# Plasma Actuators for Cycloidal Rotor Thrust Vectoring Enhancement in Airships

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Numerical Modeling

#### 2.1. Cycloidal Rotor Test Case

#### 2.2. Fluid Flow Equations

#### 2.3. Plasma Model

^{−19}C; the charge density, ${\rho}_{c}$ = 1 × 10

^{17}m

^{−3}; an applied voltage frequency of 3000 Hz; applied voltage of 4000 V

_{rms}; breakdown electric field strength of 30 × 10

^{5}V/cm; and discharge time of 67 μs. The electrode thickness, ${t}_{e}=0.1\mathrm{mm}$, dielectric thickness ${t}_{d}=0.75\mathrm{mm}$ and plasma length ${l}_{p}=3\mathrm{mm}$; using these parameters, the power consumption of the plasma actuator is given by ${P}_{p}=1.112\mathrm{W}$, as described in Benmoussa and Páscoa [37].

#### 2.4. Solver Setting

^{3}and a viscosity of 1.7894 × 10⁻⁵ kg/ms. Convergence was considered achieved when the residuals of all variables remained below 10⁻⁵, and the time step size was chosen to achieve a rotor rotation of 0.1° per time step, allowing us to capture the unsteady behavior of the flow.

## 3. Results and Interpretations

#### 3.1. Mesh Independence Test

#### 3.2. Model Validation

#### 3.3. Cyclorotor Base Case

#### 3.4. Effect of DBD Plasma Actuator

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Manikandan, M.; Pant, R.S. Research and Advancements in Hybrid Airships—A Review. Prog. Aerosp. Sci.
**2021**, 127, 100741. [Google Scholar] [CrossRef] - Chen, L.; Zhou, G.; Yan, X.J.; Duan, D.P. Composite Control of Stratospheric Airships with Moving Masses. J. Aerosp. Eng.
**2012**, 49, 794–801. [Google Scholar] [CrossRef] - Manikandan, M.; Vaidya, E.; Pant, R.S. Design and analysis of hybrid electric multi-lobed airship for cargo transportation. Sustain. Energy Technol. Assess.
**2022**, 51, 101892. [Google Scholar] [CrossRef] - Bonnici, M.; Tacchini, A.; Vucinic, D. Long Permanence High Altitude Airships: The Opportunity of Hydrogen. Eur. Transp. Res. Rev.
**2014**, 6, 253–266. [Google Scholar] [CrossRef] - Cimarelli, A.; Madonia, M.; Angeli, D.; Dumas, A. Aerodynamic Study of Advanced Airship Shapes. J. Aerosp. Eng.
**2017**, 30, 04016087. [Google Scholar] [CrossRef] - Smith, T.; Bingham, C.; Stewart, P.; Allarton, R.; Stewart, J. Energy harvesting and power network architectures for the multibody advanced airship for transport high altitude cruiser–feeder airship concept. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
**2013**, 227, 586–598. [Google Scholar] [CrossRef] - Boschma, J.H. Modern Aviation Applications for Cycloidal Propulsion. In Proceedings of the 1st AIAA Aircraft, Technology Integration, and Operations Forum, Los Angeles, CA, USA, 16–18 October 2001. [Google Scholar] [CrossRef]
- Onda, M.; Matsuuchi, K.; Ohtsuka, N.; Kimura, Y. Cycloidal Propeller and Its Application to Advanced LTA Vehicles. In Proceedings of the AIAA’s 3rd Annual Aviation Technology, Integration, and Operations (ATIO) Forum, Denver, CO, USA, 17–19 November 2003. [Google Scholar] [CrossRef]
- Onda, M.; Matsuuchi, K.; Kimura, Y.; Hashimoto, S. Aerobatic Airship Robot with Advanced Propulsors. In Proceedings of the IEEE Conference on Robotics and Automation, Minato, Japan, 18–19 November 2004; Available online: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1425014 (accessed on 23 August 2023).
- Onda, M.; Sano, M.; Iwata, K.; Tomita, K.; Watanabe, M.; Koyama, N.; Akinaga, W.; Maruyama, M. Airship-Type Crane Robot with Cycloidal Propellers. In Proceedings of the 6th AIAA Aviation Technology, Integration, and Operations Conference, Wichita, KS, USA, 25–27 September 2006. [Google Scholar] [CrossRef]
- Benmoussa, A.; Gamboa, P.V. Effect of Control Parameters on Hybrid Electric Propulsion UAV Performance for Various Flight Conditions: Parametric Study. Appl. Mech.
**2023**, 4, 493–513. [Google Scholar] [CrossRef] - Hwang, I.S.; Min, S.Y.; Lee, C.H.; Kim, S.J. Development of a Four-Rotor Cyclocopter. J. Aircr.
**2008**, 45, 1251–1257. [Google Scholar] [CrossRef] - Xisto, C.M.; Leger, J.A.; Páscoa, J.C.; Gagnon, L.; Masarati, P.; Angeli, D.; Dumas, A. Parametric Analysis of a Large-Scale Cycloidal Rotor in Hovering Conditions. J. Aerosp. Eng.
**2016**, 30, 04016066. [Google Scholar] [CrossRef] - Benedict, M.; Jarugumilli, T.; Chopra, I. Effect of Rotor Geometry and Blade Kinematics on Cycloidal Rotor Hover Performance. J. Aircr.
**2013**, 50, 1340–1352. [Google Scholar] [CrossRef] - Jarugumilli, T.; Benedict, M.; Chopra, I. Wind tunnel studies on a micro air vehicle-scale cycloidal rotor. J. Am. Helicopter Soc.
**2014**, 59, 1–10. [Google Scholar] [CrossRef] - Sachse, H. Kirsten-Boeing Propeller; National Advisory Committee for Aeronautics: Washington, DC, USA, 1926.
- Garrick, I.E. Propulsion of a Flapping and Oscillating Airfoil; National Advisory Committee for Aeronautics: Washington, DC, USA, 1937.
- Wheatley, J.B.; Windler, R. Wind-Tunnel Tests of a Cyclogiro Rotor; National Advisory Committee for Aeronautics: Washington, DC, USA, 1935.
- Wheatley, J.B. Simplified Aerodynamic Analysis of the Cyclogiro Rotating Wing System; National Advisory Committee for Aeronautics: Washington, DC, USA, 1930.
- Boirum, C.G.; Post, S.L. Review of historic and modern cyclogyro design. In Proceedings of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Denver, CO, USA, 2–5 August 2009. [Google Scholar] [CrossRef]
- Xisto, C.M.; Páscoa, J.C.; Abdollahzadeh, M.; Leger, J.A.; Masarati, P.; Gagnon, L.; Schwaiger, M.; Wills, D. PECyT—Plasma Enhanced Cycloidal Thruster. In Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH, USA, 28–30 July 2014. [Google Scholar] [CrossRef]
- Gibbens, R.P.; Boschma, J.H. Construction and Testing of a New Aircraft Cycloidal Propeller. In Proceedings of the 13th Lighter-Than-Air Systems Technology Conference, Norfolk, VA, USA, 28 June–1 July 1999; pp. 131–140. [Google Scholar] [CrossRef]
- Hwang, I.S.; Min, S.Y.; Kim, M.K.; Kim, S.J. Multidisciplinary Optimal Design of Cyclocopter Blade System. In Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Austin, TX, USA, 18–21 April 2005; pp. 6005–6011. [Google Scholar] [CrossRef]
- Hwang, I.S.; Hwang, C.S.; Kim, S.J. Structural Design of Cyclocopter Blade System. In Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Austin, TX, USA, 18–21 April 2005; pp. 2743–2749. [Google Scholar] [CrossRef]
- Benedict, M.; Ramasamy, M.; Chopra, I.; Leishman, J.G. Performance of a Cycloidal Rotor Concept for Micro Air Vehicle Applications. J. Am. Helicopter Soc.
**2010**, 55, 22002. [Google Scholar] [CrossRef] - Benedict, M.; Mattaboni, M.; Chopra, I.; Masarati, P. Aeroelastic Analysis of a Micro-Air-Vehicle-Scale Cycloidal Rotor in Hover. AIAA J.
**2012**, 49, 2430–2443. [Google Scholar] [CrossRef] - Leger, J.A.; Páscoa, J.C.; Xisto, C.M. Analytical Modeling of a Cyclorotor in Hovering State. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
**2015**, 229, 2163–2177. [Google Scholar] [CrossRef] - Monteiro, J.A.L.; Páscoa, J.C.; Xisto, C.M. Aerodynamic Optimization of Cyclorotors. Aircr. Eng. Aerosp. Tech.
**2016**, 88, 232–245. [Google Scholar] [CrossRef] - Gagnon, L.; Morandini, M.; Quaranta, G.; Muscarello, V.; Masarati, P. Aerodynamic models for cycloidal rotor analysis. Aircr. Eng. Aerosp. Technol.
**2016**, 88, 215–231. [Google Scholar] [CrossRef] - Singh, K.; Páscoa, J.C. Numerical Modeling of Stall and Poststall Events of a Single Pitching Blade of a Cycloidal Rotor. J. Fluids Eng.
**2019**, 141, 011103. [Google Scholar] [CrossRef] - Schwaiger, M.; Wills, D. D-Dalus VTOL—Efficiency Increase in Forward Flight. Aircr. Eng. Aerosp. Tech.
**2016**, 88, 594–604. [Google Scholar] [CrossRef] - Cycloidal Rotor Optimized for Propulsion | CROP | Project | Fact Sheet | FP7 | CORDIS | European Commission, (n.d.). Available online: https://cordis.europa.eu/project/id/323047 (accessed on 7 August 2023).
- Habibnia, R.M.; Pascoa, J.C. Performance Optimization of Forward-Flight and Lift-Up Phases in a Cycloidal Rotor Using an Active Control Mechanism. J. Aerosp. Eng.
**2021**, 34, 04021039. [Google Scholar] [CrossRef] - Habibnia, R.M.; Pascoa, J. Active Control Assessments Towards Optimizing the Performance of a Cycloidal Rotor at Hover. Aerosp. Sci. Technol.
**2021**, 119, 107141. [Google Scholar] [CrossRef] - Habibnia, M.; Pascoa, J. ANN Assisted Flow Modeling and Analysis for a Cyclorotor in Ground Effect. Aerosp. Sci. Technol.
**2019**, 95, 105495. [Google Scholar] [CrossRef] - Benmoussa, A.; Páscoa, J.C. Performance Improvement and Start-Up Characteristics of a Cyclorotor Using Multiple Plasma Actuators. Meccanica
**2021**, 56, 2707–2730. [Google Scholar] [CrossRef] - Benmoussa, A.; Páscoa, J.C. Cycloidal Rotor Coupled with DBD Plasma Actuators for Performance Improvement. Aerosp. Sci. Technol.
**2021**, 110, 106468. [Google Scholar] [CrossRef] - Liu, C.; Roth, J.R. An Atmospheric Glow Discharge Plasma For Aerodynamic Boundary Layer Control. In Proceedings of the 1994 IEEE 21st International Conference on Plasma Sciences (ICOPS), Santa Fe, NM, USA, 6–8 June 1994. [Google Scholar]
- Roth, J.R.; Sherman, D.M.; Wilkinson, S.P. Boundary Layer Flow Control with a One Atmosphere Uniform Glow Discharge Surface Plasma. In Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 12–15 January 1998. [Google Scholar] [CrossRef]
- Rodrigues, F.; Abdollahzadehsangroudi, M.; Nunes-Pereira, J.; Páscoa, J. Recent Developments on Dielectric Barrier Discharge (DBD) Plasma Actuators for Icing Mitigation. Actuators
**2022**, 12, 5. [Google Scholar] [CrossRef] - Benard, N.; Moreau, E. Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. Exp. Fluids
**2014**, 55, 1–43. [Google Scholar] [CrossRef] - Hink, R.; Pipa, A.V.; Schafer, J.; Caspari, R.; Weichwald, R.; Foest, R.; Brandenburg, R. Influence of dielectric thickness and electrode structure on the ion wind generation by micro fabricated plasma actuators. J. Phys. D Appl. Phys.
**2020**, 53, 405201. [Google Scholar] [CrossRef] - Pescini, E.; Suma, A.; De Giorgi, M.G.; Francioso, L.; Ficarella, A. Optimization of Plasma Actuator Excitation Waveform and Materials for Separation Control in Turbomachinery. Energy Procedia
**2017**, 126, 786–793. [Google Scholar] [CrossRef] - Wang, J.J.; Choi, K.S.; Feng, L.H.; Jukes, T.N.; Whalley, R.D. Recent developments in DBD plasma flow control. Prog. Aerosp. Sci.
**2013**, 62, 52–78. [Google Scholar] [CrossRef] - Singh, K.P.; Roy, S. Force approximation for a plasma actuator operating in atmospheric air. J Appl Phys.
**2008**, 103, 13305. [Google Scholar] [CrossRef] - Moreau, E.; Sosa, R.; Artana, G. Electric wind produced by surface plasma actuators: A new dielectric barrier discharge based on a three-electrode geometry. J. Phys. D Appl. Phys.
**2008**, 41, 115204. [Google Scholar] [CrossRef] - Erfani, R.; Erfani, T.; Utyuzhnikov, S.V.; Kontis, K. Optimisation of multiple encapsulated electrode plasma actuator. Aerosp. Sci. Technol.
**2013**, 26, 120–127. [Google Scholar] [CrossRef] - Nunes-Pereira, J.; Rodrigues, F.F.; Abdollahzadehsangroudi, M.; Páscoa, J.C.; Lanceros-Mendez, S. Improved Performance of Polyimide Cirlex-Based Dielectric Barrier Discharge Plasma Actuators for Flow Control. Polym. Adv. Technol.
**2022**, 33, 1278–1290. [Google Scholar] [CrossRef] - Portugal, S.; Roy, S.; Lin, J. Functional relationship between material property, applied frequency and ozone generation for surface dielectric barrier discharges in atmospheric air. Sci. Rep.
**2017**, 7, 6388. [Google Scholar] [CrossRef] [PubMed] - Shvydyuk, K.O.; Rodrigues, F.F.; Nunes-Pereira, J.; Páscoa, J.C.; Lanceros-Mendez, S. Long-Lasting Ceramic Composites for Surface Dielectric Barrier Discharge Plasma Actuators. J. Eur. Ceram. Soc.
**2023**, 43, 6112–6121. [Google Scholar] [CrossRef] - Huang, J.; Corke, T.C.; Thomas, F.O. Plasma actuators for separation control of low-pressure turbine blades. AIAA J.
**2016**, 44, 51–57. [Google Scholar] [CrossRef] - Das Gupta, A.; Roy, S. Effect of plasma actuator control parameters on a transitional flow. J. Phys. D Appl. Phys.
**2018**, 51, 135204. [Google Scholar] [CrossRef] - Mclaughlin, T.E.; Munska, M.D.; Vaeth, J.P.; Dauwalter, T.E.; Goode, J.R.; Siegeli, S.G. Plasma-Based Actuators for Cylinder Wake Vortex Control. In Proceedings of the 2nd AIAA Flow Control Conference, Portland, OR, USA, 28 June–1 July 2004. [Google Scholar] [CrossRef]
- Anzalotta, C.; Joshi, K.; Fernandez, E.; Bhattacharya, S. Effect of forcing the tip-gap of a NACA0065 airfoil us-ing plasma actuators: A proof-of-concept study. Aerosp. Sci. Technol.
**2020**, 107, 106268. [Google Scholar] [CrossRef] - Bhattacharya, S.; Gregory, J.W. The optimum wavelength of spanwise segmented plasma actuator forcing of a circular cylinder wake. In Proceedings of the 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Grapevine, TX, USA, 7–10 January 2013. [Google Scholar] [CrossRef]
- Joshi, K.; Latrobe, B.; Bhattacharya, S. Altering the wake dynamics of a circular cylinder with harmonic forcing. Phys. Fluids
**2023**, 35, 65139. [Google Scholar] [CrossRef] - Joshi, K.; Bhattacharya, S. Large-eddy simulation of the effect of distributed plasma forcing on the wake of a circular cylinder. Comput. Fluids
**2019**, 193, 104295. [Google Scholar] [CrossRef] - Kopiev, V.F.; Kazansky, P.N.; Kopiev, V.A.; Moralev, I.A.; Zaytsev, M.Y. HF DBD Plasma Actuators for Reduction of Cylinder Noise in Flow. J. Phys. D Appl. Phys.
**2017**, 50, 475204. [Google Scholar] [CrossRef] - Neretti, G.; Cristofolini, A.; Borghi, C.A. Experimental investigation on a vectorized aerodynamic dielectric barrier discharge plasma actuator array. J. Appl. Phys.
**2014**, 115, 163304. [Google Scholar] [CrossRef] - Benmoussa, A.; Páscoa, J.C. Enhancement of a Cycloidal Self-Pitch Vertical Axis Wind Turbine Performance Through DBD Plasma Actuators at Low Tip Speed Ratio. Int. J. Thermofluids
**2023**, 17, 100258. [Google Scholar] [CrossRef] - Kaneko, Y.; Nishida, H.; Tagawa, Y. Visualization of the Electrohydrodynamic and Thermal Effects of AC-DBD Plasma Actuators of Plate- and Wire-Exposed Electrodes. Actuators
**2022**, 11, 38. [Google Scholar] [CrossRef] - Meng, X.; Hu, H.; Li, C.; Abbasi, A.A.; Cai, J.; Hu, H. Mechanism study of coupled aerodynamic and thermal effects using plasma actuation for anti-icing. Phys. Fluids
**2019**, 31, 37103. [Google Scholar] [CrossRef] - Xie, L.; Liang, H.; Zong, H.; Liu, X.; Li, Y. Multipurpose distributed dielectric-barrier-discharge plasma actuation: Icing sensing, anti-icing, and flow control in one. Phys. Fluids
**2022**, 34, 71701. [Google Scholar] [CrossRef] - Zhong, Y.; Jin, Z.; Chen, M.; Yang, Z. An experimental investigation of the thermal effects in AC-DBD plasma actuator on the melting process of an ice bead. Exp. Therm. Fluid Sci.
**2023**, 147, 110950. [Google Scholar] [CrossRef] - Yun, C.Y.; Park, I.K.; Hwang, I.N.S.; Kim, S.J. Thrust Control Mechanism of VTOL UAV Cyclocopter with Cycloidal Blades System. J. Intell. Mater. Syst. Struct.
**2005**, 16, 937–943. [Google Scholar] [CrossRef] - Shyy, W.; Jayaraman, B.; Andersson, A. Modeling of Glow Discharge-Induced Fluid Dynamics. J. Appl. Phys.
**2002**, 92, 6434–6443. [Google Scholar] [CrossRef] - Abdelraouf, H.; Elmekawy, A.M.N.; Kassab, S.Z. Simulations of flow separation control numerically using different plasma actuator models. Alex. Eng. J.
**2020**, 59, 3881–3896. [Google Scholar] [CrossRef] - Suzen, Y.B.; Huang, P.G. Simulations of flow separation control using plasma actuators. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006; Volume 14, pp. 10456–10464. [Google Scholar] [CrossRef]
- De Giorgi, M.G.; Motta, V.; Suma, A. Influence of actuation parameters of multi-DBD plasma actuators on the static and dynamic behaviour of an airfoil in unsteady flow. Aerosp. Sci. Technol.
**2020**, 96, 105587. [Google Scholar] [CrossRef] - Yu, H.; Zheng, J. Numerical investigation of control of dynamic stall over a NACA0015 airfoil using dielectric barrier discharge plasma actuators. Phys. Fluids
**2020**, 32, 35103. [Google Scholar] [CrossRef] - Ma, L.; Wang, X.; Zhu, J.; Kang, S. Dynamic Stall of a Vertical-Axis Wind Turbine and Its Control Using Plasma Actuation. Energies
**2019**, 12, 3738. [Google Scholar] [CrossRef] - Daraee, M.A.; Abbasi, S. A novel approach to performance improvement of a VAWT using plasma actuators. J. Clean. Prod.
**2023**, 424, 138876. [Google Scholar] [CrossRef] - Yoon, J.-S.; Han, J.-H. Semiempirical Thrust Model of Dielectric Barrier Plasma Actuator for Flow Control. J. Aerosp. Eng.
**2013**, 28, 04014041. [Google Scholar] [CrossRef] - Abdollahzadeh, M.; Páscoa, J.C.; Oliveira, P.J. Modified Split-Potential Model for Modeling the Effect of DBD Plasma Actuators in High Altitude Flow Control. Curr. Appl. Phys.
**2014**, 14, 1160–1170. [Google Scholar] [CrossRef] - Roth, J.R.; Sherman, D.M.; Wilkinson, S.P. Electrohydrodynamic Flow Control with a Glow-Discharge Surface Plasma. AIAA J.
**2000**, 38970, 1166–1177. [Google Scholar] [CrossRef] - Tang, J.; Hu, Y.; Song, B. Investigation on the Unsteady Aerodynamics of Cycloidal Propeller in Hovering Flight. J. Intell. Robot. Syst.
**2015**, 229, 2519–2536. [Google Scholar] [CrossRef] - Rezaeiha, A.; Montazeri, H.; Blocken, B. On the Accuracy of Turbulence Models for CFD Simulations of Vertical Axis Wind Turbines. Energy
**2019**, 180, 838–857. [Google Scholar] [CrossRef] - Shi, L.; Wang, Y.; Bayeul-Lainé, A.C.; Coutier-Delgosha, O. Effect of Time-Varying Freestream on Performance and Vortex Dynamics of Forward and Reversed Pitching Airfoils. J. Fluids Struct.
**2022**, 110, 103508. [Google Scholar] [CrossRef] - Zare Chavoshi, M.; Ebrahimi, A. Plasma Actuator Effects on the Flow Physics of Dynamic Stall for a Vertical Axis Wind Turbine. Phys. Fluids
**2022**, 34, 075131. [Google Scholar] [CrossRef] - Zhou, D.; Zhou, D.; Xu, Y.; Sun, X. Performance enhancement of straight-bladed vertical axis wind turbines via active flow control strategies: A review. Meccanica.
**2022**, 57, 255–282. [Google Scholar] [CrossRef] - Wills, D.; Schwaiger, M. D-Dalus. In Proceedings of the US EUCOM Science & Technology Conference, Stuttgart, Germany, 24 April 2012. [Google Scholar]

**Figure 5.**Result comparison of cycloidal rotor thrust as function of rotation speed of CFD model and experiments [81].

**Figure 6.**(

**a**) Modeled body force distribution; (

**b**) velocity profile distribution in different positions, a comparison of CFD and Shyy data [66].

**Figure 7.**Downwash velocity contour and streamlines around the cyclorotor blades at different times: (

**a**) $t=1.92\mathrm{s}$; (

**b**) $t=5.76\mathrm{s}$; (

**c**) $t=9.6\mathrm{s}$.

**Figure 8.**Pressure coefficient contour of the cyclorotor blades at different azimuth positions during a complete revolution.

**Figure 9.**Lift coefficient and pitch angle variation of a cycloidal blade as a function of the azimuth angle.

**Figure 10.**Induced velocity of the inner plasma actuator on a cyclorotor blade at $\Psi =240\xb0$ in quiescent air.

**Figure 11.**Vorticity contour comparison in different azimuth positions: (

**a**) actuation off; (

**b**) inner actuator on; (

**c**) outer actuator on.

**Figure 12.**(

**a**) Effect of plasma actuator side on the lift coefficient; (

**b**) effect of combined control actuation.

**Figure 13.**Effect of plasma actuator on the pressure contour distribution: (

**a**) actuation off; (

**b**) combined control actuation.

**Figure 15.**Effect of plasma actuation on the lift coefficient at different rotational speeds: (

**a**) 200 rpm; (

**b**) 100 rpm.

**Table 1.**IAT21 L3 rotor parameters [81].

Variable | Value |
---|---|

Profile | NACA 0016 |

Number of blades | 6 |

Rotor radius (R) | 0.6 m |

Chord (c) | 0.3 m |

Pitching axis | 0.105 m |

Control rod length (L) | 0.61 m |

Magnitude of eccentricity (e) | 0.072 m |

Eccentricity phase angle (ε) | 0° |

Control rod distance (d) | 0.12 m |

Pitching angle extremities (${\theta}_{max},{\theta}_{min}$) | 36°; −39° |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Benmoussa, A.; Rodrigues, F.F.; Páscoa, J.C.
Plasma Actuators for Cycloidal Rotor Thrust Vectoring Enhancement in Airships. *Actuators* **2023**, *12*, 436.
https://doi.org/10.3390/act12120436

**AMA Style**

Benmoussa A, Rodrigues FF, Páscoa JC.
Plasma Actuators for Cycloidal Rotor Thrust Vectoring Enhancement in Airships. *Actuators*. 2023; 12(12):436.
https://doi.org/10.3390/act12120436

**Chicago/Turabian Style**

Benmoussa, Amine, Frederico F. Rodrigues, and José C. Páscoa.
2023. "Plasma Actuators for Cycloidal Rotor Thrust Vectoring Enhancement in Airships" *Actuators* 12, no. 12: 436.
https://doi.org/10.3390/act12120436