lyon, S.W.; Destouni, G. Changes in Catchment-Scale Recession Flow Properties in Response to Permafrost Thawing in the Yukon River Basin. Int. J. Clim. 2009, 30, 2138–2145. [Google Scholar] [CrossRef]
- Gelfan, A.N. Modelling hydrological consequences of climate change in the permafrost region and assessment of their uncertainty. In Proceedings of Cold Region Hydrology in a Changing Climate; Marsh, P., Ed.; IAHS: Wallingford, UK, 2011; Volume 346, pp. 92–97. [Google Scholar]
- Fedorov, A.; Gavriliev, P.P.; Konstantinov, P.Y.; Hiyama, T.; Iijima, Y.; Iwahana, G. Estimating the water balance of a thermokarst lake in the middle of the Lena River basin, eastern Siberia. Ecohydrology 2013, 7, 188–196. [Google Scholar] [CrossRef]
- Smith, L.C.; Pavelsky, T.M.; Macdonald, G.M.; Shiklomanov, A.I.; Lammers, R.B. Rising minimum daily flows in northern Eurasian rivers: A growing influence of groundwater in the high-latitude hydrologic cycle. J. Geophys. Res. Space Phys. 2007, 112, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Walvoord, M.A.; Striegl, R.G. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen. Geophys. Res. Lett. 2007, 34, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Jacques, J.-M.S.; Sauchyn, D.J. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophys. Res. Lett. 2009, 36, 1–6. [Google Scholar] [CrossRef]
- Rennermalm, A.K.; Wood, E.F.; Troy, T.J. Observed changes in pan-arctic cold-season minimum monthly river discharge. Clim. Dyn. 2010, 35, 923–939. [Google Scholar] [CrossRef]
- O’Donnell, J.A.; Jorgenson, M.T.; Harden, J.W.; McGuire, A.D.; Kanevskiy, M.Z.; Wickland, K.P. The Effects of Permafrost Thaw on Soil Hydrologic, Thermal, and Carbon Dynamics in an Alaskan Peatland. Ecosystems 2011, 15, 213–229. [Google Scholar] [CrossRef]
- Labrecque, S.; Lacelle, D.; Duguay, C.R.; Lauriol, B.; Hawkings, J. Contemporary (1951–2001) Evolution of Lakes in the Old Crow Basin, Northern Yukon, Canada: Remote Sensing, Numerical Modeling, and Stable Isotope Analysis. Arctic 2009, 62, 225–238. [Google Scholar] [CrossRef] [Green Version]
- Rover, J.; Ji, L.; Wylie, B.K.; Tieszen, L.L. Establishing water body areal extent trends in interior Alaska from multi-temporal Landsat data. Remote. Sens. Lett. 2011, 3, 595–604. [Google Scholar] [CrossRef]
- Muskett, R.R.; Romanovsky, V. Alaskan Permafrost Groundwater Storage Changes Derived from GRACE and Ground Measurements. Remote. Sens. 2011, 3, 378–397. [Google Scholar] [CrossRef] [Green Version]
- Velicogna, I.; Tong, J.; Zhang, T.; Kimball, J.S. Increasing subsurface water storage in discontinuous permafrost areas of the Lena River basin, Eurasia, detected from GRACE. Geophys. Res. Lett. 2012, 39, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Yoshikawa, K.; Hinzman, L.D.; Kane, D.L. Spring and aufeis (icing) hydrology in Brooks Range, Alaska. J. Geophys. Res. Space Phys. 2007, 112, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Beltaos, S.; Prowse, T. River-ice hydrology in a shrinking cryosphere. Hydrol. Process. 2009, 23, 122–144. [Google Scholar] [CrossRef]
- Chasmer, L.; Hopkinson, C.; Quinton, W. Quantifying errors in discontinuous permafrost plateau change from optical data, Northwest Territories, Canada: 1947–2008. Can. J. Remote. Sens. 2010, 36, S211–S223. [Google Scholar] [CrossRef]
- Baltzer, J.L.; Veness, T.; Chasmer, L.E.; Sniderhan, A.E.; Quinton, W.L. Forests on thawing permafrost: Fragmentation, edge effects, and net forest loss. Glob. Chang. Biol. 2014, 20, 824–834. [Google Scholar] [CrossRef]
- Connon, R.F.; Quinton, W.L.; Craig, J.; Hayashi, M. Changing hydrologic connectivity due to permafrost thaw in the lower Liard River valley, NWT, Canada. Hydrol. Process. 2014, 28, 4163–4178. [Google Scholar] [CrossRef]
- Liu, B.; Yang, D.; Ye, B.; Berezovskaya, S. Long-term open-water season stream temperature variations and changes over Lena River Basin in Siberia. Glob. Planet. Chang. 2005, 48, 96–111. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, D.M.; Koven, C.D.; Swenson, S.C.; Riley, W.J.; Slater, A.G. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO 2 and CH 4 emissions. Environ. Res. Lett. 2015, 10, 094011. [Google Scholar] [CrossRef] [Green Version]
- Bolton, W.R. Dynamic Modeling of the Hydrologic Processes in Areas of Discontinuous Permafrost. Ph.D. Thesis, University of Alaska Fairbanks, Fairbanks, AL, USA, August 2006. [Google Scholar]
- Vinogradov, Y.B.; Semenova, O.M.; Vinogradova, T.A. An approach to the scaling problem in hydrological modelling: The deterministic modelling hydrological system. Hydrol. Process. 2010, 25, 1055–1073. [Google Scholar] [CrossRef]
- Semenova, O.M.; Vinogradova, T.A. A universal approach to runoff processes modelling: Coping with hydrological predictions in data-scarce regions. In Proceedings of Symposium HS.2 at the Joint IAHS & IAH Convention; IAHS: Wallingford, UK, 2009; Volume 333, pp. 11–19. [Google Scholar]
- Vinogradov, Y.B. Mathematical Modelling of Runoff Formation. A Critical Analysis; Gidrometeoizdat: Leningrad, Russia, 1988. (In Russian) [Google Scholar]
- Semenova, O.; Lebedeva, L.; Vinogradov, Y. Simulation of subsurface heat and water dynamics, and runoff generation in mountainous permafrost conditions, in the Upper Kolyma River basin, Russia. Hydrogeol. J. 2013, 21, 107–119. [Google Scholar] [CrossRef]
- Semenova, O.; Vinogradov, Y.; Vinogradova, T.; Lebedeva, L.; Semenova, O. Simulation of Soil Profile Heat Dynamics and their Integration into Hydrologic Modelling in a Permafrost Zone. Permafr. Periglac. Process. 2014, 25, 257–269. [Google Scholar] [CrossRef]
- Lebedeva, L.; Semenova, O.; Vinogradova, T. Simulation of Active Layer Dynamics, Upper Kolyma, Russia, using the Hydrograph Hydrological Model. Permafr. Periglac. Process. 2014, 25, 270–280. [Google Scholar] [CrossRef]
- Finney, D.L.; Blyth, E.; Ellis, R. Improved modelling of Siberian river flow through the use of an alternative frozen soil hydrology scheme in a land surface model. Cryosphere 2012, 6, 859–870. [Google Scholar] [CrossRef] [Green Version]
- Bergström, S. Development and Application of a Conceptual Runoff Model for Scandinavian Catchments; Report RH07; SMHI: Norrköping, Sweden, 1976; pp. 1–134. [Google Scholar]
- Bergström, S. Parametervärden för HBV-Modellen i Sverige (Parameter Values for the HBV Model in Sweden); No 28; SMHI Hydrologi: Norrköping, Sweden, 1990; pp. 1–35. (In Swedish) [Google Scholar]
- Bergström, S. Principles and Confidence in Hydrological Modelling. Hydrol. Res. 1991, 22, 123–136. [Google Scholar] [CrossRef]
- Bergström, S.; Harlin, J.; Lindström, G. Spillway design floods in Sweden. I. New guidelines. Hydrol. Sci. J. 1992, 37, 505–519. [Google Scholar] [CrossRef] [Green Version]
- Bergström, S. Computer Models of Watershed Hydrology: The HBV Model; Singh, V.P., Ed.; Water Resources Publications: Highlands Ranch, CO, USA, 1995; pp. 443–476. [Google Scholar]
- Bergström, S. Experience from applications of the HBV hydrological model from the perspective of prediction in ungauged basins. IAHS Public 2006, 307, 97–107. [Google Scholar]
- Bøggild, C.E.; Knudby, C.J.; Knudsen, M.B.; Starzer, W. Snowmelt and runoff modelling of an Arctic hydrological basin in west Greenland. Hydrol. Process. 1999, 13, 1989–2002. [Google Scholar] [CrossRef]
- Wawrzyniak, T.; Osuch, M.; Nawrot, A.; Napiorkowski, J.J. Run-off modelling in an Arctic unglaciated catchment (Fuglebekken, Spitsbergen). Ann. Glaciol. 2017, 58, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Osuch, M.; Wawrzyniak, T.; Nawrot, A. Diagnosis of the hydrology of a small Arctic permafrost catchment using HBV conceptual rainfall-runoff model. Hydrol. Res. 2019, 50, 459–478. [Google Scholar] [CrossRef] [Green Version]
- Bruland, O.; Killingtveit, Å. Application of the HBV-Model in Arctic catchments - some results from Svalbard. In Proceedings of the XXII Nordic Hydrological Conference, Røros, Norway, 4–7 August 2002. [Google Scholar]
- Melesse, A.M. Nile River Basin: Hydrology, Climate and Water Use, 1st ed.; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Bergström, S. The HBV Model, Its Structure and Applications, No. 4; SMHI-Swedish Meteorological and Hydrological Institute: Norrkoping, Sweden, 1992; pp. 1–35. [Google Scholar]
- Jutman, T. Production of a New Runoff Map of Sweden. In The Nordic Hydrological Conference, NHP report No.30; Østrem, G., Ed.; KOHYNO: Oslo, Norway, 1992; pp. 643–651. [Google Scholar]
- Brandt, M.; Bergström, S. Integration of Field Data into Operational Snowmelt-Runoff Models. Hydrol. Res. 1994, 25, 101–112. [Google Scholar] [CrossRef]
- Arheimer, B. Riverine Nitrogen—Analysis and Modeling under Nordic Conditions; Tema, Linköpings Universitet: Linköping, Sweden, 1999; ISBN 91-7219-408-1. [Google Scholar]
- Andersen, L.; Hjukse, T.; Roald, L.; Saelthun, N.R. Hydrologisk Modell for Flomberegninger (A Hydrological Model for Simulation of Floods, in Norwegian); Rapport nr 2-83; NVE: Vassdragsdirektoratet, Oslo, Norway, 1983; pp. 1–40. [Google Scholar]
- Lawrence, D.; Haddeland, I.; Langsholt, E. Calibration of HBV Hydrological Models Using PEST Parameter Estimation; Report No. 1-2009; NVE: Oslo, Norway, 2009; p. 44. ISBN 978-82-410-0680-7. [Google Scholar]
- SWAT: Soil and Water Assessment Tool. Available online: http://swat.tamu.edu/publications/ (accessed on 10 January 2019).
- Arnold, J.G.; Fohrer, N. SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrol. Process. 2005, 19, 563–572. [Google Scholar] [CrossRef]
- Srinivasan, R.; Ramanarayanan, T.S.; Arnold, J.G.; Bednarz, S.T. Large Area Hydrologic Modeling and Assessment Part II: Model Application. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 91–101. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Williams, J.R.; Maidment, D.R. Continuous-Time Water and Sediment-Routing Model for Large Basins. J. Hydraul. Eng. 1995, 121, 171–183. [Google Scholar] [CrossRef]
- Ndomba, P.M.; Mtalo, F.W.; Killingtveit, Å. Developing an Excellent Sediment Rating Curve From One Hydrological Year Sampling Programme Data: Approach. J. Urban Environ. Eng. 2008, 2, 21–27. [Google Scholar] [CrossRef]
- Dile, Y.T.; Berndtsson, R.; Setegn, S.G. Hydrological Response to Climate Change for Gilgel Abay River, in the Lake Tana Basin—Upper Blue Nile Basin of Ethiopia. PLoS ONE 2013, 8, e79296. [Google Scholar] [CrossRef] [Green Version]
- Dile, Y.T.; Karlberg, L.; Daggupati, P.; Srinivasan, R.; Wiberg, D.; Rockström, J. Assessing the implications of water harvesting intensification on upstream–downstream ecosystem services: A case study in the Lake Tana basin. Sci. Total. Environ. 2016, 542, 22–35. [Google Scholar] [CrossRef]
- Krysanova, V.; Hattermann, F.; Wechsung, F. Implications of complexity and uncertainty for integrated modelling and impact assessment in river basins. Environ. Model. Softw. 2007, 22, 701–709. [Google Scholar] [CrossRef] [Green Version]
- Lautenbach, S.; Volk, M.; Strauch, M.; Whittaker, G.; Seppelt, R. Optimization-based trade-off analysis of biodiesel crop production for managing an agricultural catchment. Environ. Model. Softw. 2013, 48, 98–112. [Google Scholar] [CrossRef]
- Panagopoulos, Y.; Makropoulos, C.; Mimikou, M. Decision support for diffuse pollution management. Environ. Model. Softw. 2012, 30, 57–70. [Google Scholar] [CrossRef]
- Schoul, J.; Abbaspour, K.; Srinivasan, R.; Yang, H. Estimation of freshwater avaiability in the West African sub-continent using the SWAT hydrologic model. J. Hydrol. 2008, 352, 30–49. [Google Scholar] [CrossRef]
- Schuol, J.; Abbaspour, K.; Yang, H.; Srinivasan, R.; Zehnder, A.J.B. Modeling blue and green water availability in Africa. Water Resour. Res. 2008, 44, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, M.S.; Veith, T.L.; Gburek, W.J.; Steenhuis, T.S.; Gérard-Marchant, P. Watershed Scale modeling of critical source areas of runoff generation and phosphorus transport. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 361–377. [Google Scholar] [CrossRef]
- Vandenberghe, V.; Bauwens, W.; Vanrolleghem, P.A. Evaluation of uncertainty propagation into river water quality predictions to guide further monitoring campaigns. Environ. Model. Softw. 2007, 22, 725–732. [Google Scholar] [CrossRef] [Green Version]
- Fabre, C.; Sauvage, S.; Tananaev, N.; Srinivasan, R.; Teisserenc, R.; Pérez, J.M.S. Using Modeling Tools to Better Understand Permafrost Hydrology. Water 2017, 9, 418. [Google Scholar] [CrossRef]
- Abbaspour, K.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Liljedahl, A.K. The Hydrologic Regime at Sub-Arctic and Arctic Watersheds: Present and Projected. Ph.D. Thesis, University of Alaska Fairbanks, Fairbanks, AL, USA, May 2011. [Google Scholar]
- Simple Permafrost Model. Available online: http://www.wasim.ch/en/the_model/feature_permafrost.htm (accessed on 11 August 2020).
- Model Description WaSiM (Water Balance Simulation Model). Available online: http://www.wasim.ch/downloads/doku/wasim/wasim_2012_ed2_en.pdf (accessed on 15 August 2020).
- Liljedahl, A.; Boike, J.; Daanen, R.P.; Fedorov, A.N.; Frost, G.V.; Grosse, G.; Hinzman, L.D.; Iijima, Y.; Jorgenson, J.C.; Matveyeva, N.; et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 2016, 9, 312–318. [Google Scholar] [CrossRef]
- Motovilov, Y.G.; Belokurov, A. Modelling the pollution transfer and transformation processes in river basin for the tasks of environmental monitoring. Proc. Inst. Appl. Geophys. 1996, 8, 32–35. (In Russian) [Google Scholar]
- Motovilov, Y. ECOMAG: A distributed model of runoff formation and pollution transformation in river basins. IAHS Public 2013, 361, 227–234. [Google Scholar]
- Motovilov, Y.G.; Gottschalk, L.; Engeland, K.; Belokurov, A. ECOMAG—Regional Model of Hydrological Cycle. Application to the NOPEX Region; Report Series no.105; Department of Geophysics, University of Oslo: Oslo, Norway, 1999; ISBN 82-91885-04-4. [Google Scholar]
- Motovilov, Y.; Kalugin, A.; Gelfan, A. An ECOMAG-based Regional Hydrological Model for the Mackenzie River basin. EGUGA 2017. Available online: https://ui.adsabs.harvard.edu/abs/2017EGUGA..19.8064M (accessed on 29 June 2020).
- Motovilov, Y. Modeling fields of river runoff (a case study for the Lena River basin). Russ. Meteorol. Hydrol. 2017, 42, 121–128. [Google Scholar] [CrossRef]
- Gelfan, A.; Gustafsson, D.; Motovilov, Y.; Arheimer, B.; Kalugin, A.; Krylenko, I.; Lavrenov, A. Climate change impact on the water regime of two great Arctic rivers: Modeling and uncertainty issues. Clim. Chang. 2016, 141, 499–515. [Google Scholar] [CrossRef]
- Krysanova, V.; Vetter, T.; Eisner, S.; Huang, S.; Pechlivanidis, I.; Strauch, M.; Gelfan, A.; Kumar, R.; Aich, V.; Arheimer, B.; et al. Intercomparison of regional-scale hydrological models and climate change impacts projected for 12 large river basins worldwide—A synthesis. Environ. Res. Lett. 2017, 12, 105002. [Google Scholar] [CrossRef]
- Pomeroy, J.W.; Gray, D.M.; Brown, T.; Hedstrom, N.R.; Quinton, W.L.; Granger, R.J.; Carey, S.K. The cold regions hydrological model: A platform for basing process representation and model structure on physical evidence. Hydrol. Process. 2007, 21, 2650–2667. [Google Scholar] [CrossRef]
- Krogh, S.A.; Pomeroy, J.W.; Marsh, P. Diagnosis of the hydrology of a small Arctic basin at the tundra-taiga transition using a physically based hydrological model. J. Hydrol. 2017, 550, 685–703. [Google Scholar] [CrossRef]
- Moulton, J.D.; Berndt, M.; Garimella, R.; Prichett-Sheats, L.; Hammond, G.; Day, M.; Meza, J.C. High-Level Design of Amanzi, the Multi-Process High Performance Computing Simulator; ASCEM-HPC-2011-03-1; Office of Environmental Management, U.S. Department of Energy: Washington, DC, USA, 2012. [Google Scholar]
- Painter, S.; Coon, E.T.; Atchley, A.; Berndt, M.; Garimella, R.V.; Moulton, D.; Svyatskiy, D.; Wilson, C.J. Integrated surface/subsurface permafrost thermal hydrology: Model formulation and proof-of-concept simulations. Water Resour. Res. 2016, 52, 6062–6077. [Google Scholar] [CrossRef]
- Atchley, A.L.; Painter, S.L.; Harp, D.R.; Coon, E.T.; Wilson, C.J.; Liljedahl, A.K.; Romanovsky, V.E. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83). Geosci. Model Dev. 2015, 8, 2701–2722. [Google Scholar] [CrossRef] [Green Version]
- Karra, S.; Painter, S.L.; Lichtner, P.C. A three-phase numerical model for subsurface hydrology in permafrost-affected regions (PFLOTRAN-ICE v1.0). Cryosphere 2014, 8, 1935–1950. [Google Scholar] [CrossRef] [Green Version]
- Painter, S.L.; Karra, S. Constitutive Model for Unfrozen Water Content in Subfreezing Unsaturated Soils. Vadose Zone J. 2014, 13, 1–8. [Google Scholar] [CrossRef]
- Coon, E.T.; Moulton, J.D.; Painter, S. Managing complexity in simulations of land surface and near-surface processes. Environ. Model. Softw. 2016, 78, 134–149. [Google Scholar] [CrossRef] [Green Version]
- Dall’Amico, M.; Endrizzi, S.; Gruber, S.; Rigon, R. A robust and energy-conserving model of freezing variably-saturated soil. Cryosphere 2011, 5, 469–484. [Google Scholar] [CrossRef] [Green Version]
- Westermann, S.; Schuler, T.V.; Gisnås, K.; Etzelmüller, B. Transient thermal modeling of permafrost conditions in Southern Norway. Cryosphere 2013, 7, 719–739. [Google Scholar] [CrossRef] [Green Version]
- Westermann, S.; Langer, M.; Heikenfeld, M.; Boike, J. CryoGrid 3—A new flexible tool for permafrost modeling. In Proceedings of the CryoFIM Back work shop Svalbard, Longyearbyen, Svalbard, 15–19 April 2013. [Google Scholar]
- Westermann, S.; Langer, M.; Boike, J.; Heikenfeld, M.; Peter, M.; Etzelmüller, B.; Krinner, G. Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3. Geosci. Model Dev. 2016, 9, 523–546. [Google Scholar] [CrossRef] [Green Version]
- Rigon, R.; Bertoldi, G.; Over, T.M. GEOtop: A Distributed Hydrological Model with Coupled Water and Energy Budgets. J. Hydrometeorol. 2006, 7, 371–388. [Google Scholar] [CrossRef]
- GEOTop: A Distributed Hydrological Model with Coupled Water and Energy Balance. Available online: http://geotopmodel.github.io/geotop/ (accessed on 8 August 2020).
- Endrizzi, S.; Quinton, W.L.; Marsh, P. Modelling the spatial pattern of ground thaw in a small basin in the arctic tundra. Cryosphere Discuss. 2011, 5, 367–400. [Google Scholar] [CrossRef]
- Endrizzi, S.; Marsh, P. Observations and modeling of turbulent ßuxes during melt at the shrub-tundra transition zone 1: Point scale variations. Hydrol. Res. 2010, 41, 471–491. [Google Scholar] [CrossRef]
- Endrizzi, S. Snow Cover Modelling at Local and Distributed Scale over Complex Terrain. Ph.D. Thesis, Institute of Civil and Environmental Engineering, Universita’ degli Studi di Trento, Trento, Italy, 2007. [Google Scholar]
- Pomeroy, J.; Gray, D.; Landine, P. The Prairie Blowing Snow Model: Characteristics, validation, operation. J. Hydrol. 1993, 144, 165–192. [Google Scholar] [CrossRef]
- Essery, R.; Li, L.; Pomeroy, J. A distributed model of blowing snow over complex terrain. Hydrol. Process. 1999, 13, 2423–2438. [Google Scholar] [CrossRef]
- Gebremichael, M.; Rigon, R.; Bertoldi, G.; Over, T.M. On the scaling characteristics of observed and simulated spatial soil moisture fields. Nonlinear Process. Geophys. 2009, 16, 141–150. [Google Scholar] [CrossRef]
- Bertoldi, G.; Rigon, R.; Over, T.M. Impact of Watershed Geomorphic Characteristics on the Energy and Water Budgets. J. Hydrometeorol. 2006, 7, 389–403. [Google Scholar] [CrossRef]
- Bertoldi, G.; Notarnicola, C.; Leitinger, G.; Endrizzi, S.; Zebisch, M.; Della Chiesa, S.; Tappeiner, U. Topographical and ecohydrological controls on land surface temperature in an alpine catchment. Ecohydrology 2010, 3, 189–204. [Google Scholar] [CrossRef]
- Zanotti, F.; Endrizzi, S.; Bertoldi, G.; Rigon, R. The GEOTOP snow module. Hydrol. Process. 2004, 18, 3667–3679. [Google Scholar] [CrossRef]
- Dall’Amico, M.; Endrizzi, S.; Rigon, R. Snow mapping of an alpine catchment through the hydrological model GEOtop. In Proceedings of the Conference Eaux en Montagne, Lyon, France, 16–17 March 2011; pp. 255–261. [Google Scholar]
- Dall’Amico, M. Coupled Water and Heat Transfer in Permafrost Modeling. Ph.D. Thesis, Institute of Civil and Environmental Engineering, Universita’ degli Studi di Trento, Trento, Italy, June 2010. Available online: http://eprints-phd.biblio.unitn.it/335/ (accessed on 29 June 2020).
- Noldin, I.; Endrizzi, S.; Rigon, R.; Dall’Amico, M. Sistema di drenaggio di un ghiacciaio alpino: Modello GEOtop. Nevee Valanghe 2010, 69, 48–54. [Google Scholar]
- McKenzie, J.M.; Voss, C.I.; Siegel, D.I. Groundwater flow with energy transport and water–ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs. Adv. Water Resour. 2007, 30, 966–983. [Google Scholar] [CrossRef]
- Voss, C.I.; Provost, A. SUTRA: A Model for 2D or 3D Saturated-Unsaturated, Variable-Density Ground-Water Flow with Solute or Energy Transport; United States Geological Survey: Reston, VA, USA, 2002. [Google Scholar]
- Voss, C.I. A Finite-Element Simulation Model for Saturated-Unsaturated, Fluid-Density-Dependent Ground-Water Flow with Energy Transport or Chemically-Reactive Single-Species Solute Transport, Water Resources Investigations Report 84-4369; United States Geological Survey: Reston, VA, USA, 1984. [Google Scholar]
- Kurylyk, B.L.; Hayashi, M.; Quinton, W.L.; McKenzie, J.M.; Voss, C.I. Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow. Water Resour. Res. 2016, 52, 1286–1305. [Google Scholar] [CrossRef] [Green Version]
- Ge, S.; McKenzie, J.; Voss, C.; Wu, Q. Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation. Geophys. Res. Lett. 2011, 38, 1–6. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, J.M.; Voss, C.I. Permafrost thaw in a nested groundwater-flow system. Hydrogeol. J. 2013, 21, 299–316. [Google Scholar] [CrossRef]
- Wellman, T.P.; Voss, C.I.; Walvoord, M.A. Impacts of climate, lake size, and supra- and sub-permafrost groundwater flow on lake-talik evolution, Yukon Flats, Alaska (USA). Hydrogeol. J. 2013, 21, 281–298. [Google Scholar] [CrossRef]
- Briggs, M.A.; Walvoord, M.A.; McKenzie, J.M.; Voss, C.I.; Day-Lewis, F.D.; Lane, J.W. New permafrost is forming around shrinking Arctic lakes, but will it last? Geophys. Res. Lett. 2014, 41, 1585–1592. [Google Scholar] [CrossRef]
- Evans, S.G.; Ge, S.; Liang, S. Analysis of groundwater flow in mountainous, headwater catchments with permafrost. Water Resour. Res. 2015, 51, 9564–9576. [Google Scholar] [CrossRef]
- Cold-Regions Groundwater Modeling Status and Challenges. Available online: http://ccrnetwork.ca/science/workshops/2015-modelling-workshop/Files/McKenzie_CCRN_Presentation.pdf (accessed on 4 August 2020).
- Wu, M.-S.; Jansson, P.-E.; Tan, X.; Wu, M.-S.; Huang, J. Constraining Parameter Uncertainty in Simulations of Water and Heat Dynamics in Seasonally Frozen Soil Using Limited Observed Data. Water 2016, 8, 64. [Google Scholar] [CrossRef] [Green Version]
- Endrizzi, S.; Gruber, S.; Dall’Amico, M.; Rigon, R. GEOtop 2.0: Simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects. Geosci. Model Dev. 2014, 7, 2831–2857. [Google Scholar] [CrossRef] [Green Version]
- Painter, S. Three-phase numerical model of water migration in partially frozen geological media: Model formulation, validation, and applications. Comput. Geosci. 2010, 15, 69–85. [Google Scholar] [CrossRef]
- Lichtner, P.C.; Hammond, G.E.; Lu, C.; Karra, S.; Bisht, G.; Andre, B.; Mills, R.; Kumar, J. PFLOTRAN User Manual: A Massively Parallel Reactive Flow and Transport Model for Describing Surface and Subsurface Processes; Office of Scientific and Technical Information, U.S. Department of Energy: Washington, DC, USA, 2015. [Google Scholar] [CrossRef] [Green Version]
- Painter, S.; Moulton, J.D.; Wilson, C.J. Modeling challenges for predicting hydrologic response to degrading permafrost. Hydrogeol. J. 2012, 21, 221–224. [Google Scholar] [CrossRef]
- Stefan, J. Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmee. Ann. Phys. Chem. 1891, 278, 269–286. [Google Scholar] [CrossRef] [Green Version]
- Riseborough, D.; Shiklomanov, N.; Etzelmüller, B.; Gruber, S.; Marchenko, S. Recent advances in permafrost modelling. Permafr. Periglac. Process. 2008, 19, 137–156. [Google Scholar] [CrossRef]
- Zhang, Y.; Carey, S.K.; Quinton, W.L. Evaluation of the algorithms and parametrizations for ground thawing and freezing simulation in permafrost regions. J. Geophys. Res. 2008, 113, D17116. [Google Scholar] [CrossRef]
- Hayashi, M.; Goeller, N.; Quinton, W.L.; Wright, N. A simple heat-conduction method for simulating the frost-table depth in hydrological models. Hydrol. Process. 2007, 21, 2610–2622. [Google Scholar] [CrossRef]
- Kurylyk, B.L. Discussion of ‘A simple thaw–freeze algorithm for a multi-layered soil using the Stefan equation. Permafr. Periglac. Process 2015, 26, 200–206. [Google Scholar] [CrossRef]
- Woo, M.-K.; Arain, M.A.; Mollinga, M.; Yi, S. A two-directional freeze and thaw algorithm for hydrologic and land surface modelling. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Kurylyk, B.L.; McKenzie, J.M.; MacQuarrie, K.T.; Voss, C.I. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: One-dimensional soil thaw with conduction and advection. Adv. Water Resour. 2014, 70, 172–184. [Google Scholar] [CrossRef]
- Kurylyk, B.L.; Hayashi, M. Improved Stefan Equation Correction Factors to Accommodate Sensible Heat Storage during Soil Freezing or Thawing. Permafr. Periglac. Process. 2015, 27, 189–203. [Google Scholar] [CrossRef]
- Gouttevin, I.; Krinner, G.; Ciais, P.; Polcher, J.; Legout, C. Multiscale validation of a new soil freezing scheme for a land-surface mode with physically-based hydrology. Cryosphere 2012, 6, 407–430. [Google Scholar] [CrossRef] [Green Version]
- A Rawlins, M.; Nicolsky, D.J.; McDonald, K.C.; Romanovsky, V. Simulating soil freeze/thaw dynamics with an improved pan-Arctic water balance model. J. Adv. Model. Earth Syst. 2013, 5, 659–675. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, G.; Li, X.; Han, X.; Wang, L.; Li, H.; Chang, X.; Flerchinger, G.N. Coupling of a simultaneous heat and water model with a distributed hydrological model and evaluation of the combined model in a cold region watershed. Hydrol. Process. 2012, 27, 3762–3776. [Google Scholar] [CrossRef]
- Clark, M.P.; Nijssen, B.; Lundquist, J.D.; Kavetski, D.; Rupp, D.E.; Woods, R.A.; Freer, J.E.; Gutmann, E.D.; Wood, A.W.; Brekke, L.D.; et al. The Structure for Unifying Multiple Modeling Alternatives (SUMMA), Version 1.0: Technical Description; Rep. NCAR/TN 514+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2015. [Google Scholar]
- McClymont, A.F.; Hayashi, M.; Bentley, L.R.; Christensen, B.S. Geophysical imaging and thermal modeling of subsurface morphology and thaw evolution of discontinuous permafrost. J. Geophys. Res. Earth Surf. 2013, 118, 1826–1837. [Google Scholar] [CrossRef]
- Sjöberg, Y.; Coon, E.; Sannel, A.B.K.; Pannetier, R.; Harp, D.R.; Frampton, A.; Painter, S.; Lyon, S.W. Thermal effects of groundwater flow through subarctic fens: A case study based on field observations and numerical modeling. Water Resour. Res. 2016, 52, 1591–1606. [Google Scholar] [CrossRef] [Green Version]
- Noetzli, J.; Gruber, S.; Kohl, T.; Salzmann, N.; Haeberli, W. Three-dimensional distribution and evolution of permafrost temperatures in idealized high-mountain topography. J. Geophys. Res. Space Phys. 2007, 112, 02–13. [Google Scholar] [CrossRef] [Green Version]
- Noetzli, J.; Gruber, S. Transient thermal effects in Alpine permafrost. Cryosphere 2009, 3, 85–99. [Google Scholar] [CrossRef] [Green Version]
- Gubler, S.; Endrizzi, S.; Gruber, S.; Purves, R.S. Sensitivities and uncertainties of modeled ground temperatures in mountain environments. Geosci. Model Dev. 2013, 6, 1319–1336. [Google Scholar] [CrossRef] [Green Version]
- Harp, D.R.; Atchley, A.L.; Painter, S.; Coon, E.T.; Wilson, C.J.; Romanovsky, V.; Rowland, J.C. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis. Cryosphere 2016, 10, 341–358. [Google Scholar] [CrossRef] [Green Version]
- Bense, V.; Kooi, H.; Ferguson, G.; Read, T. Permafrost degradation as a control on hydrogeological regime shifts in a warming climate. J. Geophys. Res. Space Phys. 2012, 117, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Frederick, J.; Buffett, B.A. Effects of submarine groundwater discharge on the present-day extent of relict submarine permafrost and gas hydrate stability on the Beaufort Sea continental shelf. J. Geophys. Res. Earth Surf. 2015, 120, 417–432. [Google Scholar] [CrossRef]
- Kurylyk, B.L.; MacQuarrie, K.T.; McKenzie, J.M. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools. Earth-Sci. Rev. 2014, 138, 313–334. [Google Scholar] [CrossRef]
- Bense, V.; Ferguson, G.; Kooi, H. Evolution of shallow groundwater flow systems in areas of degrading permafrost. Geophys. Res. Lett. 2009, 36, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Frampton, A.; Painter, S.; Lyon, S.W.; Destouni, G. Non-isothermal, three-phase simulations of near-surface flows in a model permafrost system under seasonal variability and climate change. J. Hydrol. 2011, 403, 352–359. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhuang, Q.; O’Donnell, J.A. Modeling thermal dynamics of active layer soils and near-surface permafrost using a fully coupled water and heat transport model. J. Geophys. Res. Space Phys. 2012, 117, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Grenier, C.; Régnier, D.; Mouche, E.; Benabderrahamane, H.; Costard, F.; Davy, P. Impact of permafrost development on groundwater flow patterns: A numerical study considering freezing cycles on a two-dimensional vertical cut through a generic river-plain system. Hydrogeol. J. 2012, 21, 257–270. [Google Scholar] [CrossRef]
- Frampton, A.; Painter, S.; Destouni, G. Permafrost degradation and subsurface-flow changes caused by surface warming trends. Hydrogeol. J. 2012, 21, 271–280. [Google Scholar] [CrossRef]
- Sjöberg, Y.; Marklund, P.; Pettersson, R.; Lyon, S.W. Geophysical mapping of palsa peatland permafrost. Cryosphere 2015, 9, 465–478. [Google Scholar] [CrossRef] [Green Version]
Model | Important Processes in Permafrost Environments Considered in the Model | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | |
Topoflow | √ | n/a | n/a | √ | √ | n/a | √ | √ | √ | n/a | n/a |
DMHS | √ | √ | n/a | √ | √ | √ | √ | √ | √ | n/a | √ |
HBV | √ | √ | √ | √ | √ | n/a | √ | n/a | √ | n/a | n/a |
SWAT | √ | √ | n/a | √ | √ | n/a | √ | √ | √ | n/a | n/a |
WaSiM | √ | √ | n/a | √ | √ | √ | √ | √ | √ | n/a | √ |
ECOMAG | √ | √ | n/a | √ | √ | √ | √ | √ | √ | n/a | n/a |
CRHM | √ | √ | n/a | √ | √ | √ | √ | √ | √ | n/a | n/a |
ATS | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ |
CryoGrid 3 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ |
GEOtop | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ |
SUTRA-ICE | n/a | n/a | n/a | n/a | √ | √ | √ | √ | √ | n/a | √ |
PFLOTRAN-ICE | n/a | n/a | n/a | n/a | √ | √ | √ | √ | √ | n/a | √ |
Model | Data Requirements | Time Step | Simulating the ALT Dynamics | Study Area (km2) | Ease-of-Use | Model Availability |
---|---|---|---|---|---|---|
Topoflow | Spatial data: Digital elevation model (DEM) and soil. Meteorological data: Precipitation, air temperature, air pressure, wind speed, wind direction, relative humidity, solar radiation, and soil temperature. | Seconds to minutes | Using a relatively simple method. Spatial variability of the ALT is not presented. | <250 | Simply learned command syntax; no calibration procedure; requires expert knowledge of the given catchment. | Open code |
WaSiM | Spatial data: DEM, land use, and soil. Meteorological data: Precipitation, air temperature, wind speed, vapor pressure, and solar radiation. | Minutes to days | Using a relatively simple method only based on empirical parameters. | <1 to >100,000 | The model allows various model configurations depending on the targets of studies, available input data, and quality of input data. The model can be operated with various spatial and temporal discretization solutions. | Open software |
ECOMAG | Spatial data: DEM, land use, and soil; Meteorological data (for hydrological submodel): Precipitation, air temperature, and humidity. | Daily | Solving the thermodynamic equations and heat vertical transfer. | <250 to >2500 | The model structure can be flexibly adjusted according to the available input data. | Requires a licensed ArcView platform |
Model | Data Requirements | Time Step | Simulating the ALT Dynamics | Study Area (km2) | Ease-of-Use | Model Availability |
---|---|---|---|---|---|---|
DMHS | Spatial data: DEM, land use, and soil. Meteorological data: Precipitation, air temperature, and relative humidity. | Daily/sub-daily | Using a heat transfer analytical solution via considering phase change in the soil profile. | <250 to >2500 | Less effort for weather data collection, but difficult for acquisition of the soil profile properties in a suitable format for the model. | n/a |
HBV | Spatial data: DEM, land use, and soil; Meteorological data: Precipitation, air temperature, and estimates of potential evapotranspiration. | Daily | Using an accumulated degree day coefficient from field measurements. | <250 to >2500 | Requires little time to learn and run the model. | Open software |
SWAT | Spatial data: DEM, land use, and soil. Meteorological data: Precipitation, max. and min. air temperature, wind speed, relative humidity, and solar radiation. | Daily | Only using the average values of the ALT. | <250 to >2500 | Time consuming for data collection and processing, calibration, and validation. | Requires a licensed ArcGIS platform (applying for ArcSWAT) |
CRHM | Spatial data: DEM, land use, and soil. Meteorological data: Precipitation, air temperature, wind speed, relative humidity, and short- and long-wave radiation. | Daily | Solving Stefan’s heat flow equation. | <250 to 2500 | No calibration procedure, but requires expert knowledge of the catchment. | Open software |
Model | Data Requirements | Time Step | Simulating the ALT Dynamics | Study Area (km2) | Ease-of-Use | Model Availability |
---|---|---|---|---|---|---|
ATS | Meteorological data: Air temperature, snow precipitation, rain precipitation, wind speed, relative humidity, incoming short-wave and long-wave radiation, and water table elevations. | Daily | Solving equations for the coupled surface (using the diffusion wave equation) and subsurface (using a three phase (ice, liquid, and gas) Richards-like equation), including the energy and flow (using an advection-diffusion equation) and surface energy balance, including snow. | <250 to >2500 | Preparing the XML input code is a challenge. | Open code |
CryoGrid 3 | Meteorological data: Air temperature, relative or absolute humidity, wind speed, incoming short-wave and long-wave radiation, air pressure, and rates of snowfall and rainfall. | Daily | Using a simple 1D parameterization. | <250 to >2500 | The source code is simple and modifiable. | Open code |
GEOtop | Spatial data: Elevation (DTM), land use, and soil. Meteorological data: Precipitation intensity, wind velocity, wind direction, relative humidity, air temperature, dew temperature, air pressure, short-wave solar global radiation, short-wave solar direct radiation, short-wave solar diffuse radiation, short-wave solar net radiation, and long-wave incoming radiation. | Hourly | Solving the energy and mass balance equations dealing with phase change based on the globally convergent Newton scheme. | <250 | The source code is modifiable. High effort is required for data acquisition and processing of the hourly forcing data. | Open code |
Model | Data Requirements | Time Step | Simulating the ALT Dynamics | Study Area (km2) | Ease-of-Use | Model Availability |
---|---|---|---|---|---|---|
SUTRA-ICE | Flow data (specified pressures, specified flows and fluid sources) and energy or solute data (specified temperatures or concentrations, diffusive fluxes of energy, or solute mass at boundaries). | <1 to <12 h | Approaching a two-zone (frozen and thawed) analytical solution to simulate ice forming and melting in porous media, also ignoring a mushy zone containing both ice and water (as considered in the three-zone analytical solution of Lunardini). | Applicable for small-scale study areas (approx. a few hundred square meters). | The source code can be easily modified to add new processes by users. | Open code |
PFLOTRAN-ICE | River stage, river chemistry, groundwater recharge, specified infiltration rate, temperature, gas pressure, and infiltration chemistry. | Hours to days | Solving the energy and mass balance equation for soil water in three-phase (ice, liquid, and gas) change. | The size of the study area can be up to a few kilometers. | The source code can be easily modified and further developed by users. | Open code |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bui, M.T.; Lu, J.; Nie, L. A Review of Hydrological Models Applied in the Permafrost-Dominated Arctic Region. Geosciences 2020, 10, 401. https://doi.org/10.3390/geosciences10100401
Bui MT, Lu J, Nie L. A Review of Hydrological Models Applied in the Permafrost-Dominated Arctic Region. Geosciences. 2020; 10(10):401. https://doi.org/10.3390/geosciences10100401
Chicago/Turabian StyleBui, Minh Tuan, Jinmei Lu, and Linmei Nie. 2020. "A Review of Hydrological Models Applied in the Permafrost-Dominated Arctic Region" Geosciences 10, no. 10: 401. https://doi.org/10.3390/geosciences10100401