Design and Evaluation of a Pediatric Lower-Limb Exoskeleton Joint Actuator
Abstract
:1. Introduction
2. CSU Pediatric Exoskeleton Actuator
2.1. Performance Requirements for Pediatrics
2.2. Prior Work on Pediatric Exoskeleton Actuators
2.3. Design Specifications and Hardware Description
3. Actuator Benchtop Testing
3.1. Torque and Bandwidth Response
3.2. Backdrivability
3.3. Speed and Operating Noise Tests
4. Evaluation on a Prototype Orthosis
4.1. System Response
4.2. Gait Tracking with State-Feedback
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rosenbaum, P.; Paneth, N.; Leviton, A.; Goldstein, M.; Bax, M. A Report: The Definition and Classification of Cerebral Palsy April 2006. Dev. Med. Child Neurol. 2007, 49, 8–14. [Google Scholar] [CrossRef]
- Campbell, S.K.; Palisano, R.J.; Orlin, M.N. Physical Therapy for Children; Elsevier Saunders: St. Louis, MO, USA, 2012; p. 235. [Google Scholar]
- Accardo, P.J.; Capute, A.J. Capute & Accardo’s Neurodevelopmental Disabilities in Infancy and Childhood: Neurodevelopmental Diagnosis and Treatment, 3rd ed.; Brookes Publishing: Baltimore, MA, USA, 2007; ISBN 978-1557667564. [Google Scholar]
- Christensen, D.; Braun, K.V.N.; Doernberg, N.S.; Maenner, M.J.; Arneson, C.L.; Durkin, M.S.; Benedict, R.E.; Kirby, R.S.; Wingate, M.S.; Fitzgerald, R.; et al. Prevalence of Cerebral Palsy, Co-Occurring Autism Spectrum Disorders, and Motor Functioning—Autism and Developmental Disabilities Monitoring Network, USA, 2008. Dev. Med. Child Neurol. 2014, 56, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M.A.; Matthews, D.J.; Murphy, K.P. Pediatric Rehabilitation: Principles and Practice, 5th ed.; Demos Medical Publishing: New York, NY, USA, 2015; Available online: https://www.amazon.com/Pediatric-Rehabilitation-Fifth-Principles-Practice/dp/1620700611 (accessed on 12 November 2020).
- Wren, T.A.L.; Rethlefsen, S.; Kay, R.M. Prevalence of Specific Gait Abnormalities in Children with Cerebral Palsy: Influence of Cerebral Palsy Subtype, Age, and Previous Surgery. J. Pediatr. Orthop. 2005, 25, 79–83. [Google Scholar] [PubMed]
- Bell, K.J.; Õunpuu, S.; DeLuca, P.A.; Romness, M.J. Natural Progression of Gait in Children with Cerebral Palsy. J. Pediatr. Orthop. 2002, 22, 677–682. [Google Scholar] [CrossRef]
- Emery, A.E.H. Population Frequencies of Inherited Neuromuscular Diseases—A World Survey. Neuromuscul. Disord. 1991, 1, 19–29. [Google Scholar] [CrossRef]
- Romitti, P.A.; Zhu, Y.; Puzhankara, S.; James, K.A.; Nabukera, S.K.; Zamba, G.K.D.; Ciafaloni, E.; Cunniff, C.; Druschel, C.M.; Mathews, K.D.; et al. Prevalence of Duchenne and Becker Muscular Dystrophies in the United States. 2015. Available online: https://pubmed.ncbi.nlm.nih.gov/25687144 (accessed on 10 September 2020).
- D’Angelo, M.G.; Berti, M.; Piccinini, L.; Romei, M.; Guglieri, M.; Bonato, S.; Degrate, A.; Turconi, A.C.; Bresolin, N. Gait Pattern in Duchenne Muscular Dystrophy. Gait Posture 2009, 29, 36–41. [Google Scholar] [CrossRef]
- Shin, M.; Besser, L.M.; Siffel, C.; Kucik, J.E.; Shaw, G.M.; Lu, C.; Correa, A. Prevalence of Spina Bifida Among Children and Adolescents in 10 Regions in the United States, American Academy of Pediatrics. Pediatrics 2010, 126, 274–279. [Google Scholar] [CrossRef]
- Díaz, I.; Gil, J.J.; Sánchez, E. Lower-Limb Robotic Rehabilitation: Literature Review and Challenges. J. Robot. 2011, 2011, 1–11. [Google Scholar] [CrossRef]
- Viteckova, S.; Kutilek, P.; Jirina, M. Wearable Lower Limb Robotics: A Review. Biocybern. Biomed. Eng. 2013, 33, 96–105. [Google Scholar] [CrossRef]
- Dollar, A.M.; Herr, H. Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art. IEEE Trans. Robot. 2008, 24, 144–158. [Google Scholar] [CrossRef]
- Westlake, K.P.; Patten, C. Pilot Study of Lokomat Versus Manual-Assisted Treadmill Training for Locomotor Recovery Post-Stroke. J. NeuroEng. Rehabil. 2009, 6, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fosch-Villaronga, E.; Čartolovni, A.; Pierce, R.L. Promoting Inclusiveness in Exoskeleton Robotics: Addressing Challenges for Pediatric Access. Paladyn J. Behav. Robot. 2020, 11, 327–339. [Google Scholar] [CrossRef]
- Mehrholz, J.; Thomas, S.; Elsner, B. Treadmill Training and Body Weight Support for Walking After Stroke. Cochrane Database Syst. Rev. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Koenig, A.; Wellner, M.; Köneke, S.; Meyer-Heim, A.; Lünenburger, L.; Riener, R. Virtual Gait Training for Children with Cerebral Palsy Using the Lokomat Gait Orthosis. Stud. Health Technol. Inform. 2008, 132, 204–209. [Google Scholar] [PubMed]
- Brütsch, K.; Koenig, A.; Zimmerli, L.; Mérillat, S.; Riener, R.; Jäncke, L.; van Hedel, H.J.A.; Meyer-Heim, A. Virtual Reality for Enhancement of Robot-Assisted Gait Training in Children with Central Gait Disorders. J. Rehab. Med. 2011, 43, 493–499. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.-H.; Lee, N.-G.; You, J.-H.; Lee, D.-C. Validity and Feasibility of Intelligent Walkbot System. Electron. Lett. 2009, 45, 1016. [Google Scholar] [CrossRef]
- Lee, D.R.; Shin, Y.K.; Park, J.-H.; You, J.H. Concurrent Validity and Test-Retest Reliability of the Walkbot-K System for Robotic Gait Training. J. Mech. Med. Biol. 2016, 16, 1640029. [Google Scholar] [CrossRef] [Green Version]
- Giergiel, M.; Budziński, A.; Piątek, G.; Wacławski, M. Personal Lower Limb Rehabilitation Robot for Children. In Mechatronics—Ideas for Industrial Application; Awrejcewicz, J., Szewczyk, R., Trojnacki, M., Kaliczyńska, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 317, pp. 169–176. [Google Scholar]
- Bayón, C.; Ramírez, O.; Castillo, M.D.D.; Serrano, J.I.; Raya, R.; Belda-Lois, J.M.; Poveda, R.; Mollà, F.; Martín, T.; Martínez, I.; et al. CPWalker: Robotic platform for gait rehabilitation in patients with Cerebral Palsy. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16 May 2016; pp. 3736–3741. [Google Scholar]
- Sancho-Pérez, J.; Pérez, M.; García, E.; Sanz-Merodio, D.; Plaza, A.; Cestari, M. Mechanical Description of Atlas 2020, a 10-DoF Paediatric Exoskeleton. In Advances in Cooperative Robotics; Tokhi, M.O., Virk, G.S., Eds.; World Scientific: London, UK, 2016; pp. 814–822. [Google Scholar] [CrossRef]
- Sanz-Merodio, D.; Pereze, M.; Prieto, M.; Sancho, J.; Garcia, E. Result of Clinical Trials with Children with Spinal Muscular Atrophy Using the ATLAS 202 Lower-Limb Active Orthosis. 2020. Available online: https://www.worldscientific.com/doi/pdf/10.1142/9789813231047_0009 (accessed on 7 May 2020).
- Cestari, M.; Sanz-Merodio, D.; Arevalo, J.C.; Garcia, E. ARES, a Variable Stiffness Actuator with Embedded Force Sensor for the ATLAS Exoskeleton. Ind. Robot Int. J. 2014, 41, 518–526. [Google Scholar] [CrossRef]
- Copilusi, C. Design of a New Knee Modular Orthotic Device from Cinematic Considerations. In Proceedings of the World Congress on Engineering, London, UK, 4–6 July 2012; ISBN 978-988-19252-2-2-0. [Google Scholar]
- Copilusi, C.; Margine, A.; Dumitru, N. Case study regarding a new knee orthosis for children with locomotion disabilities. In Proceedings of the Mechanisms, Transmissions and Applications; Corves, B., Lovasz, E.-C., Hüsing, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 147–155. [Google Scholar]
- Lerner, Z.F.; Damiano, D.L.; Bulea, T.C. A Lower-Extremity Exoskeleton Improves Knee Extension in Children with Crouch Gait from Cerebral Palsy. Sci. Transl. Med. 2017, 9, eaam9145. [Google Scholar] [CrossRef] [Green Version]
- Lerner, Z.F.; Damiano, D.L.; Park, H.-S.; Gravunder, A.J.; Bulea, T.C. A Robotic Exoskeleton for Treatment of Crouch Gait in Children with Cerebral Palsy: Design and Initial Application. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 650–659. [Google Scholar] [CrossRef]
- Rossi, S.; Patane, F.; Del Sette, F.; Cappa, P. WAKE-up: A Wearable Ankle Knee Exoskeleton. In Proceedings of the 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Sao Paulo, Brazil, 12–15 August 2014; pp. 504–507. [Google Scholar]
- Patane, F.; Rossi, S.; Del Sette, F.; Taborri, J.; Cappa, P. WAKE-Up Exoskeleton to Assist Children with Cerebral Palsy: Design and Preliminary Evaluation in Level Walking. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 906–916. [Google Scholar] [CrossRef]
- Canela, M.; del Ama, A.J.; Pons, J.L. Design of a Pediatric Exoskeleton for the Rehabilitation of the Physical Disabilities Caused by Cerebral Palsy. In Converging Clinical and Engineering Research on Neurorehabilitation; Pons, J.L., Torricelli, D., Pajaro, M., Eds.; Biosystems & Biorobotics; Springer: Berlin/Heidelberg, Germany, 2013; Volume 1, pp. 255–258. [Google Scholar]
- Eguren, D.; Cestari, M.; Luu, T.P.; Kilicarslan, A.; Steele, A.; Contreras-Vidal, J.L. Design of a Customizable, Modular Pediatric Exoskeleton for Rehabilitation and Mobility. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 2411–2416. [Google Scholar]
- Laubscher, C.A.; Farris, R.J.; Sawicki, J.T. Design and preliminary evaluation of a powered pediatric lower limb orthosis. In Proceedings of the ASME 2017 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Cleveland, OH, USA, 3 November 2017. [Google Scholar] [CrossRef]
- Sawicki, J.T.; Laubscher, C.A.; Farris, R.J.; Etheridge, S.J.-S. Actuating Device for Powered Orthosis. USA Patent Application 15/4,859,622,016, 12 April 2017. [Google Scholar]
- Laubscher, C.A.; Farris, R.J.; Sawicki, J.T. Angular Momentum-Based Control of an Underactuated Orthotic System for Crouch-to-Stand Motion. Auton. Robots 2020, 44, 1469–1484. [Google Scholar] [CrossRef]
- Laubscher, C.A.; Sawicki, J.T. Gait Guidance Control for Damping of Unnatural Motion in a Powered Pediatric Lower-Limb Orthosis. In Proceedings of the 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019; pp. 676–681. [Google Scholar]
- Laubscher, C.A.; Farris, R.J.; van den Bogert, A.J.; Sawicki, J.T. An Anthropometrically Parameterized Assistive Lower-Limb Exoskeleton. ASME J. Biomech. Eng. in press.
- Goodway, J.D.; Ozmun, J.C.; Gallahue, D.L. Understanding Motor Development: Infants, Children, Adolescents, Adults; Jones & Bartlett Learning: Burlington, MA, USA, 2019; ISBN 9781284174946. [Google Scholar]
- Gallahue, D.L. Understanding Motor Development in Children; Wiley: New York, NY, USA, 1982; ISBN 978-0-471-08779-3. [Google Scholar]
- Schaefer, C.; Millman, H.L. How to Help Children with Common Problems; Jason Aronson, Incorporated: Lanham, MD, USA, 1994; ISBN 978-1-4616-2882-8. [Google Scholar]
- Cornish, D.; Dukette, D. The Essential 20: Twenty Components of an Excellent Health Care Team; Dorrance Publishing: Pittsburg, PA, USA, 2009; ISBN 978-1-4349-9555-1. [Google Scholar]
- Fryar, C.D.; Gu, Q.; Ogden, C.L. Anthropometric Reference Data for Children and Adults 2011–2014. Available online: https://stacks.cdc.gov/view/cdc/40572 (accessed on 7 May 2020).
- Parker Indego. Available online: http://www.indego.com/indego/en/Indego-Personal (accessed on 7 May 2020).
- Carlan, A. EksoNR. Available online: https://eksobionics.com/eksonr (accessed on 9 September 2020).
- REX Clinical Assessment Guide. Available online: https://www.rexbionics.com/wp-content/uploads/2017/09/TF-04v4.0-REX-Clinical-Assessment-Guide (accessed on 9 September 2020).
- Hartigan, C.; Kandilakis, C.; Dalley, S.; Clausen, M.; Wilson, E.; Morrison, S.; Etheridge, S.; Farris, R. Mobility Outcomes Following Five Training Sessions with a Powered Exoskeleton. Top. Spinal Cord Inj. Rehabil. 2015, 21, 93–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esquenazi, A.; Talaty, M.; Packel, A.; Saulino, M. The ReWalk Powered Exoskeleton to Restore Ambulatory Function to Individuals with Thoracic-Level Motor-Complete Spinal Cord Injury. Am. J. Phys. Med. Rehabil. 2012, 91, 911–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutherland, D. The Development of Mature Gait. Gait Posture 1997, 6, 163–170. [Google Scholar] [CrossRef]
- Winter, D.A. The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological, 2nd ed.; University of Waterloo Press: Waterloo, ON, Canada, 1991; ISBN 978-0-88898-105-9. [Google Scholar]
- Zhu, H.; Doan, J.; Stence, C.; Lv, G.; Elery, T.; Gregg, R. Design and validation of a torque dense, highly backdrivable powered knee-ankle orthosis. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 504–510. [Google Scholar]
- Nef, T.; Lum, P. Improving Backdrivability in Geared Rehabilitation Robots. Med. Biol. Eng. Comput. 2009, 47, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Winter, D.A.; Sidwall, H.G.; Hobson, D.A. Measurement and Reduction of Noise in Kinematics of Locomotion. J. Biomech. 1974, 7, 157–159. [Google Scholar] [CrossRef]
Performance Requirement | Hip | Knee |
---|---|---|
Range of Motion (deg) | −11 to 22 | 0 to 65 |
Joint Velocity (deg/s) | −80.7 to 156.6 | −361.6 to 305.8 |
Peak Torque (Nm) | −19.6 to 29.1 | −29.8 to 13.6 |
RMS Torque (Nm) | 11.9 | 14.3 |
Maximum Power (W) | 34.6 | 47.3 |
Exoskeleton | Motor | Transmission Type | Cont./Peak Toque | Velocity | Source |
---|---|---|---|---|---|
Lokomat | Maxon RE 40 | Belt drive and ball screw | 30/160 Nm at knee50/280 Nm at hip | -- | [15,17,18,19] |
Walkbot-K | -- | -- | --/-- | -- | [20,21] |
Giergiel et al. | Servo motor (HiTEC HS 805 BB) | Cyclo gear reduction | --/-- | -- | [22] |
CPWalker | 24 V 100 W brushless DC motor (Maxon EC-60) | Harmonic drive (160:1) | 36.3/669 Nm * | 144 deg/s * | [23] |
ATLAS 2020 (ARES actuator) | 90 W brushless DC motor (Maxon) | Harmonic drive (100:1) | --/76 Nm | -- | [24,25,26] |
Copilusi et al. | -- | Cable driven knee | --/-- | -- | [27,28] |
Lerner NIH | 24 V 90 W brushless DC motor | Planetary gear (89:1) Chain sprocket (3.5:1) | 16.1 Nm/-- | -- | [29,30] |
Wake-up | Servo motor (Dynamixel EX-106+) | Pulley based reduction (1.5:1) | --/6 Nm | 400 deg/s | [31,32] |
Canela et al. | 70 W brushless DC motor (Maxon EC-45) | Harmonic drive (160:1) | 20.5/233 Nm * | 229 deg/s * | [33] |
P-LEGS | 24 V Maxon motor | Geared reduction (160:1) | 13.5/76 Nm | -- | [34] |
Laubscher et al. | 24 V brushless DC motor | Belt transmission (40.6:1) | 5.4/35.7 Nm | 375 deg/s | [35,37,38,39] |
Category | Specification |
---|---|
Range of motion | Sweeps −11 to 22 deg at the hip and 0 to 65 deg at the knee without hyperextension |
Velocity | Achieves joint velocities of at least 160 deg/s at the hip and 370 deg/s at the knee |
Torque | Supplements joint torques up to, or in excess of, 30 Nm at both the hip and knee |
Power | Provides power to both joints of up to, or in excess of, 47.3 W driven by electric motors |
Modular design | Actuator can be inserted into exoskeleton for driving either hip or knee joint |
Backdrivable | Low impedance achieved through minimal friction and inertia characteristics |
Sound | Operates quietly with low noise levels |
Weight | Weighs no more than 0.6 kg |
Size | Dimensions comparable to or smaller than 46 × 79 × 160 mm |
Actuator | Inertia | Viscous Friction | Coulomb Friction | Static Friction |
---|---|---|---|---|
New | 1.45 × 10−3 kg m/s2 | 0.0188 Nm s/rad | 0.212 Nm | 0.403 Nm |
Original | 2.84 × 10−3 kg m/s2 | 0.0501 Nm s/rad | 0.685 Nm | 0.730 Nm |
Characteristic | Hip | Knee |
---|---|---|
Proportional Gain | 0.611 Nm/deg | 0.296 Nm/deg |
Derivative Gain | 0.035 Nm s/deg | 0.019 Nm s/deg |
RMS Angle Tracking Error | 3.79 deg | 6.33 deg |
RMS Torque (% of CT) | 3.20 Nm (54.2%) | 2.70 Nm (45.7%) |
Peak Torque (% of PT) | 7.39 Nm (34.9%) | 5.65 Nm (26.7%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goo, A.; Laubscher, C.A.; Farris, R.J.; Sawicki, J.T. Design and Evaluation of a Pediatric Lower-Limb Exoskeleton Joint Actuator. Actuators 2020, 9, 138. https://doi.org/10.3390/act9040138
Goo A, Laubscher CA, Farris RJ, Sawicki JT. Design and Evaluation of a Pediatric Lower-Limb Exoskeleton Joint Actuator. Actuators. 2020; 9(4):138. https://doi.org/10.3390/act9040138
Chicago/Turabian StyleGoo, Anthony, Curt A. Laubscher, Ryan J. Farris, and Jerzy T. Sawicki. 2020. "Design and Evaluation of a Pediatric Lower-Limb Exoskeleton Joint Actuator" Actuators 9, no. 4: 138. https://doi.org/10.3390/act9040138
APA StyleGoo, A., Laubscher, C. A., Farris, R. J., & Sawicki, J. T. (2020). Design and Evaluation of a Pediatric Lower-Limb Exoskeleton Joint Actuator. Actuators, 9(4), 138. https://doi.org/10.3390/act9040138