A Preliminary Virtual Study on the Feasibility of Transferring Muscular Activation Pattern Behaviors of Psychomotor Exercises
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
- Study of functional movement;
- Analysis of human body activation;
- Definition of a physiotherapeutic protocol;
- Application of the protocol in rehabilitation sessions.
2.2. Process Flow to Transfer Muscular Activation Pattern
- (1)
- A functional training exercise is selected; in this work, the Taekwondo front kick (FK) was considered as the reference movement, but it does not prevent the analysis of other Taekwondo movements (e.g., side kick or roundhouse) or psychomotor exercises related to other sports disciplines;
- (2)
- A simulation implemented using OpenSim software [25] analyzes the phases of the movement, including external perturbation (if needed to study the restoration of the body balance from the equilibrium conditions), and obtains virtual muscle activation (e.g., by using the Gait 2354 human musculoskeletal model [25]);
- (3)
- If required, once the muscular patterns have been obtained, a further feature extraction process can be applied to obtain high-level information about the muscle activity;
- (4)
- Control software developed in this study using the combination of MATLAB® and Simulink® environments is implemented in order to transform the value of the muscular activation into an FES pattern and communicate the desired command sequence (e.g., to enable stimulation with these computed pulse parameters) to the stimulator;
- (5)
- An FES stimulator applies the processed stimulation patterns in order to promote the execution of functional movement generation by inducing synergetic muscle contraction.
2.3. Virtual Human Model: Analysis and Design
2.3.1. Case Study: Front Kick in Taekwondo
- Phase 1: From a standing position (both feet on the floor), the right knee is raised to its flexion, with the thigh oriented approximately horizontally and ready to kick;
- Phase 2: Maintaining the knee at its highest point, the leg is completely extended to execute the kick;
- Phase 3: The kicking leg is bent toward the body, returning to the equilibrium position of phase 1;
- Phase 4: The right leg is lowered to the ground, reassuming the standing position.
2.3.2. Physical Modeling and Dynamic Balance of the Subject
2.3.3. Virtual Human Model Design
3. Results
3.1. Muscular Activation in Virtual Human Model
3.2. Hardware and Software Considerations and Implementation of FES Control
4. Discussion
FES: Application Definition and Discussion
- The stimulation parameters are defined in the beginning setup phase and do not change during the ongoing simulation. This situation is generally applied when unique data representing the entire history of muscle activation, e.g., the measure of total area (Figure 6), are available;
- The stimulation parameters are continuously updated during the ongoing stimulation on the basis of the variation of muscle activation information over time (e.g., Figure 5).
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
API | Application programming interface |
CoM | Center of mass |
FES | Functional electrical stimulation |
FK | Front kick |
LUT | Lookup table |
References
- Wells, R.P. Mechanical energy costs of human movement: An approach to evaluating the transfer possibilities of two-joint muscles. J. Biomech. 1988, 21, 955–964. [Google Scholar] [CrossRef]
- Paterna, M.; Magnetti Gisolo, S.; De Benedictis, C.; Muscolo, G.G.; Ferraresi, C. A passive upper-limb exoskeleton for industrial application based on pneumatic artificial muscles. Mech. Sci. 2022, 13, 387–398. [Google Scholar] [CrossRef]
- Muscolo, G.G. HANDSHAKE: Handling system for human autonomous keeping. Int. J. Humanoid Robot. 2021, 18, 2150003. [Google Scholar] [CrossRef]
- Muscolo, G.; Marcheschi, S.; Fontana, M.; Bergamasco, M. Dynamics Modeling of Human–Machine Control Interface for Underwater Teleoperation. Robotica 2021, 39, 618–632. [Google Scholar] [CrossRef]
- Muscolo, G.G.; Fiorini, P. Force-Torque Sensors for Minimally Invasive Surgery Robotic Tools: An overview. IEEE Trans. Med. Robot. Bionics 2023. [Google Scholar] [CrossRef]
- Vita, G.L.; Stancanelli, C.; La Foresta, S.; Faraone, C.; Sframeli, M.; Ferrero, A.; Vita, G. Psychosocial impact of sport activity in neuromuscular disorders. Neurol. Sci. 2020, 41, 2561–2567. [Google Scholar] [CrossRef]
- Voet, N.B.; Van der Kooi, E.L.; Van Engelen, B.G.; Geurts, A.C. Strength training and aerobic exercise training for muscle disease. Cochrane Database Syst. Rev. 2019. [Google Scholar] [CrossRef] [Green Version]
- Mcleod, J.C.; Stokes, T.; Phillips, S.M. Resistance exercise training as a primary countermeasure to age-related chronic disease. Front. Physiol. 2019, 10, 645. [Google Scholar] [CrossRef] [Green Version]
- Schenkman, M.; Moore, C.G.; Kohrt, W.M.; Hall, D.A.; Delitto, A.; Comella, C.L.T.; Corcos, D.M. Effect of high-intensity treadmill exercise on motor symptoms in patients with de novo Parkinson disease: A phase 2 randomized clinical trial. JAMA Neurol. 2018, 75, 219–226. [Google Scholar] [CrossRef] [Green Version]
- López, J.M.; Moreno-Rodríguez, R.; Alcover, C.M.; Garrote, I.; Sánchez, S. Effects of a Program of Sport Schools on Development of Social and Psychomotor Skills of People with Autistic Spectrum Disorders: A Pilot Project. J. Educ. Train. Stud. 2017, 5, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Engel-Yeger, B.; Hanna-Kassis, A.; Rosenblum, S. The relationship between sports teachers’ reports, motor performance and perceived self-efficacy of children with developmental coordination disorders. Int. J. Disabil. Hum. Dev. 2015, 14, 89–96. [Google Scholar] [CrossRef]
- Fong, S.S.; Tsang, W.W.; Ng, G.Y. Altered postural control strategies and sensory organization in children with developmental coordination disorder. Hum. Mov. Sci. 2012, 31, 1317–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrochon, A.; Borel, B.; Istrate, D.; Compagnat, M.; Daviet, J.C. Exercise-based games interventions at home in individuals with a neurological disease: A systematic review and meta-analysis. Ann. Phys. Rehabil. Med. 2019, 62, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Fong, S.S.; Chung, J.W.; Chow, L.P.; Ma, A.W.; Tsang, W.W. Differential effect of Taekwondo training on knee muscle strength and reactive and static balance control in children with developmental coordination disorder: A randomized controlled trial. Res. Dev. Disabil. 2013, 34, 1446–1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, A.W.; Fong, S.S.; Guo, X.; Liu, K.P.; Fong, D.Y.; Bae, Y.H.; Tsang, W.W. Adapted taekwondo training for prepubertal children with developmental coordination disorder: A randomized, controlled trial. Sci. Rep. 2018, 8, 10330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wąsik, J.; Góra, T. Impact of target selection on front kick kinematics in taekwondo—Pilot study. Phys. Act. Rev. 2016, 4, 57–61. [Google Scholar] [CrossRef]
- Szczęsna, A.; Błaszczyszyn, M.; Pawlyta, M. Optical motion capture dataset of selected techniques in beginner and advanced Kyokushin karate athletes. Sci. Data 2021, 8, 13. [Google Scholar] [CrossRef]
- Hachaj, T.; Piekarczyk, M.; Ogiela, M.R. Human Actions Analysis: Templates Generation, Matching and Visualization Applied to Motion Capture of Highly-Skilled Karate Athletes. Sensors 2017, 17, 2590. [Google Scholar] [CrossRef] [Green Version]
- SimTK. OpenSim. Available online: https://simtk.org/projects/opensim/ (accessed on 29 March 2023).
- Manjunatha, H.; Pareek, S.; Jujjavarapu, S.S.; Ghobadi, M.; Kesavadas, T.; Esfahani, E.T. Upper limb home-based robotic rehabilitation during COVID-19 outbreak. Front. Robot. AI 2021, 8, 612834. [Google Scholar] [CrossRef]
- Muscolo, G.G.; Di Pede, F.; Solero, L.; Nicolì, A.; Russo, A.; Fiorini, P.; Canosa, A. Conceptual design of a biped-wheeled wearable machine for ALS patients. J. Neurol. 2023, 270, 3632–3636. [Google Scholar] [CrossRef]
- Curioni, C.; Silva, A.C.; Damião, J.; Castro, A.; Huang, M.; Barroso, T.; Araujo, D.; Guerra, R. The Cost-Effectiveness of Homecare Services for Adults and Older Adults: A Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 3373. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.N.G.; Ballekere, A.N.; Fregly, B.J.; Roh, J. Are Muscle Synergies Useful for Stroke Rehabilitation? Curr. Opin. Biomed. Eng. 2021, 19, 100315. [Google Scholar] [CrossRef]
- Niu, C.M.; Bao, Y.; Zhuang, C.; Li, S.; Wang, T.; Cui, L.; Lan, N. Synergy-Based FES for Post-Stroke Rehabilitation of Upper-Limb Motor Functions. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 256–264. [Google Scholar] [CrossRef]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Thelen, D.G. OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef] [Green Version]
- Moreira, P.V.; Goethel, M.F.; Gonçalves, M. Neuromuscular performance of Bandal Chagui: Comparison of subelite and elite taekwondo athletes. J. Electromyogr. Kinesiol. 2016, 30, 55–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, S.; Cheng, S. Three-dimensional Image Analysis of Taekwondo Athletes’ Roundhouse Kick Technique Based on Deep Learning. In Proceedings of the 2022 International Conference on Artificial Intelligence and Autonomous Robot Systems (AIARS), Bristol, UK, 29–31 July 2022; pp. 251–254. [Google Scholar] [CrossRef]
- Peng, Z.F.; Ji, B.; Li, L.H.; Dong, D.L. Analysis on the Characteristics of Muscle Exertion in Electromyogram During Downward Kick–Take Ten Elite Male Tea Kwon Do Athletes in China as Examples. IERI Procedia 2012, 2, 222–227. [Google Scholar] [CrossRef] [Green Version]
- Valdés-Badilla, P.; BarramuoMedina, M.; Valenzuela, R.A.; Herrera-Valenzuela, T.; Guzmán-Muñoz, E.; Gutiérrez, M.P.; Gutiérrez-García, C.; Salazar, C.M. Differences in the electromyography activity of a roundhouse kick between novice and advanced taekwondo athletes. Ido Movement for Culture. J. Martial Arts Anthropol. 2018, 18, 31–38. [Google Scholar]
- Marquez-Chin, C.; Popovic, M.R.P. Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: A review. Biomed. Eng. Online 2020, 19, 34. [Google Scholar] [CrossRef]
- Da Cunha, M.J.; Rech, K.D.; Salazar, A.P.; Pagnussat, A.S. Functional electrical stimulation of the peroneal nerve improves post-stroke gait speed when combined with physiotherapy. Syst. Rev.-Meta-Anal. Ann. Phys. Rehabil. Med. 2021, 64, 101388. [Google Scholar] [CrossRef]
- Khan, F.; Rathore, C.; Kate, M.; Joy, J.; Zachariah, G.; Vincent, P.C.; Radhakrishnan, K. The comparative efficacy of theta burst stimulation or functional electrical stimulation when combined with physical therapy after stroke: A randomized controlled trial. Clin. Rehabil. 2019, 33, 693–703. [Google Scholar] [CrossRef]
- Kapadia, N.; Moineau, B.; Popovic, M.R. Functional Electrical Stimulation Therapy for Retraining Reaching and Grasping After Spinal Cord Injury and Stroke. Front. Neurosci. 2020, 14, 718. [Google Scholar] [CrossRef] [PubMed]
- Prestia, A.; Rossi, F.; Mongardi, A.; Ros, P.M.; Roch, M.R.; Martina, M.; Demarchi, D. Motion Analysis for Experimental Evaluation of an Event-Driven FES System. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.S.P.; Moreira, J.; Silva, C.; Mesquita, I.; Macedo, R.; Silva, A.; Santos, R. Usability of Functional Electrical Stimulation in Upper Limb Rehabilitation in Post-Stroke Patients: A Narrative Review. Sensors 2022, 22, 1409. [Google Scholar] [CrossRef]
- Carrere, L.C.; Escher, L.; Tabernig, C. A Wireless BCI-FES Based on Motor Intent for Lower Limb Rehabilitation. In VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering; Díaz, C.A., González, C.C., Leber, E.L., Vélez, H.A., Puente, N.P., Flores, D.L., Andrade, A.O., Galván, H.A., Martínez, F., García, R., et al., Eds.; CLAIB 2019. IFMBE Proceedings; Springer: Cham, Switzerland, 2020; Volume 75. [Google Scholar] [CrossRef]
- Cheung, V.C.K.; Niu, C.M.; Li, S.; Xie, Q.; Lan, N. A Novel FES Strategy for Poststroke Rehabilitation Based on the Natural Organization of Neuromuscular Control. IEEE Rev. Biomed. Eng. 2019, 12, 154–167. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Lee, D.-W.; Son, Y.; Kim, B.; Gu, J.; Shin, H.C. Volitional EMG Controlled Wearable FES System for Lower Limb Rehabilitation. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Guadalajara, Mexico, 1–5 November 2021; pp. 7099–7102. [Google Scholar] [CrossRef]
- Ye, G.; Grabke, E.P.; Pakosh, M.; Furlan, J.C.; Masani, K. Clinical Benefits and System Design of FES-Rowing Exercise for Rehabilitation of Individuals with Spinal Cord Injury: A Systematic Review. Arch. Phys. Med. Rehabil. 2021, 102, 1595–1605. [Google Scholar] [CrossRef] [PubMed]
- Rossi, F.; Ros, P.M.; Rosales, R.M.; Demarchi, D. Embedded bio-mimetic system for functional electrical stimulation controlled by event-driven sEMG. Sensors 2020, 20, 1535. [Google Scholar] [CrossRef] [Green Version]
- Rossi, F.; Ros, P.M.; Cecchini, S.; Crema, A.; Micera, S.; Demarchi, D. An Event-Driven Closed-Loop System for Real-Time FES Control. In Proceedings of the 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Genoa, Italy, 27–29 November 2019; pp. 867–870. [Google Scholar] [CrossRef]
- Adams, M.W.; Périard, J.D. Returning to sport following COVID-19: Considerations for heat acclimatization in secondary school athletics. Sports Med. 2020, 50, 1555–1557. [Google Scholar] [CrossRef]
- Bayon, C.; Emmens, A.R.; Maarten Afschrift, T.; Van Wouwe, A.; Keemink, Q.L.; Kooij, H.V.D.; Asseldonk, E.H.F.V. Can momentum-based control predict human balance recovery strategies? IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2015–2024. [Google Scholar] [CrossRef]
- Ferraresi, C.; Maffiodo, D.; Franco, W.; Muscolo, G.G.; Benedictis, C.D.; Paterna, M.; Pica, O.W. Hardware-in-the-loop equipment for the development of an automatic perturbator for clinical evaluation of human balance control. Appl. Sci. 2020, 10, 8886. [Google Scholar] [CrossRef]
- Shashank, G.; Nardone, A.; Schieppati, M. Human balance in response to continuous, predictable translations of the support base: Integration of sensory information, adaptation to perturbations, and the effect of age, neuropathy and Parkinson’s disease. Appl. Sci. 2019, 9, 5310. [Google Scholar]
- Ferraresi, C.; De Benedictis, C.; Muscolo, G.G.; Pica, O.W.; Genovese, M.; Maffiodo, D.; Franco, W.; Paterna, M.; Roatta, S.; Dvir, Z. Development of an Automatic Perturbator for Dynamic Posturographic Analysis. In New Trends in Medical and Service Robotics; Rauter, G., Cattin, P.C., Zam, A., Riener, R., Carbone, G., Pisla, D., Eds.; MESROB 2020. Mechanisms and Machine Science; Springer: Cham, Switzerland, 2021; Volume 93. [Google Scholar] [CrossRef]
- Berninger, T.F.C.; Sygulla, F.; Fuderer, S.; Rixen, D.J. Experimental Analysis of Structural Vibration Problems of a Biped Walking Robot. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 8726–8731. [Google Scholar] [CrossRef]
- Muscolo, G.G.; Recchiuto, C.T.; Molfino, R. Dynamic balance optimization in biped robots: Physical modeling, implementation and tests using an innovative formula. Robotica 2015, 33, 2083–2099. [Google Scholar] [CrossRef]
- Eduardo, C.; García, M.J.G.; Castejon, C.; Meneses, J.; Gismeros, R. Dynamic modeling of the dissipative contact and friction forces of a passive biped-walking robot. Appl. Sci. 2020, 10, 2342. [Google Scholar]
- Muscolo, G.G.; Caldwell, D.; Cannella, F. Calculation of the center of mass position of each link of multibody biped robots. Appl. Sci. 2017, 7, 724. [Google Scholar] [CrossRef] [Green Version]
- Muscolo, G.G.; Recchiuto, C.T. Flexible structure and wheeled feet to simplify biped locomotion of humanoid robots. Int. J. Humanoid Robot. 2017, 14, 1650030. [Google Scholar] [CrossRef]
- Lisitano, D.; Bonisoli, E.; Recchiuto, C.T.; Muscolo, G.G. Dynamic Balance of the Head in a Flexible Legged Robot for Efficient Biped Locomotion. Appl. Sci. 2021, 11, 2945. [Google Scholar] [CrossRef]
- Maiorino, A.; Muscolo, G.G. Biped Robots with Compliant Joints for Walking and Running Performance Growing. Front. Mech. Eng. 2020, 6, 11. [Google Scholar] [CrossRef]
- Trono, G.; Nicolì, A.; Muscolo, G.G. Sustainable Compliant Physical Interaction in a Biped-Wheeled Wearable Machine. Front. Mech. Eng. 2020, 6, 581626. [Google Scholar] [CrossRef]
- World Taekwondo. Available online: http://www.worldtaekwondo.org/ (accessed on 10 February 2022).
- Muscolo, G.G.; Recchiuto, C.T. TPT a novel taekwondo personal trainer robot. Robot. Auton. Syst. 2016, 83, 150–157. [Google Scholar] [CrossRef]
- Sørensen, H.; Zacho, M.; Simonsen, E.; Dyhre-Poulsen, P.; Klausen, K. Dynamics of the martial arts high front kick. J. Sports Sci. 1996, 14, 483–495. [Google Scholar] [CrossRef]
- HASOMED GmbH. RehaMove®—Motion Training with Functional Electrical Stimulation (FES). Available online: https://hasomed.de/en/products/rehamove/ (accessed on 29 March 2023).
- Kuberski, B. ScienceMode2—Description and Protocol. Hasomed GmbH, PaulEckeStraße, 1, 39114 Magdeburg, Germany. 2012. Available online: www.hasomed.de (accessed on 5 April 2023).
- HASOMED GmbH. Simulink Interface for Real-Time Control of the RehaStim2 Stimulator Using the ScienceMode2 Protocol. Hasomed GmbH, PaulEckeStraße, 1, 39114 Magdeburg, Germany. Available online: www.hasomed.de (accessed on 5 April 2023).
- Ito, T.; Tsubahara, A.; Seno, Y.; Tokuhiro, H.; Watanabe, S. Consideration of ways to generate hip flexion torque by using electrical stimulation: Measurement of torque and the degree of pain. Jpn. J. Compr. Rehabil. Sci. 2011, 2, 31–35. [Google Scholar] [CrossRef]
- Lynch, C.L.; Popovic, M.R. Functional electrical stimulation. IEEE Control. Syst. Mag. 2008, 28, 40–50. [Google Scholar]
- HASOMED GmbH. RehaMove® Functional Electrical Stimulation-FES Applications. 2015. Available online: https://hasomed.de/en/products/rehamove/ (accessed on 29 March 2023).
- Popović, D.B. Advances in functional electrical stimulation (FES). J. Electromyogr. Kinesiol. 2014, 24, 795–802. [Google Scholar] [CrossRef] [PubMed]
- González Mejía, Á. Biomechanical Analysis of the Static Balance in Taekwondo Training Methodologies. Master’s Thesis, Politecnico di Torino, Torino, Italy, 2019. [Google Scholar]
No Force | Z+ | Z− | X+ | X− | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Muscle | r | l | r | l | r | l | r | l | r | l |
adductor magnus | 1, 2 | |||||||||
biceps femoris long head | 1, 2 | 1, 2 | ||||||||
biceps femoris short head | 1 | 1, 2 | 1, 2 | 1, 2 | 1, 2 | |||||
gemellus | 1, 2 | |||||||||
gluteus maximus | 1, 2 | 1, 2 | ||||||||
gluteus medius | 1, 2 | 1, 2 | 1, 2 | 1, 2 | 1, 2 | |||||
gracilis | 1, 2 | 1 | ||||||||
iliacus | 1, 2 | 1, 2 | 1, 2 | 1, 2 | 1, 2 | |||||
medial gastrocnemius | 2 | |||||||||
piriformis | 1, 2 | 1, 2 | ||||||||
pectineus | 1, 2 | |||||||||
psoas | 1, 2 | 1, 2 | 1, 2 | 1, 2 | ||||||
rectus femoris | 1, 2 | |||||||||
sartorius | 1, 2 | 1, 2 | 1, 2 | |||||||
tensor fasciae latae | 1, 2 | 1, 2 |
+ | − | ||||||
---|---|---|---|---|---|---|---|
50 N | 100 N | 150 N | 50 N | 100 N | 150 N | ||
glueteus medius | 0 | 0.0108 | 0.0396 | 0.1008 | 0.2019 | 0.5036 | |
Z | biceps femoris | 0 | 0.0035 | 0.0141 | 0.0537 | 0.1074 | 1.6170 |
psoas | 0 | 0.0106 | 0.0379 | 0.0426 | 0.0855 | 1.1290 | |
glueteus medius | 0 | 0 | 0 | 0.0369 | 0.0937 | 0.4962 | |
X | biceps femoris | 0.0858 | 0.1719 | 0.2455 | 0 | 0 | 0 |
psoas | 0.1110 | 0.2220 | 0.5567 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, F.; González Mejía, Á.; Demarchi, D.; Fiorini, P.; Muscolo, G.G. A Preliminary Virtual Study on the Feasibility of Transferring Muscular Activation Pattern Behaviors of Psychomotor Exercises. Actuators 2023, 12, 294. https://doi.org/10.3390/act12070294
Rossi F, González Mejía Á, Demarchi D, Fiorini P, Muscolo GG. A Preliminary Virtual Study on the Feasibility of Transferring Muscular Activation Pattern Behaviors of Psychomotor Exercises. Actuators. 2023; 12(7):294. https://doi.org/10.3390/act12070294
Chicago/Turabian StyleRossi, Fabio, Álvaro González Mejía, Danilo Demarchi, Paolo Fiorini, and Giovanni Gerardo Muscolo. 2023. "A Preliminary Virtual Study on the Feasibility of Transferring Muscular Activation Pattern Behaviors of Psychomotor Exercises" Actuators 12, no. 7: 294. https://doi.org/10.3390/act12070294
APA StyleRossi, F., González Mejía, Á., Demarchi, D., Fiorini, P., & Muscolo, G. G. (2023). A Preliminary Virtual Study on the Feasibility of Transferring Muscular Activation Pattern Behaviors of Psychomotor Exercises. Actuators, 12(7), 294. https://doi.org/10.3390/act12070294