Investigations of the Crystallographic Orientation on the Martensite Variant Reorientation of the Single-Crystal Ni-Mn-Ga Cube and Its Composites for Actuator Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ingot Fabrications
2.2. Fabrication of Single-Crystal Ni-Mn-Ga Specimens
2.2.1. Obtaining Single-Crystal Ni-Mn-Ga Particles by a Crushing Method
2.2.2. Obtaining Single-Crystal Ni-Mn-Ga Cubes and Plates by a Floating-Zone Method
2.3. Fabrication of Single-Crystal Ni-Mn-Ga Alloy(s)/Polymer Composites
2.3.1. Fabrication of Pure Epoxy
2.3.2. Fabrication of Pure Silicone
2.3.3. Fabrications of Single-Crystal Ni-Mn-Ga Cube(s)/Polymer Composites
2.4. Measurements and Analysis
2.4.1. Recording 3D Images via a Micro CT
2.4.2. Compression Tests
2.4.3. Magnetic Properties
2.4.4. Pole Figures
2.4.5. Effect of Training by a Magnetic Field on the MVR
3. Results and Discussion
3.1. Deformation Behavior of the Single-Crystal Ni-Mn-Ga in the Polymer Matrix
3.1.1. The 13 Vol.% {100}p Single-Crystal Ni-Mn-Ga Cube/Epoxy Composite
Shape Deformation Imposed by a Compressive Field
Shape Deformation Imposed by a Magnetic Field
3.2. Martensite Variant Reorientation in the {100}p Single-Crystal Ni-Mn-Ga Cube
3.3. Dependence of MVR on Crystallographic Direction
3.3.1. Magnetic Field-Induced MVR vs. Crystallographic Orientation
3.3.2. Shear Stress of {110} vs. Crystallographic Direction
3.4. Effects of the Adjacent Cube on the Deformation Behavior
3.4.1. The 20 Vol.% of Two Ni-Mn-Ga Cubes/Silicone Composite
3.4.2. The 25 Vol.% of Two Single-Crystal Ni-Mn-Ga Cubes/Silicone Composite
3.5. Effect of Training on the MVR
3.5.1. Crystallographic Direction Verification
3.5.2. Dependence of Training on the MVR Behavior
4. Conclusions
- The stress for the stress-induced MVR was confirmed to be at approximately 1 MPa or less. This is in accordance with those reported. Additionally, obvious shape deformation behaviors were observed through an in situ observation using a micro CT.
- The magnetic field-induced MVR was inhibited when the {100}p single-crystal Ni-Mn-Ga cube was at the volume percentage of 13%, while an obvious magnetic field-induced MVR was observed when the {100}p single-crystal Ni-Mn-Ga cube was used. The difference between these two specimens originates from the elastic constraint of the polymer matrix. Additionally, the shape deformation behaviors of the composite under an external magnetic field were also discerned.
- The necessary magnetic field increased when the crystallographic direction was rotated from <100>p to <110>p of the {100}p single-crystal Ni-Mn-Ga cube; on the other hand, the necessary magnetic field decreased when the crystallographic direction was rotated from <100>p to <111>p of the {100}p single-crystal Ni-Mn-Ga cube.
- The necessary magnetic field (that is, the shear stress required) for the MVR of the cube of the composite material is higher than that of the {100}p single-crystal Ni-Mn-Ga cube at all times. This is due to the elastic inhibition of the polymer matrix to the single-crystal Ni-Mn-Ga cube.
- A critical rotation angle for the magnetic field-induced MVR was found at around 35° when the crystallographic direction was rotated from <100>p to <111>p of the {100}p single-crystal Ni-Mn-Ga cube. This could be attributed to the near-equivalent three variants in the 5M-martensite phase when the magnetic field approached <111>p of the {100}p single-crystal Ni-Mn-Ga cube.
- It was found that most of the MVR could be triggered by introducing an external magnetic field in the range of approximately 0–6 kOe when the crystallographic direction is within the range of <100>p, <110>p, and <111>p.
- In the case of the two cubes composed composites, both in the compressive field and the magnetic field, the {100}p single-crystal Ni-Mn-Ga cube performed shape deformation, while barely the polycrystalline Ni-Mn-Ga cube was deformed owing to the inhibition among the neighboring grain boundaries.
- The training effect reveals a reduced magnetic field that is necessary for MVR of the single-crystal cube, where the required magnetic field was reduced from 3.3 kOe to 1.1 kOe when the composite material was subjected to the magnetic field scanning cycles from the range of 0–10 kOe. This is due to the release of the pinning effect among the variants in the 5M-martensite.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, Z.; Pan, Y.; Wee, L.B.; Yu, H. Design and control of a novel compliant differential shape memory alloy actuator. Sens. Actuators A Phys. 2015, 225, 71–80. [Google Scholar] [CrossRef]
- Dasgupta, R. A look into Cu-based shape memory alloys: Present scenario and future prospects. J. Mater. Res. 2014, 29, 1681–1698. [Google Scholar] [CrossRef]
- Jani, J.M.; Leary, M.; Subic, A.; Gibson, M.A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 2014, 56, 1078–1113. [Google Scholar] [CrossRef]
- Pons, J.; Cesari, E.; Seguí, C.; Masdeu, F.; Santamarta, R. Ferromagnetic shape memory alloys: Alternatives to Ni-Mn-Ga. Mater. Sci. Eng. A 2018, 481–482, 57–65. [Google Scholar] [CrossRef]
- Murray, S.J.; Marioni, M.A.; Kukla, A.M.; Robinson, J.; O’Handley, R.C.; Allen, S.M. Large field induced strain in single crystalline Ni-Mn-Ga ferromagnetic shape memory alloy. J. Appl. Phys. 2000, 87, 5774. [Google Scholar] [CrossRef]
- Chernenko, V.A.; Cesari, E.; Kokorin, V.V.; Vitenko, I.N. The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system. Scr. Mater. 1995, 33, 1239–1244. [Google Scholar] [CrossRef]
- O’Handley, R.C.; Murray, S.J.; Marioni, M.; Nembach, H.; Allen, S.M. Phenomenology of giant magnetic-field-induced strain in ferromagnetic shape-memory materials. J. Appl. Phys. 2000, 87, 4712. [Google Scholar] [CrossRef]
- Ullakko, K.; Huang, J.K.; Kantner, C.; O’Handley, R.C.; Kokorin, V.V. Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett. 1996, 69, 1966. [Google Scholar] [CrossRef]
- Karaca, H.E.; Karaman, I.; Basaran, B.; Chumlyakov, Y.I.; Maier, H.J. Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals. Acta Mater. 2006, 54, 233–245. [Google Scholar] [CrossRef]
- Tickle, R.; James, R.D.; Shield, T.; Wuttig, M.; Kokorin, V.V. Ferromagnetic shape memory in the NiMnGa system. IEEE Trans. Magn. 1999, 35, 4301–4310. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, X.X.; Yu, S.Y.; Chen, J.L.; Cao, Z.X.; Wu, G.H. Giant magnetothermal conductivity in the Ni-Mn-In ferromagnetic shape memory alloys. Appl. Phys. Lett. 2007, 91, 012510. [Google Scholar] [CrossRef]
- Han, Z.D.; Wang, D.H.; Zhang, C.L.; Tang, S.L.; Gu, B.X.; Du, Y.W. Large magnetic entropy changes in the Ni45.4Mn41.5In13.1 ferromagnetic shape memory alloy. Appl. Phys. Lett. 2006, 89, 182507. [Google Scholar] [CrossRef]
- Khovaylo, V.V.; Skokov, K.P.; Gutfleisch, O.; Miki, H.; Takagi, T.; Kanomata, T.; Koledov, V.V.; Shavrov, V.G.; Wang, G.; Palacios, E.; et al. Peculiarities of the magnetocaloric properties in Ni-Mn-Sn ferromagnetic shape memory alloys. Phys. Rev. B 2010, 81, 214406. [Google Scholar] [CrossRef]
- Koyama, K.; Watanabe, K.; Kanomata, T.; Kainuma, R.; Oikawa, K.; Ishida, K. Observation of field-induced reverse transformation in ferromagnetic shape memory alloy Ni50Mn36Sn14. Appl. Phys. Lett. 2006, 88, 132505. [Google Scholar] [CrossRef]
- Yu, S.Y.; Yan, S.S.; Zhao, L.; Feng, L.; Chen, J.L.; Wu, G.H. Intermartensitic transformation and magnetic field effect in NiMnInSb ferromagnetic shape memory alloys. J. Magn. Magn. Mater. 2010, 322, 2541–2544. [Google Scholar] [CrossRef]
- Wang, Y.D.; Huang, E.W.; Ren, Y.; Nie, Z.H.; Wang, G.; Liu, Y.D.; Deng, J.N.; Choo, H.; Liaw, P.K.; Brown, D.E.; et al. In situ high-energy X-ray studies of magnetic-field-induced phase transition in a ferromagnetic shape memory Ni-Co-Mn-In alloy. Acta Mater. 2008, 56, 913–923. [Google Scholar] [CrossRef]
- Morito, H.; Fujita, A.; Oikawa, K.; Ishida, K.; Fukamichi, K.; Kainuma, R. Stress-assisted magnetic-field-induced strain in Ni-Fe-Ga-Co ferromagnetic shape memory alloys. Appl. Phys. Lett. 2007, 90, 062505. [Google Scholar] [CrossRef]
- Müllner, P.; Chernenko, V.A.; Kostorz, G. Large magnetic-field-induced deformation and magneto-mechanical fatigue of ferromagnetic Ni-Mn-Ga martensites. Mater. Sci. Eng. A 2004, 387–389, 965–968. [Google Scholar] [CrossRef]
- Zhang, Y.; Hughes, R.A.; Britten, J.F.; Preston, J.S.; Botton, G.A.; Niewczas, M. Self-activated reversibility in the magnetically induced reorientation of martensitic variants in ferromagnetic Ni-Mn-Ga films. Phys. Rev. B 2010, 81, 054406. [Google Scholar] [CrossRef]
- Kiefer, B.; Lagoudas, D.C. Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys. Philos. Mag. 2005, 85, 4289–4329. [Google Scholar] [CrossRef]
- Kainuma, R.; Imano, Y.; Ito, W.; Sutou, Y.; Morito, H.; Okamoto, S.; Kitakami, O.; Oikawa, K.; Fujita, A.; Kanomata, T.; et al. Magnetic-field-induced shape recovery by reverse phase transformation. Nature 2006, 439, 957–960. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Jiang, C.B.; Xu, H.B.; Liu, Z.H.; Zhang, M.; Cui, Y.T.; Wu, G.H. Phase transition strain and large magnetic field induced strain in Ni50.5Mn24Ga25.5 unidirectionally solidified alloy. J. Magn. Magn. Mater. 2004, 268, 29–32. [Google Scholar] [CrossRef]
- Kiefer, B.; Karaca, H.E.; Lagoudas, D.C.; Karaman, I. Characterization and modeling of the magnetic field-induced strain and work output in Ni2MnGa magnetic shape memory alloys. J. Magn. Magn. Mater. 2007, 312, 164–175. [Google Scholar] [CrossRef]
- Sozinov, A.; Likhachev, A.A.; Lanska, N.; Ullakko, K. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl. Phys. Lett. 2002, 80, 1746. [Google Scholar] [CrossRef]
- Lanska, N.; Söderberg, O.; Sozinov, A.; Ge, Y.; Ullakko, K.; Lindroos, V.K. Composition and temperature dependence of the crystal structure of Ni-Mn-Ga alloys. J. Appl. Phys. 2004, 95, 8074. [Google Scholar] [CrossRef]
- Likhachev, A.A.; Sozinov, A.; Ullakko, K. Different modeling concepts of magnetic shape memory and their comparison with some experimental results obtained in Ni-Mn-Ga. Mater. Sci. Eng. A 2004, 378, 513–518. [Google Scholar] [CrossRef]
- Jin, X.; Marioni, M.; Bono, D.; Allen, S.M.; O’Handley, R.C.; Hsu, T.Y. Empirical mapping of Ni-Mn-Ga properties with composition and valence electron concentration. J. Appl. Phys. 2002, 91, 8222. [Google Scholar] [CrossRef]
- Pons, J.; Chernenko, V.A.; Santamarta, R.; Cesari, E. Crystal structure of martensitic phases in Ni-Mn-Ga shape memory alloys. Acta Mater. 2000, 48, 3027–3038. [Google Scholar] [CrossRef]
- Pagounis, E.; Chulist, R.; Szczerba, M.J.; Laufenberg, M. High-temperature magnetic shape memory actuation in a Ni-Mn-Ga single crystal. Scr. Mater. 2014, 83, 29–32. [Google Scholar] [CrossRef]
- Sozinov, A.; Likhachev, A.A.; Lanska, N.; Söderberg, O.; Ullakko, K.; Lindroos, V.K. Stress- and magnetic-field-induced variant rearrangement in Ni-Mn-Ga single crystals with seven-layered martensitic structure. Mater. Sci. Eng. A 2004, 378, 399–402. [Google Scholar] [CrossRef]
- Xiong, F.; Liu, Y.; Pagounis, E. Thermally induced fracture of single crystal Ni-Mn-Ga ferromagnetic shape memory alloy. J. Alloys Compd. 2006, 415, 188–192. [Google Scholar] [CrossRef]
- Zhang, X.X.; Witherspoon, C.; Müllner, P.; Dunand, D.C. Effect of pore architecture on magnetic-field-induced strain in polycrystalline Ni-Mn-Ga. Acta Mater. 2011, 59, 2229–2239. [Google Scholar] [CrossRef]
- Gaitzsch, U.; Romberg, J.; Pötschke, M.; Roth, S.; Müllner, P. Stable magnetic-field-induced strain above 1% in polycrystalline Ni-Mn-Ga. Scr. Mater. 2011, 65, 679–682. [Google Scholar] [CrossRef]
- Chmielus, M.; Zhang, X.X.; Witherspoon, C.; Dunand, D.C.; Müllner, P. Giant magnetic-field-induced strains in polycrystalline Ni-Mn-Ga foams. Nat. Mater. 2009, 8, 863–866. [Google Scholar] [CrossRef]
- Witherspoon, C.; Zheng, P.; Chmielus, M.; Dunand, D.C.; Müllner, P. Effect of porosity on the magneto-mechanical behavior of polycrystalline magnetic shape-memory Ni-Mn-Ga foams. Acta Mater. 2015, 92, 64–71. [Google Scholar] [CrossRef]
- Chiu, W.-T.; Sratong-on, P.; Tahara, M.; Chernenko, V.; Hosoda, H. Large magnetostrains of Ni-Mn-Ga/silicone composite containing system of oriented 5M and 7M martensitic particles. Scr. Mater. 2022, 207, 114265. [Google Scholar] [CrossRef]
- Sratong-on, P.; Chernenko, V.A.; Feuchtwanger, J.; Hosoda, H. Magnetic field-induced rubber-like behavior in Ni-Mn-Ga particles/polymer composite. Sci. Rep. 2019, 9, 3443. [Google Scholar] [CrossRef]
- Chiu, W.-T.; Sratong-on, P.; Tahara, M.; Chernenko, V.; Hosoda, H. Aging behavior of Ni-Mn-Ga/silicone particulate composites exhibiting large recoverable magnetostrain. Scr. Mater. 2023, 227, 115277. [Google Scholar] [CrossRef]
- Ranzieri, P.; Campanini, M.; Fabbrici, S.; Nasi, L.; Casoli, F.; Cabassi, R.; Buffagni, E.; Grillo, V.; Magén, C.; Celegato, F.; et al. Achieving Giant Magnetically Induced Reorientation of Martensitic Variants in Magnetic Shape-Memory Ni-Mn-Ga Films by Microstructure Engineering. Adv. Mater. 2015, 27, 4760–4766. [Google Scholar] [CrossRef]
- Straka, L.; Heczko, O. Magnetization changes in Ni-Mn-Ga magnetic shape memory single crystal during compressive stress reorientation. Scr. Mater. 2006, 54, 1549–1552. [Google Scholar] [CrossRef]
- Chernenko, V.A. Compositional instability of β-phase in Ni-Mn-Ga alloys. Scr. Acta. 1999, 40, 523–527. [Google Scholar] [CrossRef]
- Hosoda, H.; Inamura, T. Development of NiMnGa/Polymer Composite Materials. Mater. Sci. Forum. 2012, 706–709, 31–36. [Google Scholar] [CrossRef]
- Chiu, W.-T.; Sratong-on, P.; Chang, T.-F.M.; Tahara, M.; Sone, M.; Chernenko, V.; Hosoda, H. Bi-doping engineering of Ni-Mn-Ga polycrystals and resulting grain particles for smart Ni-Mn-Ga/polymer composites. J. Mater. Res. Technol. 2023, 23, 131–142. [Google Scholar] [CrossRef]
- Chiu, W.-T.; Goto, A.; Tahara, M.; Inamura, T.; Hosoda, H. Effects of volume fraction between single crystal Ni-Mn-Ga ferromagnetic shape memory alloy and silicone rubber on the martensite variant reorientation. J. Alloys Compd. 2022, 926, 166862. [Google Scholar] [CrossRef]
- Chiu, W.-T.; Goto, A.; Tahara, M.; Inamura, T.; Hosoda, H. Investigation of the martensite variant reorientation of the single crystal Ni-Mn-Ga alloy via training processes and a modification with a silicone rubber. Mater. Chem. Phys. 2023, 297, 127390. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Yang, B.; He, X.; Gan, W.; Zhang, Y.; Li, Z.; Zhang, Y.; Esling, C.; Zhao, X.; et al. Over 2% magnetic-field-induced strain in a polycrystalline Ni50Mn28.5Ga21.5 alloy prepared by directional solidification. Mater. Sci. Eng. A 2020, 780, 139170. [Google Scholar] [CrossRef]
- Wang, J.M.; Jiang, C.B.; Xu, H.B. Stress Induced and Magnetic Field Enhanced Twin Variants Reorientation in NiMnGa Single Crystal. Mater. Sci. Forum. 2005, 475–479, 2013–2016. [Google Scholar] [CrossRef]
- Hosoda, H.; Takeuchi, S.; Inamura, T.; Wakashima, K. Material design and shape memory properties of smart composites composed of polymer and ferromagnetic shape memory alloy particles. Sci. Technol. Adv. Mater. 2004, 5, 503. [Google Scholar] [CrossRef]
- Chulist, R.; Straka, L.; Sozinov, A.; Lippmann, T.; Skrotzki, W. Modulation reorientation in 10M Ni-Mn-Ga martensite. Scr. Mater. 2013, 68, 671–674. [Google Scholar] [CrossRef]
- Straka, L.; Heczko, O.; Hänninen, H. Activation of magnetic shape memory effect in Ni-Mn-Ga alloys by mechanical and magnetic treatment. Acta Mater. 2008, 56, 5492–5499. [Google Scholar] [CrossRef]
- Sratong-on, P.; Tahara, M.; Inamura, T.; Chernenko, V.A.; Hosoda, H. Compression response of Ni-Mn-Ga/silicone composite and study of three-dimensional deformation of particles. Smart Mater. Struct. 2018, 27, 085024. [Google Scholar] [CrossRef]
- Aaltio, I.; Söderberg, O.; Ge, Y.; Hannula, S.-P. Twin boundary nucleation and motion in Ni-Mn-Ga magnetic shape memory material with a low twinning stress. Scr. Mater. 2010, 62, 9–12. [Google Scholar] [CrossRef]
- Heczko, O.; Scheerbaum, N.; Gutfleisch, O. Magnetic shape memory phenomena. In Nanoscale Magnetic Materials and Applications; Liu, J., Fullerton, E., Gutfleisch, O., Sellmyer, D., Eds.; Springer: Boston, MA, USA, 2009. [Google Scholar]
- Sratong-on, P.; Chernenko, V.; Hosoda, H. Influence of internal stress on magnetostrain effect in Ni-Mn-Ga/polymer composite. Results Mater. 2019, 2, 100037. [Google Scholar] [CrossRef]
- Okamoto, N.; Fukuda, T.; Kakeshita, T. Magnetocrystalline anisotropy and twinning stress in Ni-Mn-Ga ferromagnetic shape memory alloys. J. Phys. Conf. Ser. 2006, 51, 315. [Google Scholar] [CrossRef]
- Straka, L.; Lanska, N.; Ullakko, K.; Sozinov, A. Twin microstructure dependent mechanical response in Ni-Mn-Ga single crystals. Appl. Phys. Lett. 2010, 96, 131903. [Google Scholar] [CrossRef]
- Straka, L.; Heczko, O.; Hannula, S.-P. Temperature dependence of reversible field-induced strain in Ni-Mn-Ga single crystal. Scr. Mater. 2006, 54, 1497–1500. [Google Scholar] [CrossRef]
- Heczko, O.; Straka, L.; Ullakko, K. Relation between structure, magnetization process and magnetic shape memory effect of various martensites occurring in Ni-Mn-Ga alloys. J. Phys. IV Fr. 2003, 112, 959–962. [Google Scholar] [CrossRef]
- Boonyongmaneerat, Y.; Chmielus, M.; Dunand, D.C.; Müllner, P. Increasing magnetoplasticity in polycrystalline Ni-Mn-Ga by reducing internal constraints through porosity. Phys. Rev. Lett. 2007, 99, 247201. [Google Scholar] [CrossRef]
- Chmielus, M.; Witherspoon, C.; Wimpory, R.C.; Paulke, A.; Hilger, A.; Zhang, X.; Dunand, D.C.; Müllner, P. Magnetic-field-induced recovery strain in polycrystalline Ni-Mn-Ga foam. J. Appl. Phys. 2010, 108, 123526. [Google Scholar] [CrossRef]
- Guo, S.H.; Zhang, Y.H.; Quan, B.Y.; Li, J.L.; Wang, X.L. Martensitic Transformation and Magnetic-Field-Induced Strain in Magnetic Shape Memory Alloy NiMnGa Melt-Spun Ribbon. Mater. Sci. Forum. 2005, 475–479, 2009–2012. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, W.-T.; Okuno, M.; Tahara, M.; Inamura, T.; Hosoda, H. Investigations of the Crystallographic Orientation on the Martensite Variant Reorientation of the Single-Crystal Ni-Mn-Ga Cube and Its Composites for Actuator Applications. Actuators 2023, 12, 211. https://doi.org/10.3390/act12050211
Chiu W-T, Okuno M, Tahara M, Inamura T, Hosoda H. Investigations of the Crystallographic Orientation on the Martensite Variant Reorientation of the Single-Crystal Ni-Mn-Ga Cube and Its Composites for Actuator Applications. Actuators. 2023; 12(5):211. https://doi.org/10.3390/act12050211
Chicago/Turabian StyleChiu, Wan-Ting, Motoki Okuno, Masaki Tahara, Tomonari Inamura, and Hideki Hosoda. 2023. "Investigations of the Crystallographic Orientation on the Martensite Variant Reorientation of the Single-Crystal Ni-Mn-Ga Cube and Its Composites for Actuator Applications" Actuators 12, no. 5: 211. https://doi.org/10.3390/act12050211
APA StyleChiu, W. -T., Okuno, M., Tahara, M., Inamura, T., & Hosoda, H. (2023). Investigations of the Crystallographic Orientation on the Martensite Variant Reorientation of the Single-Crystal Ni-Mn-Ga Cube and Its Composites for Actuator Applications. Actuators, 12(5), 211. https://doi.org/10.3390/act12050211