The Speculative Neuroscience of the Future Human Brain
Abstract
:Introduction
Evolution of the Human Brain
Brain Machine Interface (BMI)
Less than a decade ago, hardly anyone could have predicted that attempts to build direct functional interfaces between brains and artificial devices, such as computers and robotic limbs, would have succeeded so readily, and in the process would have led to the establishment of a new area at the frontier of systems neuroscience.([91], p. 536)
- Obtaining stable, very long-term recordings (i.e., over years) of large populations of neurons (i.e., hundreds to thousands) from multiple brain areas. This task encourages development of a new generation of biocompatible 3D electrode matrices that yield thousands of channels of recordings while producing little tissue damage at implantation and minimal inflammatory reaction thereafter.
- Developing computationally efficient algorithms, that can be incorporated into the BMI software, for translating neuronal activity into high-precision command signals capable of controlling an artificial actuator that has multiple degrees of freedom.
- Learning how to use brain plasticity to incorporate prosthetic devices into the body representation. This will make the prosthetic feel like the subject’s own limb.
- Implementing a new generation of upper-limb prosthetics, capable of accepting brain-derived control signals to perform movements with multiple degrees of freedom ([91], p. 539).
I suddenly hear a sharp, pure beep somewhere in my head. It’s a single electrode being fired an inch and a half inside my skull. It surprises me so much that my head jerks back and my whole body seizes up.([169], p. 50)
Nootropics
- (i)
- directly activate the integrative activities of the brain, having a positive action on the mind
- (ii)
- act selectively on the telencephalon and not manifest itself on lower brain levels
- (iii)
Genes, Brain and Behavior
Artificial Intelligence
- The ability to categorize and to describe portions of the continuous world around us as separate entities and relations between them. The symbolic approach is best suitable for modeling this aspect—it describes human knowledge of the world as a system of discrete symbolic structures and human cognitive processes as processes of building and manipulation of such structures
- The dynamic properties of all cognitive processes which are characterized by continuous and smooth changes of the mental state following both the internal dynamics of the cognitive system itself and the external dynamics of the continuously changing environment
Kokinov is referring to building hybridization into single unit level workings of an artificial neural network so that bottom up causality will naturally lead to hybridization at the global level. To achieve this, a cognitive architecture consisting of a huge number of small elements (called micro-agents) each of them being hybrid (i.e., consisting of a symbolic and a connectionist part) is proposed. The implication of this cognitive model for the human brain is that hybridization events at the single unit level—the level of the neuron and smaller, the molecular level—filter upwards through the neural network to produce everything from symbolic processing to consciousness.“… the micro-level hybridization approach is a particular type of horizontal integration which follows the general philosophy that it is a matter of principle to use two different and complementary formalisms (a discrete and a continuous one) for describing and explaining human cognition and which integrates symbolic and connectionist mechanisms in modeling every cognitive process and therefore it is crucial to ground the hybridization on the micro level”.([282], p. 3)
[…] all known life achieves universality (at least in a limited sense) by utilizing the digital sequence structure of informational polymers (i.e., DNA). Such universality would be exceedingly difficult to engineer in an analog-only system given the challenges associated with building reaction networks where each (programmed) reaction is chemically orthogonal to all other reactions. Orthogonality is, by comparison, relatively easy to achieve with digitized switches. Control is therefore much easier to achieve in an analog system with digital switches than in a solely analog system. Taking all of these factors into account, it is clear that analog-only systems are not capable of adaptation in the same way as living systems are.([283], p. 3)
Nanotechnology
Cryonics is based on the anticipation that technologically advanced scientific procedures and nanotechnology will one day be available to revive cryopreserved humans and restore them to good health. With nanotechnology, it is anticipated that cell-sized machines will be developed in the future to repair damage or cure ageing and disease at the cellular level, including any potential damage from the cryopreservation process itself.([291], p. 1)
A rough estimate on the available bandwidth indicates that a million transmitters could be monitored through each patch of the brain surface with size equal to the radio wavelength. The factor of a million is the ratio between the radio bandwidth, of the order of hundreds of millions of cycles per second, and the bandwidth of a neuron, of the order of hundreds of cycles.([292], p. 134)
Mind Uploading/Downloading, Embodiment/Disembodiment
Conclusions
Conflict of Interest
References
- Arthur Saniotis, and Maciej Henneberg. “Future evolution of the human brain.” Journal of Futures Studies 16 (2011): 1–18. [Google Scholar]
- Steven Rose. The Future of the Brain: The Promise and Perils of Tomorrow’s Neuroscience. New York: Oxford University Press, 2005. [Google Scholar]
- Ian Pearson. “The future of life. Creating natural, artificial, synthetic and virtual organisms.” EMBO Reports 9 (2008): S75–S77. [Google Scholar] [CrossRef] [PubMed]
- Nick Bostrom. “Human genetic enhancements: A Transhumanist perspective.” Journal of Value Inquiry 37 (2003): 493–506. [Google Scholar] [CrossRef] [PubMed]
- Ray Kurzweil. The Age of Intelligent Machines. Cambridge: The MIT Press, 1992. [Google Scholar]
- Hans Moravec. “The age of robots.” June 1993. Available online: http://www.frc.ri.cmu.edu/~hpm/project.archive/general.articles/1993/Robot93.html (accessed on 18 November 2012).
- Vince Cakic. “Smart drugs for cognitive enhancement: Ethical and pragmatic considerations in the era of cosmetic neurology.” Journal of Medical Ethics 35 (2009): 611–15. [Google Scholar] [CrossRef] [PubMed]
- Martha J. Farah, Judy Illes, Robert Cook-Deegan, Howard Gardner, Eric Kandel, Patricia King, Eric Parens, Barbara Sahakian, and Paul R. Wolpe. “Neurocognitive enhancement: What can we do and what should we do? ” Nature Reviews Neuroscience 5 (2004): 421–25. [Google Scholar] [CrossRef] [PubMed]
- Anders Sandberg, and Nick Bostrom. “Converging cognitive enhancements.” Annals of the New York Academy of Sciences 1093 (2006): 201–27. [Google Scholar] [CrossRef] [PubMed]
- Francis Fukuyama. Our Posthuman Future: Consequences of the Biotechnology Revolution. New York: Farrar, Straus and Giroux, 2002. [Google Scholar]
- Susan Greenfield. Tomorrow’s People: How 21st-Century Technology is Changing the Way We Think and Feel. London: Penguin Books, 2004. [Google Scholar]
- Gary Small, and Vorgan Gigi. iBrain: Surviving the Technological Alteration of the Modern Mind. New York: Collins Living, 2008. [Google Scholar]
- Aylwyn Scally, Julien Y. Dutheil, LaDeana W. Hillier, Gregory E. Jordan, Ian Goodhead, Javier Herrero, Asger Hobolth, Tuuli Lappalainen, Thomas Mailund, Tomas Marques-Bonet, Shane McCarthy, Stephen H. Montgomery, Petra C. Schwalie, Y. Amy Tang, Michelle C. Ward, Yali Xue, Bryndis Yngvadottir, Can Alkan, Lars N. Andersen, Qasim Ayub, Edward V. Ball, Kathryn Beal, Brenda J. Bradley, Yuan Chen, Chris M. Clee, Stephen Fitzgerald, Tina A. Graves, Yong Gu, Paul Heath, Andreas Heger, Emre Karakoc, Anja Kolb-Kokocinski, Gavin K. Laird, Gerton Lunter, Stephen Meader, Matthew Mort, James C. Mullikin, Kasper Munch, Timothy D. O’Connor, Andrew D. Phillips, Javier Prado-Martinez, Anthony S. Rogers, Saba Sajjadian, Dominic Schmidt, Katy Shaw, Jared T. Simpson, Peter D. Stenson, Daniel J. Turner, Linda Vigilant, Albert J. Vilella, Weldon Whitener, Baoli Zhu, David N. Cooper, Pieter de Jong, Emmanouil T. Dermitzakis, Evan E. Eichler, Paul Flicek, Nick Goldman, Nicholas I. Mundy, Zemin Ning, Duncan T. Odom, Chris P. Ponting, Michael A. Quail, Oliver A. Ryder, Stephen M. Searle, Wesley C. Warren, Richard K. Wilson, Mikkel H. Schierup, Jane Rogers, Chris Tyler-Smith, and Richard Durbin. “Insights into hominid evolution from the gorilla genome sequence.” Nature 483 (2012): 169–75. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Richard D. Wilkinson, Michael E. Steiper, Christophe Soligo, Robert D. Martin, Ziheng Yang, and Simon Tavaré. “Dating primate divergences through an integrated analysis of palaeontological and molecular data.” Systematic Biology 60 (2011): 16–31. [Google Scholar] [CrossRef] [PubMed]
- Richard G. Klein. The Dawn of Human Culture. New York: John Wiley & Sons, 2002. [Google Scholar]
- Richard Wrangham. Catching Fire: How Cooking Made Us Human. New York: Basic Books, 2009. [Google Scholar]
- Francesco Berna, Paul Goldberg, Liora Kolska Horwitz, James Brink, Sharon Holt, Marion Bamford, and Michael Chazan. “Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa.” Proceedings of the National Academy of Sciences USA 109 (2012): E1215–20. [Google Scholar] [CrossRef] [PubMed]
- Peter B. Beaumont. “The edge: More on fire-making by about 1.7 Million years ago at Wonderwerk cave in South Africa.” Current Anthropology 52 (2011): 585–95. [Google Scholar] [CrossRef]
- Robert G. Bednarik. “The earliest evidence of ocean navigation.” International Journal of Nautical Archaeology 26 (1997): 183–91. [Google Scholar] [CrossRef]
- Helmut Ziegert. “A new dawn for humanity – Lower Palaeolithic village life in Libya and Ethiopia.” Minerva—The International Review of Ancient Art & Archaeology 18 (2007): 8–9. [Google Scholar]
- Dietrich Mania. “The Elbe-Saale region (Germany).” In The earliest occupation of Europe. Edited by W. Roebroeks and T. van Kolfschoten. Leiden: University of Leiden, 1995, pp. 85–101. [Google Scholar]
- Robert G. Bednarik. “Middle Pleistocene beads and symbolism.” Anthropos 100 (2005): 537–52. [Google Scholar]
- Jayne Wilkins, Benjamin J. Schoville, Kyle S. Brown, and Michael Chazan. “Evidence for early hafted hunting technology.” Science 338 (2012): 942–46. [Google Scholar] [PubMed]
- Dietrich Stout, and Thierry Chaminade. “The evolutionary neuroscience of tool making.” Neuropsychologia 45 (2007): 1091–100. [Google Scholar] [CrossRef] [PubMed]
- Jane Goodall. “The behaviour of free-living chimpanzees in the Gombe Stream area.” Animal Behavior Monographs 1 (1968): 161–311. [Google Scholar] [CrossRef]
- Crickette Sanz, and David Morgan. “Complexity of chimpanzee tool using behaviours.” In The Mind of the Chimpanzee: Ecological and Experimental Perspectives. Edited by Elizabeth V. Lonsdorf, Stephen R. Ross and Tetsurō Matsuzawa. Chicago: University of Chicago Press, 2010. [Google Scholar]
- David P. Watts. “Tool use by chimpanzees at Ngogo, Kibale National Park, Uganda.” International Journal of Primatology 29 (2008): 83–94. [Google Scholar] [CrossRef]
- H. Lyn White Miles. “Me Chantek: The development of self-awareness in a signing orangutan.” In Self-Awareness in Animals and Humans: Developmental Perspectives. Edited by Sue T. Parker, Robert W. Mitchell and Maria L. Boccia. New York: Cambridge University Press, 1995, pp. 254–72. [Google Scholar]
- Francine G. Patterson, and Wendy Gordon. “The case for personhood of gorillas.” In The Great Ape Project: Equality Beyond Humanity. Edited by Paola Cavalieri and Peter Singer. New York: St. Martin’s Griffin, 1993, pp. 58–77. [Google Scholar]
- G. C. Westergaard, and Charles W. Hyatt. “The responses of bonobos (Pan paniscus) to their mirror images: Evidence of self-recognition.” Human Evolution 9 (1994): 273–79. [Google Scholar] [CrossRef]
- Josep Call, and Michael Tomasello. “Does the chimpanzee have a theory of mind? 30 years later.” Trends in Cognitive Sciences 12 (2008): 187–92. [Google Scholar] [CrossRef] [PubMed]
- Charles R. Menzel. “Unprompted recall and reporting of hidden objects by a chimpanzee (Pan troglodytes) after extended delays.” Journal of Comparative Psychology 113 (1999): 426–34. [Google Scholar] [CrossRef] [PubMed]
- Martin Schmelz, Josep Call, and Michael Tomasello. “Chimpanzees know that others make inferences.” Proceedings of the National Academy of Sciences USA 108 (2011): 3077–79. [Google Scholar] [CrossRef] [PubMed]
- Josep Call, and Michael Tomasello. “Reasoning and thinking in nonhuman primates.” In The Cambridge Handbook of Thinking and Reasoning. Edited by Keith J. Holyoak and Robert G. Morrison. Cambridge: Cambridge University Press, 2005, pp. 607–32. [Google Scholar]
- Victoria Horner, and Andrew Whiten. “Causal knowledge and imitation/emulation switching in chimpanzees (Pan troglodytes) and children (Homo sapiens).” Animal Cognition 8 (2005): 164–81. [Google Scholar] [CrossRef] [PubMed]
- Daniel J. Povinelli. Folk Physics for Apes: The Chimpanzee’s Theory of How the World Works. Oxford: Oxford University Press, 2000. [Google Scholar]
- Victoria Horner, and Andrew Whiten. “Learning from others’ mistakes? Limits on understanding a trap-tube task by young chimpanzees (Pan troglodytes) and children (Homo sapiens).” Journal of Comparative Psychology 121 (2007): 12–21. [Google Scholar] [CrossRef] [PubMed]
- Masao Kawai. “Newly-acquired pre-cultural behavior of the natural troop of Japanese monkeys on Koshima islet.” Primates 6 (1965): 1–30. [Google Scholar] [CrossRef]
- Sarah Marshall-Pescini, and Andrew Whiten. “Social learning of nut-cracking behavior in East African sanctuary-living chimpanzees (Pan troglodytes schweinfurthii).” Journal of Comparative Psychology 122 (2008): 186–94. [Google Scholar] [CrossRef] [PubMed]
- Christophe Boesch. “Cooperative hunting in wild chimpanzees.” Animal Behaviour 48 (1994): 653–67. [Google Scholar] [CrossRef]
- Frans de Waal. “Coalitions as part of reciprocal relations in the Arnhem chimpanzee colony.” In Coalitions and Alliances in Humans and Other Animals. Edited by Alexander H. Harcourt and Frans B. M. de Waal. Oxford: Oxford University Press, 1992, pp. 233–57. [Google Scholar]
- Alicia P. Melis, Brian Hare, and Michael Tomasello. “Engineering cooperation in chimpanzees: Tolerance constraints on cooperation.” Animal Behaviour 72 (2006): 275–86. [Google Scholar] [CrossRef]
- Roger S. Fouts. “Acquisition and testing of gestural signs in four young chimpanzees.” Science 180 (1973): 978–80. [Google Scholar] [CrossRef] [PubMed]
- R. Allen Gardner, and Beatrice T. Gardner. “Teaching Sign Language to a Chimpanzee.” Science 165 (1969): 664–72. [Google Scholar] [CrossRef] [PubMed]
- N. N. Ladygina-Kohts. Infant Chimpanzee and Human Child: A Classic 1935 Comparative Study of Ape Emotions and Intelligence. Edited by Frans B. M. de Waal. Translated by Boris Vekker. Oxford: Oxford University Press, 2002. [Google Scholar]
- H. Lyn White Miles. “Acquisition of gestural signs by an infant orangutan (Pongo pygmaeus).” In Presented at Infant development. Symposium conducted at the 3rd annual meeting of the American Society of Primatologists, Winston-Salem, NC, USA, 1980. Chaired by Leonard A. Rosenblum.
- Francine G. Patterson. “The gestures of a gorilla: Language acquisition in another pongid.” Brain and Language 5 (1978): 72–97. [Google Scholar] [CrossRef]
- Ann J. Premack, and David Premack. “Teaching Language to an Ape.” Scientific American 227 (1972): 92–99. [Google Scholar] [CrossRef]
- Duane Rumbaugh, Timothy V. Gill, and Ernst von Glasersfeld. “Reading and sentence completion by a chimpanzee (Pan).” Science 182 (1973): 731–33. [Google Scholar] [CrossRef] [PubMed]
- Sana Inoue, and Tetsurō Matsuzawa. “Working memory of numerals in chimpanzees.” Current Biology 17 (2007): R1004–05. [Google Scholar] [CrossRef] [PubMed]
- Tomas Persson. Pictorial Primates: A Search for Iconic Abilities in Great Apes. Lund: Lund University, 2008. [Google Scholar]
- Nicholas J. Mulcahy, and Josep Call. “Apes save tools for future use.” Science 312 (2006): 1038–40. [Google Scholar] [CrossRef] [PubMed]
- Mathias Osvath, and Helena Osvath. “Chimpanzee (Pan troglodytes) and orangutan (Pongo abelii) forethought: self-control and pre-experience in the face of future tool use.” Animal Cognition 11 (2008): 661–74. [Google Scholar] [CrossRef] [PubMed]
- Thomas Suddendorf, and Janie Busby. “Mental time travel in animals? ” Trends in Cognitive Sciences 7 (2003): 391–96. [Google Scholar] [CrossRef]
- Josep Call. “Do apes know that they could be wrong? ” Animal Cognition 13 (2010): 689–700. [Google Scholar] [CrossRef] [PubMed]
- Robert R. Hampton. “Multiple demonstrations of metacognition in nonhumans: Converging evidence or multiple mechanisms? ” Comparative Cognition & Behavior Reviews 4 (2009): 17–28. [Google Scholar] [CrossRef]
- Tetsurō Matsuzawa. “Chimpanzee Ai and her son Ayumu: An episode of education by master-apprenticeship.” In The Cognitive Animal: Empirical and Theoretical Perspectives on Animal Cognition. Edited by Marc Bekoff, Colin Allen and Gordon M. Burghardt. Cambridge, MA: MIT Press, 2002, pp. 189–95. [Google Scholar]
- Benjamin Y. Hayden, and Michael L. Platt. “Animal cognition: Great apes wait for grapes.” Current Biology 17 (2007): R922–23. [Google Scholar] [CrossRef] [PubMed]
- William D. Hopkins, Jared P. Taglialatela, and David A. Leavens. “Do chimpanzees have voluntary control of their facial expressions and vocalizations? ” In Primate Communication and Human Language: Vocalisation, Gestures, Imitation and Deixis in Humans and Non-Humans. Edited by Anne Vilain, Jean-Luc Schwartz, Christian Abry and Jacques Vauclair. Amsterdam: John Benjamins Publishing Company, 2011, pp. 71–88. [Google Scholar]
- Wayne Christensen. “The evolutionary origins of volition.” In Distributed Cognition and the Will: Individual Volition and Social Context. Edited by Don Ross, David Spurrett, Harold Kincaid and G. Lynn Stephens. Cambridge: MIT Press, 2007, pp. 255–88. [Google Scholar]
- Sally T. Boysen, Gary G. Bernston, M. B. Hannan, and John T. Cacioppo. “Quantity-based interference and symbolic representations in chimpanzees (Pan troglodytes).” Journal of Experimental Psychology: Animal Behavior Processes 22 (1996): 76–86. [Google Scholar] [CrossRef] [PubMed]
- Patrick D. Evans, Jeffrey R. Anderson, Eric J. Vallender, Sun Shim Choi, and Bruce T. Lahn. “Reconstructing the evolutionary history of microcephalin, a gene controlling human brain size.” Human Molecular Genetics 13 (2004): 1139–45. [Google Scholar] [CrossRef] [PubMed]
- Nitzan Mekel-Bobrov, Sandra L. Gilbert, Patrick D. Evans, Eric J. Vallender, Jeffrey R. Anderson, Richard R. Hudson, Sarah A. Tishkoff, and Bruce T. Lahn. “Ongoing adaptive evolution of ASPM, a brain size determinant in Homo sapiens.” Science 309 (2005): 1720–22. [Google Scholar] [CrossRef] [PubMed]
- Timothy C. Bates, Michelle Luciano, Penelope A. Lind, Margaret J. Wright, Grant W. Montgomery, and Nicholas G. Martin. “Recently-derived variants of brain-size genes ASPM, MCPH1, CDK5RAP and BRCA1 not associated with general cognition, reading or language.” Intelligence 36 (2008): 689–93. [Google Scholar] [CrossRef]
- Natalay Kouprina, Adam Pavlicek, Ganeshwaran H. Mochida, Gregory Solomon, William Gersch, Young-Ho Yoon, Randall Collura, Maryellen Ruvolo, J. Carl Barrett, C. Geoffrey Woods, Christopher A. Walsh, Jerzy Jurka, and Vladimir Larionov. “Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion.” PLoS Biology 2 (2004): E126. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jianzhi Zhang. “Evolution of the human ASPM gene, a major determinant of brain size.” Genetics 165 (2003): 2063–70. [Google Scholar] [PubMed]
- Wolfgang Enard, Molly Przeworski, Simon. Fisher, Cecilia S. Lai, Victor Wiebe, Takashi. Kitano, Anthony P. Monaco, and Svante Pääbo. “Molecular evolution of FOXP2, a gene involved in speech and language.” Nature 418 (2002): 869–72. [Google Scholar] [CrossRef] [PubMed]
- Kay D. MacDermot, Elena Bonora, Nuala Sykes, Anne-Marie Coupe, Cecilia S. L. Lai, Sonja C. Vernes, Faraneh Vargha-Khadem, Fiona McKenzie, Robert L. Smith, and Anthony P. Monaco. “Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits.” American Journal of Human Genetics 76 (2005): 1074–80. [Google Scholar] [CrossRef] [PubMed]
- Cecilia S. L. Lai, Simon E. Fisher, Jane A. Hurst, Faraneh Vargha-Khadem, and Anthony P. Monaco. “A forkhead-domain gene is mutated in a severe speech and language disorder.” Nature 413 (2001): 519–23. [Google Scholar] [CrossRef] [PubMed]
- Sonja C. Vernes, Peter L. Oliver, Elizabeth Spiteri, Helen E. Lockstone, Rathi Puliyadi, Jennifer M. Taylor, Joses Ho, Cedric Mombereau, Ariel Brewer, Ernesto Lowy, and et al. “Foxp2 regulates gene networks implicated in neurite outgrowth in the developing brain.” PLoS Genetics 7 (2011): e1002145. [Google Scholar] [CrossRef] [PubMed]
- Gang Li, Jinhong Wang, Stephen J. Rossiter, Gareth Jones, and Shuyi Zhang. “Accelerated FOXP2 evolution in echolocating bats.” PLoS One 2 (2007): e900. [Google Scholar] [CrossRef] [PubMed]
- Wolfgang Enard, S. Gehre, K. Hammerschmidt, S. M. Holter, T. Blass, M. Somel, M. K. Bruckner, C. Schreiweis, C. Winter, R. Sohr, and et al. “A humanized version of FOXP2 affects cortico-basal ganglia circuits in mice.” Cell 137 (2009): 961–71. [Google Scholar] [CrossRef] [PubMed]
- Fred H. Previc. “Dopamine and the origins of human intelligence.” Brain and Cognition 41 (1999): 299–350. [Google Scholar] [CrossRef] [PubMed]
- Mary A. Raghanti, Cheryl D. Stimpson, Jennifer L. Marcinkiewicz, Joseph M. Erwin, Patrick R. Hof, and Chet C. Sherwood. “Cortical dopaminergic innervation among humans, chimpanzees, and macaque monkeys: A comparative study.” Neuroscience 155 (2008): 203–20. [Google Scholar] [CrossRef] [PubMed]
- Jose A Obeso, Maria Cruz Rodríguez-Oroz, Beatriz Benitez-Temino, Franscisco J Blesa, Jorge Guridi, Concepció Marin, and Manuel Rodriguez. “Functional organization of the basal ganglia: Therapeutic implications for Parkinson's disease.” Movement Disorders 23 (2008): S548–59. [Google Scholar] [CrossRef] [PubMed]
- Lars Bäckman, T. B. Robins-Wahlin, A. Lundin, N. Ginovart, and L. Farde. “Cognitive deficits in Huntington's disease are predicted by dopaminergic PET markers and brain volumes.” Brain 120 (1997): 2207–17. [Google Scholar] [CrossRef] [PubMed]
- Marilyn C. Welsh, Bruce F. Pennington, Sally Ozonoff, Bobbye Rouse, and Edward R.B. McCabe. “Neuropsychology of early-treated phenylketonuria: Specific executive function deficits.” Child Development 61 (1990): 1697–713. [Google Scholar] [CrossRef] [PubMed]
- Boadie. W. Dunlop, and Charles B. Nemeroff. “The role of dopamine in the pathophysiology of depression.” Archives of General Psychiatry 64 (2007): 327–37. [Google Scholar] [CrossRef] [PubMed]
- Nora D. Volkow, Gene-Jack Wang, Jeffrey Newcorn, Frank Telang, Mary V. Solanto, Joanna S. Fowler, Jean Logan, Yeming Ma, Kurt Schulz, Kith Pradhan, Christopher Wong, and James M. Swanson. “Depressed dopamine activity in caudate and preliminary evidence of limbic involvement in adults with attention-deficit/hyperactivity disorder.” Archives of General Psychiatry 64 (2007): 932–40. [Google Scholar] [CrossRef] [PubMed]
- Ralph L. Holloway Jr. “The evolution of the human brain: Some notes toward a synthesis between neural structure and the evolution of complex behavior.” General Systems 12 (1967): 3–19. [Google Scholar]
- Giulio Tononi, Gerald M. Edelman, and Olaf Sporns. “Complexity and coherency: Integrating information in the brain.” Trends in Cognitive Sciences 2 (1998): 474–84. [Google Scholar] [CrossRef]
- Gerhard Roth, and Ursula Dicke. “Evolution of the brain and intelligence.” Trends in Cognitive Sciences 9 (2005): 250–57. [Google Scholar] [CrossRef] [PubMed]
- Genevieve Konopkasend, Tara Friedrich, Jeremy Davis-Turak, Kellen Winden, Michael C. Oldham, Fuying Gao, Leslie Chen, Guang-Zhong Wang, Rui Luo, Todd M. Preuss, and Daniel H. Geschwindsend. “Human-specific transcriptional networks in the brain.” Neuron 75 (2012): 601–17. [Google Scholar] [CrossRef] [PubMed]
- Maciej Henneberg. “Decrease of human skull size in the Holocene.” Human Biology 60 (1988): 395–405. [Google Scholar] [PubMed]
- Kenneth L. Beals, Courtland L. Smith, and Stephen M. Dodd. “Brain size, cranial Morphology, climate, and time machines.” Current Anthropology 25 (1984): 301–30. [Google Scholar] [CrossRef]
- F.L. Bookstein, K. Schaefer, H. Prossinger, M. Fieder, H. Seidler, C. Stringer, G. W. Weber, J. L. Arsuaga, D. E. Slice, F. J. Rohlf, W. Recheis, A. J. Mariam, and L. F. Marcus. “Comparing frontal cranial profiles in archaic and modern homo by morphometric analysis.” The Anatomical Record (New Anatomist) 257 (1999): 217–24. [Google Scholar] [CrossRef]
- Maciej Henneberg. “Evolution of the human brain: Is bigger better? ” Clinical and Experimental Pharmacology and Physiology 25 (1998): 745–49. [Google Scholar] [CrossRef] [PubMed]
- Robert G. Bednarik. “The Human Condition.” In Developments in Primatology: Progress and Prospects. Edited by Louise Barrett. New York: Springer, 2011. [Google Scholar]
- Garrett B. Stanley, Fei F. Li, and Yang Dan. “Reconstruction of natural scenes from ensemble responses in the lateral geniculate nucleus.” Journal of Neuroscience 19 (1999): 8036–42. [Google Scholar] [PubMed]
- John K. Chapin, Karen A. Moxon, Ronald S. Markowitz, and Miguel A. L. Nicolelis. “Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex.” Nature Neuroscience 2 (1999): 664–70. [Google Scholar] [CrossRef] [PubMed]
- Mikhail A. Lebedev, and Miguel A. L. Nicolelis. “Brain-machine interfaces: Past, present and future.” Trends in Neurosciences 29 (2006): 536–46. [Google Scholar] [CrossRef] [PubMed]
- Walter J. Freeman. “Distribution in time and space of prepyriform electrical activity.” Journal of Neurophysiology 22 (1959): 644–65. [Google Scholar] [PubMed]
- B. E. Swartz, and E. S. Goldensohn. “Timeline of the history of EEG and associated fields.” Electroencephalography and Clinical Neurophysiology 106 (1998): 173–76. [Google Scholar] [PubMed]
- Niels Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, B. Kotchoubey, A. Kubler, J. Perelmouter, E. Taub, and H. Flor. “A spelling device for the paralysed.” Nature 398 (1999): 297–98. [Google Scholar] [CrossRef] [PubMed]
- Iñaki Iturrate, Javier M. Antelis, Andrea Kübler, and Javier Minguez. “A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation.” IEEE Transactions on Robotics 25 (2009): 614–27. [Google Scholar] [CrossRef]
- Payam Aghaei Pour, Tauseef Gulrez, Omar Alzoubi, Gaetano Gargiulo, and Rafael A. Calvo. “Brain-computer interface: Next generation thought controlled distributed video game development platform.” Computational Intelligence and Games, Perth, Australia, 15–18 December, 2008. IEEE, 2008, 251–57. [Google Scholar]
- Jonathan R. Wolpaw, and Dennis J. McFarland. “Control of a two-dimensional movement signal by a noninvasive brain–computer interface in humans.” Proceedings of the National Academy of Sciences USA 101 (2004): 17849–54. [Google Scholar] [CrossRef] [PubMed]
- Jonathan R. Wolpaw, Niels Birbaumer, Dennis J. McFarland, Gert Pfurtscheller, and Theresa M. Vaughan. “Brain-computer interfaces for communication and control.” Clinical Neurophysiology 113 (2002): 767–91. [Google Scholar] [CrossRef]
- M.J. van Burik, and M.J. Peters. “Estimation of the electric conductivity from scalp measurements: Feasibility and application to source localization.” Clinical Neurophysiology 111 (2000): 1514–21. [Google Scholar] [CrossRef]
- Ali B. Usakli. “Improvement of EEG signal acquisition: An electrical aspect for state of the art of front end.” Computational Intelligence and Neuroscience 2010 (2010): 1–7. [Google Scholar] [CrossRef] [PubMed]
- I.I. Goncharova, D.J. McFarland, T.M. Vaughan, and Jonathan R. Wolpaw. “EMG contamination of EEG: Spectral and topographical characteristics.” Clinical Neurophysiology 114 (2003): 1580–93. [Google Scholar] [CrossRef]
- Masaki Iwasaki, Christoph Kellinghaus, Andreas V. Alexopoulos, Richard C. Burgess, Arun N. Kumar, Yanning H. Han, Hans O. Lüdersemail, and R. John Leigh. “Effects of eyelid closure, blinks, and eye movements on the electroencephalogram.” Clinical Neurophysiology 116 (2005): 878–85. [Google Scholar] [CrossRef] [PubMed]
- Joseph T. Gwin, Klaus Gramann, Scott Makeig, and Daniel P. Ferris. “Removal of movement artifact from high-density EEG recorded during walking and running.” Journal of Neurophysiology 103 (2010): 3526–34. [Google Scholar] [CrossRef] [PubMed]
- Michael A. Nitsche, Leonardo G. Cohen, Eric M. Wassermann, Alberto Priori, Nicolas Lang, Andrea Antal, Walter Paulus, Friedhelm Hummel, Paulo S. Boggio, Felipe Fregni, and Alvaro Pascual-Leone. “Transcranial direct current stimulation: State of the art 2008.” Brain Stimulation 1 (2008): 206–23. [Google Scholar] [CrossRef] [PubMed]
- Walter Paulus. “Transcranial electrical stimulation (tES-tDCS; tRNS, tACS) methods.” Neuropsychological Rehabilitation 21 (2011): 602–17. [Google Scholar] [CrossRef] [PubMed]
- Roi C. Kadoshsend, Sonja Soskic, Teresa Iuculano, Ryota Kanai, and Vincent Walsh. “Modulating neuronal activity produces specific and long-lasting changes in numerical competence.” Current Biology 20 (2010): 2016–20. [Google Scholar]
- Marom Bikson, Thomas Radman, and Abhishek Datta. “Rational modulation of neuronal processing with applied electric fields.” 28th IEEE Engineering in Medicine & Biology Society Annual International Conference, New York, 30 August–3 September 2006. IEEE Engineering in Medicine & Biology Society 1 (2006): 1616–19. [Google Scholar] [CrossRef]
- Lynn J. Bindman, O.C. Lippold, and J.W. Redfearn. “The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects.” Journal of Physiology 172 (1964): 369–82. [Google Scholar] [CrossRef] [PubMed]
- Yong Hyun Kwon, Myoung-Hwan Ko, Sang Ho Ahn, Yun-Hee Kim, Jun Chan Song, Chu-Hee Lee, Min Cheol Chang, and Sung Ho Jang. “Primary motor cortex activation by transcranial direct current stimulation in the human brain.” Neuroscience Letters 435 (2008): 56–59. [Google Scholar] [CrossRef] [PubMed]
- Nicolas Lang, Hartwig R. Siebner, Nick S. Ward, Lucy Lee, Michael A. Nitsche, Walter Paulus, John C. Rothwell, Roger N. Lemon, and Richard S. Frackowiak. “How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? ” European Journal of Neuroscience 22 (2005): 495–504. [Google Scholar] [CrossRef] [PubMed]
- G. Ardolino, B. Bossi, S. Barbieri, and Alberto Priori. “Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain.” Journal of Physiology 568 (2005): 653–63. [Google Scholar] [CrossRef] [PubMed]
- Lisa Marshall, Matthias Mölle, Manfred Hallschmid, and Jan Born. “Transcranial direct current stimulation during sleep improves declarative memory.” Journal of Neuroscience 24 (2004): 9985–92. [Google Scholar] [CrossRef] [PubMed]
- Jean-Pascal Lefaucheur, Andrea Antal, Rechdi Ahdab, Daniel C. de Andrade, Felipe Fregni, Eman M. Khedr, Michael Nitsche, and Walter Paulus. “The use of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) to relieve pain.” Brain Stimulation 1 (2008): 337–44. [Google Scholar] [CrossRef] [PubMed]
- Paulo S. Boggioa, Soroush Zaghia, and Felipe Fregni. “Modulation of emotions associated with images of human pain using anodal transcranial direct current stimulation (tDCS).” Neuropsychologia 47 (2009): 212–17. [Google Scholar] [CrossRef] [PubMed]
- Paulo S. Boggio, Soroush Zaghi, M. Lopes, and Felipe Fregni. “Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers.” European Journal of Neurology 15 (2008): 1124–30. [Google Scholar] [CrossRef] [PubMed]
- Colleen A. Dockery, Ruth Hueckel-Weng, Niels Birbaumer, and Christian Plewnia. “Enhancement of planning ability by transcranial direct current stimulation.” Journal of Neuroscience 29 (2009): 7271–77. [Google Scholar] [CrossRef] [PubMed]
- Charlotte J. Stagg, and Michael A. Nitsche. “Physiological basis of transcranial direct current stimulation.” Neuroscientist 17 (2011): 37–53. [Google Scholar] [CrossRef] [PubMed]
- Kathrin S. Utz, Violeta Dimova, Karin Oppenländer, and Georg Kerkhoff. “Electrified minds: Transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology–a review of current data and future implications.” Neuropsychologia 48 (2010): 2789–810. [Google Scholar] [CrossRef] [PubMed]
- Julius Fridriksson, H. Isabel Hubbard, and Sarah G. Hudspeth. “Transcranial brain stimulation to treat aphasia: A clinical perspective.” Seminars in Speech and Language 33 (2012): 188–202. [Google Scholar] [CrossRef] [PubMed]
- Tino Zaehle, Pascale Sandmann, Jeremy D. Thorne, Lutz Jäncke, and Christoph S. Herrmann. “Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: Combined behavioural and electrophysiological evidence.” BMC Neuroscience 12 (2011): 2. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gottfried Schlaug, and Vijay Renga. “Transcranial direct current stimulation: A noninvasive tool to facilitate stroke recovery.” Expert Review of Medical Devices 5 (2008): 759–68. [Google Scholar] [CrossRef] [PubMed]
- Roy Hamilton, Samuel Messing, and Anjan Chatterjee. “Rethinking the thinking cap: Ethics of neural enhancement using noninvasive brain stimulation.” Neurology 76 (2011): 187–93. [Google Scholar] [CrossRef] [PubMed]
- Michael C. Ridding, and John C. Rothwell. “Is there a future for therapeutic use of transcranial magnetic stimulation? ” Nature Reviews Neuroscience 8 (2007): 559–67. [Google Scholar] [CrossRef] [PubMed]
- Eric M. Wassermann, and Trelawny Zimmermann. “Transcranial magnetic brain stimulation: Therapeutic promises and scientific gaps.” Pharmacology & Therapeutics 133 (2012): 98–107. [Google Scholar] [CrossRef] [PubMed]
- Mark Hallett. “Transcranial magnetic stimulation: A primer.” Neuron 55 (2007): 187–99. [Google Scholar] [CrossRef] [PubMed]
- Penelope Talelli, Binith J. Cheeran, James T. Teo, and John C. Rothwell. “Pattern-specific role of the current orientation used to deliver Theta Burst Stimulation.” Clinical Neurophysiology 118 (2007): 1815–23. [Google Scholar] [CrossRef] [PubMed]
- Minoru Fujiki, and Oswald Steward. “High frequency transcranial magnetic stimulation mimics the effects of ECS in upregulating astroglial gene expression in the murine CNS.” Brain Research Molecular Brain Research 44 (1997): 301–08. [Google Scholar] [CrossRef]
- Dorit Ben-Shachar, R.H. Belmaker, Nimrod Grisaru, and Ehud Klein. “Transcranial magnetic stimulation induces alterations in brain monoamines.” Journal of Neural Transmission 104 (1997): 191–97. [Google Scholar] [CrossRef] [PubMed]
- H. Tokimura, M.C. Ridding, Y. Tokimura, V.E. Amassian, and John C. Rothwell. “Short latency facilitation between pairs of threshold magnetic stimuli applied to human motor cortex.” Electroencephalography & Clinical Neurophysiology 101 (1996): 263–72. [Google Scholar] [CrossRef]
- T. Kujirai, M.D. Caramia, John C. Rothwell, B.L. Day, P.D. Thompson, A. Ferbert, S. Wroe, P. Asselman, and Charles D. Marsden. “Corticocortical inhibition in human motor cortex.” Journal of Physiology 471 (1993): 501–19. [Google Scholar] [CrossRef] [PubMed]
- Susan M. Fitzpatrick, and Douglas L. Rothman. “Meeting report: Transcranial magnetic stimulation and studies of human cognition.” Journal of Cognitive Neuroscience 12 (2000): 704–09. [Google Scholar] [CrossRef] [PubMed]
- E. M. Robertson, H. Theoret, and Alvaro Pascual-Leone. “Studies in cognition: The problems solved and created by transcranial magnetic stimulation.” Journal of Cognitive Neuroscience 15 (2003): 948–60. [Google Scholar] [CrossRef] [PubMed]
- Lucy Lee, Hartwig Siebner, and Sven Bestmann. “Rapid modulation of distributed brain activity by transcranial magnetic stimulation of human motor cortex.” Behavioural Neurology 17 (2006): 135–48. [Google Scholar] [CrossRef] [PubMed]
- Vahe E. Amassian, Roger Q. Cracco, Paul J. Maccabee, Joan B. Cracco, Alan Rudell, and Larry Eberle. “Suppression of visual perception by magnetic coil stimulation of human occipital cortex.” Electroencephalography and Clinical Neurophysiology 74 (1989): 458–62. [Google Scholar] [CrossRef]
- Charles M. Epstein, Kimford J. Meador, David W. Loring, Randall J. Wright, Joseph D. Weissman, Scott Sheppard, James J. Lah, Frank Puhalovich, Luis Gaitan, and Kent R. Davey. “Localization and characterization of speech arrest during transcranial magnetic stimulation.” Clinical Neurophysiology 110 (1999): 1073–79. [Google Scholar] [CrossRef]
- Sami Bajwa, Felix Bermpohl, Sergio P. Rigonatti, Alvaro Pascual-Leone, Paulo S. Boggio, and Felipe Fregni. “Impaired interhemispheric interactions in patients with major depression.” Journal of Nervous and Mental Disease 196 (2008): 671–77. [Google Scholar] [CrossRef] [PubMed]
- Simone Grimm, Johannes Beck, Daniel Schuepbach, Daniel Hell, Peter Boesiger, Felix Bermpohl, Ludwig Niehaus, Heinz Boeker, and Georg Northoff. “Imbalance between left and right dorsolateral prefrontal cortex in major depression is linked to negative emotional judgment: An fMRI study in severe major depressive disorder.” Biological Psychiatry 63 (2008): 369–76. [Google Scholar] [CrossRef] [PubMed]
- Harold A. Sackeim, Mark S. Greenberg, Andrew L. Weiman, Ruben C. Gur, Jean P. Hungerbuhler, and Norman Geschwind. “Hemispheric asymmetry in the expression of positive and negative emotions. Neurologic evidence.” Archives of Neurology 39 (1982): 210–18. [Google Scholar] [CrossRef] [PubMed]
- Fumiko Maeda, Julian P. Keenan, and Alvaro Pascual-Leone. “Interhemispheric asymmetry of motor cortical excitability in major depression as measured by transcranial magnetic stimulation.” British Journal of Psychiatry 177 (2000): 169–73. [Google Scholar] [CrossRef] [PubMed]
- Mark S. George, Frank Padberg, Thomas E. Schlaepfer, John P. O’Reardon, Paul B. Fitzgerald, Ziad H. Nahas, and Marco A. Marcolin. “Controversy: Repetitive transcranial magnetic stimulation or transcranial direct current stimulation shows efficacy in treating psychiatric diseases (depression, mania, schizophrenia, obsessive-complusive disorder, panic, posttraumatic stress disorder).” Brain Stimulation 2 (2009): 14–21. [Google Scholar] [CrossRef] [PubMed]
- Paul E. Holtzheimer III, William M. McDonald, Mustafa Mufti, Mary E. Kelley, Sinéad Quinn, German Corso, and Charles M. Epstein. “Accelerated repetitive transcranial magnetic stimulation for treatment-resistant depression.” Depression and Anxiety 27 (2010): 960–63. [Google Scholar]
- Alvaro Pascual-Leone, Belen Rubio, Federico Pallardó, and Maria D. Catalá. “Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression.” Lancet 348 (1996): 233–37. [Google Scholar] [CrossRef]
- M. Gross, L. Nakamura, Alvaro Pascual-Leone, and Felipe Fregni. “Has repetitive transcranial magnetic stimulation (rTMS) treatment for depression improved? A systematic review and meta-analysis comparing the recent vs. the earlier rTMS studies.” Acta Psychiatrica Scandinavica 116 (2007): 165–73. [Google Scholar] [CrossRef] [PubMed]
- Colleen K. Loo, and Philip B. Mitchell. “A review of the efficacy of transcranial magnetic stimulation (TMS) treatment for depression, and current and future strategies to optimize efficacy.” Journal of Affective Disorders 88 (2005): 255–67. [Google Scholar] [CrossRef] [PubMed]
- John P. O’Reardon, H. Brent Solvason, Philip G. Janicak, Shirlene Sampson, Keith E. Isenberg, Ziad Nahas, William M. McDonald, David Avery, Paul B. Fitzgerald, Colleen Loo, Mark A. Demitrack, Mark S. George, and Harold A. Sackeim. “Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: A multisite randomized controlled trial.” Biological Psychiatry 62 (2007): 1208–16. [Google Scholar] [CrossRef] [PubMed]
- José L. R. Martin, Manuel J. Barbanoj, Thomas E. Schlaepfer, Elinor Thompson, Víctor Pérez, and Jaime Kulisevsky. “Repetitive transcranial magnetic stimulation for the treatment of depression. Systematic review and meta-analysis.” British Journal of Psychiatry 182 (2003): 480–91. [Google Scholar] [CrossRef] [PubMed]
- Fumiko Hoeft, Daw-An Wu, Arvel Hernandez, Gary H. Glover, and Shinsuke Shimojo. “Electronically switchable sham transcranial magnetic stimulation (TMS) system.” PLoS One 3 (2008): e1923. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey J. Borckardt, John Walker, R. Kyle Branham, Sofia Rydin-Gray, Caroline Hunter, Heather Beeson, Scott T. Reeves, Alok Madan, Harold Sackeim, and Mark S. George. “Development and evaluation of a portable sham transcranial magnetic stimulation system.” Brain Stimulation 1 (2008): 52–59. [Google Scholar] [CrossRef] [PubMed]
- Ziad Nahas, Monica A. Molloy, Patrick L. Hughes, Nicholas C. Oliver, George W. Arana, S. Craig Risch, and Mark S. George. “Repetitive transcranial magnetic stimulation: Perspectives for application in the treatment of bipolar and unipolar disorders.” Bipolar Disorders 1 (1999): 73–80. [Google Scholar] [CrossRef] [PubMed]
- Paul B. Fitzgerald, and Z. Jeff Daskalakis. “A review of repetitive transcranial magnetic stimulation use in the treatment of schizophrenia.” Canadian Journal of Psychiatry—Revue Canadienne de Psychiatrie 53 (2008): 567–76. [Google Scholar] [PubMed]
- Nematollah Jaafari, David Belin, Wissam El Hage, Mircea Polosan, Fady Rachid, Jean-Yves Rotge, Nicolas Vibert, and Antoine Pelissolo. “Safety and efficacy of repetitive transcranial magnetic stimulation in the treatment of obsessive-compulsive disorder: A review.” World Journal of Biological Psychiatry 13 (2012): 164–77. [Google Scholar] [CrossRef] [PubMed]
- Bradley V. Watts, Barbara Landon, Alicia Groft, and Yinong Young-Xu. “A sham controlled study of repetitive transcranial magnetic stimulation for posttraumatic stress disorder.” Brain Stimulation 5 (2012): 38–43. [Google Scholar] [CrossRef] [PubMed]
- Shahid Bashir, Ilan Mizrahi, Kayleen Weaver, Felipe Fregni, and Alvaro Pascual-Leone. “Assessment and modulation of neural plasticity in rehabilitation with transcranial magnetic stimulation.” Physical Medicine and Rehabilitation 2 (2010): S253–68. [Google Scholar] [CrossRef] [PubMed]
- Miguel A.L. Nicolelis, Luiz A. Baccala, Rick C.S. Lin, and John K. Chapin. “Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system.” Science 268 (1995): 1353–58. [Google Scholar] [CrossRef] [PubMed]
- Leigh R. Hochberg, Mijail D. Serruya, Gerhard M. Friehs, Jon A. Mukand, Maryam Saleh, Abraham H. Caplan, Almut Branner, David Chen, Richard D. Penn, and John P. Donoghue. “Neuronal ensemble control of prosthetic devices by a human with tetraplegia.” Nature 442 (2006): 164–71. [Google Scholar] [CrossRef] [PubMed]
- Leigh R. Hochberg, Daniel Bacher, Beata Jarosiewicz, Nicolas Y. Masse, John D. Simeral, Joern Vogel, Sami Haddadin, Jie Liu, Sydney S. Cash, Patrick van der Smagt, and John P. Donoghue. “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm.” Nature 485 (2012): 372–75. [Google Scholar] [CrossRef] [PubMed]
- Aryeh H. Taub, Roni Hogri, Ari Magal, Matti Mintz, and Yosi Shacham-Diamand. “Bioactive anti-inflammatory coating for chronic neural electrodes.” Journal of Biomedical Materials Research Part A 100A (2012): 1854–58. [Google Scholar] [CrossRef] [PubMed]
- Richard B. Stein, E. Roderich Gossen, and Kelvin E. Jones. “Neuronal variability: Noise or part of the signal? ” Nature Reviews Neuroscience 6 (2005): 389–97. [Google Scholar] [CrossRef] [PubMed]
- Sierra Farris, and Monique Giroux. “Deep brain stimulation: A review of the procedure and the complications.” Journal of the American Academy of Physician Assistants 24 (2011): 39–40, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Frances M. Weaver, Kenneth A. Follett, Matthew Stern, Ping Luo, Crystal L. Harris, Kwan Hur, William J. Marks Jr., Johannes Rothlind, Oren Sagher, Claudia Moy, Rajesh Pahwa, Kim Burchiel, Penelope Hogarth, Eugene C. Lai, John E. Duda, Kathryn Holloway, Ali Samii, Stacy Horn, Jeff M. Bronstein, Gatana Stoner, Philip A. Starr, Richard Simpson, Gordon Baltuch, Antonio De Salles, Grant D. Huang, and Domenic J. Reda. “Randomized trial of deep brain stimulation for Parkinson disease: Thirty-six-month outcomes.” Neurology 79 (2012): 55–65. [Google Scholar] [CrossRef] [PubMed]
- Vadim S. Polikov, Patrick A. Tresco, and William M. Reichert. “Response of brain tissue to chronically implanted neural electrodes.” Journal of Neuroscience Methods 148 (2005): 1–18. [Google Scholar] [CrossRef] [PubMed]
- Francis Crick. “The impact of molecular biology on neuroscience.” Philosophical Transactions of the Royal Society B: Biological Sciences 354 (1999): 2021–25. [Google Scholar] [CrossRef] [PubMed]
- Edward S. Boyden, Feng Zhang, Ernst Bamberg, Georg Nagel, and Karl Deisseroth. “Millisecond-timescale, genetically targeted optical control of neural activity.” Nature Neuroscience 8 (2005): 1263–68. [Google Scholar] [CrossRef] [PubMed]
- Yoshinori Shichida, and Take Matsuyama. “Evolution of opsins and phototransduction.” Philosophical Transactions of the Royal Society B: Biological Sciences 364 (2009): 2881–95. [Google Scholar] [CrossRef] [PubMed]
- Erika Pastrana. “Optogenetics: Controlling cell function with light.” Nature Methods 8 (2011): 24–25. [Google Scholar] [CrossRef]
- Annelies Gerits, Reza Farivar, Bruce R. Rosen, Lawrence L. Wald, Edward S. Boyden, and Wim Vanduffel. “Optogenetically induced behavioral and functional network changes in primates.” Current Biology 22 (2012): 1722–26. [Google Scholar] [CrossRef] [PubMed]
- Jessica A. Cardin, Marie Carlén, Konstantinos Meletis, Ulf Knoblich, Feng Zhang, Karl Deisseroth, Li-Huei Tsai, and Christopher I. Moore. “Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2.” Nature Protocols 5 (2010): 247–54. [Google Scholar] [CrossRef] [PubMed]
- Graeme Clark. Sounds from Silence: Graeme Clark and the Bionic Ear Story. Sydney: Allen-Unwin, 2003. [Google Scholar]
- Michael Chorost. Rebuilt: How becoming Part Computer Made Me More Human. London: Souvenir Press, 2005. [Google Scholar]
- Saskia K. Nagel, Christine Carl, Tobias Kringe, Robert Märtin, and Peter König. “Beyond sensory substitution–learning the sixth sense.” Journal of Neural Engineering 2 (2005): R13. [Google Scholar] [CrossRef] [PubMed]
- Thomas Nagel. “What is It Like to Be a Bat? ” Philosophical Review 83 (1974): 435–50. [Google Scholar] [CrossRef]
- Paul Bach-Y-Rita, Carter C. Collins, Frank A. Saunders, Benjamin White, and Lawrence Scadden. “Vision substitution by tactile image projection.” Nature 221 (1969): 963–64. [Google Scholar] [CrossRef] [PubMed]
- Lotfi B. Merabet. “Building the bionic eye: An emerging reality and opportunity.” Progress in Brain Research 192 (2011): 3–15. [Google Scholar] [PubMed]
- Ferris F. Jabr. “Bionic eye.” Scientific American 306 (2012): 44–45. [Google Scholar] [PubMed]
- Miguel Pais-Vieira, Mikhail Lebedev, Carolina Kunicki, Jing Wang, and Miguel A.L. Nicolelis. “A brain-to-brain interface for real-time sharing of sensorimotor information.” Scientific Reports 3 (2013): 1–10. [Google Scholar] [CrossRef] [PubMed]
- Cristina Lanni, Silvia C. Lenzken, Alessia Pascale, Igor Del Vecchio, Marco Racchi, Francesca Pistoia, and Stefano Govoni. “Cognition enhancers between treating and doping the mind.” Pharmacological Research 57 (2008): 196–213. [Google Scholar] [CrossRef] [PubMed]
- Carl Elliott. “The tyranny of happiness: Ethics and cosmetic psychopharmacology.” In In Enhancing Human Traits: Ethical and Social Implications. Edited by E. Parens. Washington: Georgetown University Press, 1998, pp. 177–88. [Google Scholar]
- “Beyond Therapy: Biotechnology and the Pursuit of Happiness.” President’s Council on Bioethics, Washington, 2003. http://bioethics.georgetown.edu/pcbe/reports/beyondtherapy/beyond_therapy_final_webcorrected.pdf.
- Leon R. Kass. “Ageless Bodies, Happy Souls.” The New Atlantis, 2003, Spring9–28. [Google Scholar]
- James Butcher. “Cognitive enhancement raises ethical concerns: Academics urge pre-emptive debate on neurotechnologies.” Lancet 362 (2003): 132–33. [Google Scholar] [CrossRef]
- Michael J. Sandel. “What’s wrong with enhancement.” 2002. http://bioethics.georgetown.edu/pcbe/background/sandelpaper.html.
- K. Krnjević, and Susan Schwartz. “The action of gamma-aminobutyric acid on cortical neurones.” Experimental Brain Research 3 (1967): 320–36. [Google Scholar] [CrossRef] [PubMed]
- Doru G. Margineanu. “A weird concept with unusual fate: Nootropic drug.” Revue des Questions Scientifiques 182 (2011): 33–52. [Google Scholar]
- Corneliu E. Giurgea. “Vers une pharmacologie de l'activite integrative du cerveau: Tentative du concept nootrope en psychopharmacologie.” Actualités Pharmaceutiques 25 (1972): 115–56. [Google Scholar]
- Corneliu E. Giurgea. “The ‘nootropic’ approach to the pharmacology of the integrative activity of the brain.” Conditional Reflex 8 (1973): 108–15. [Google Scholar] [PubMed]
- Bengt Winblad. “Piracetam: A review of pharmacological properties and clinical uses.” CNS Drug Reviews 11 (2005): 169–82. [Google Scholar] [CrossRef] [PubMed]
- Walter E. Müller, Sabrina Koch, Klaus Scheuer, Angelika Rostock, and Reni Bartsch. “Effects of piracetam on membrane fluidity in the aged mouse, rat, and human brain.” Biochem Pharmacol 53 (1997): 135–40. [Google Scholar] [CrossRef]
- E.A. Budygin, R.R. Gainetdinov, D.A. Titov, and G.I. Kovalev. “The effect of a low dose of piracetam on the activity of the dopaminergic system in the rat striatum.” Eksperimental’naia i klinicheskaia farmakologiia 59 (1996): 6–8. [Google Scholar] [PubMed]
- Fernando Brandão, António Cadete-Leite, José P. Andrade, Maria D. Madeira, and Manuel M. Paula-Barbosa. “Piracetam promotes mossy fiber synaptic reorganization in rats withdrawn from alcohol.” Alcohol 13 (1996): 239–49. [Google Scholar] [CrossRef]
- B. Jordaan, D.W. Oliver, I.C. Dormehl, and N. Hugo. “Cerebral blood flow effects of piracetam, pentifylline, and nicotinic acid in the baboon model compared with the known effect of acetazolamide.” Arzneimittelforschung 46 (1996): 844–47. [Google Scholar] [PubMed]
- M. Loscertales, Steven P. Rose, Jonathan Daisley, and Carmen Sandi. “Piracetam facilitates long-term memory for a passive avoidance task in chicks through a mechanism that requires a brain corticosteroid action.” European Journal of Neuroscience 10 (1998): 2238–43. [Google Scholar] [CrossRef] [PubMed]
- Ya. I. Verbnyi, L. P. Derzhiruk, and A. Ya. Mogilevskii. “Piracetam-induced changes in the functional activity of neurons as a possible mechanism for the effects of nootropic agents.” Neuroscience & Behavioral Physiology 26 (1996): 507–15. [Google Scholar] [CrossRef]
- Kinga Szydlowska, and Michael Tymianski. “Calcium, ischemia and excitotoxicity.” Cell Calcium 47 (2010): 122–29. [Google Scholar] [CrossRef] [PubMed]
- Ahmed H. Ahmed, and Robert E. Oswald. “Piracetam defines a new binding site for allosteric modulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors.” Journal of Medicinal Chemistry 53 (2010): 2197–203. [Google Scholar] [CrossRef] [PubMed]
- Katarzyna Winnicka, Marian Tomasiak, and Anna Bielawska. “Piracetam–an old drug with novel properties? ” Acta Poloniae Pharmaceutica 62 (2005): 405–09. [Google Scholar] [PubMed]
- Marco Fedi, David Reutens, François Dubeau, Eva Andermann, Daniela D'Agostino, and Frederick Andermann. “Long-term efficacy and safety of piracetam in the treatment of progressive myoclonus epilepsy.” Archives of Neurology 58 (2001): 781–86. [Google Scholar] [CrossRef] [PubMed]
- Marjaleena Koskiniemi, Betty Van Vleymen, Lauri Hakamies, Salla Lamusuo, and Jaakko Taalas. “Piracetam relieves symptoms in progressive myoclonus epilepsy: A multicentre, randomised, double blind, crossover study comparing the efficacy and safety of three dosages of oral piracetam with placebo.” Journal of Neurology, Neurosurgery & Psychiatry 64 (1998): 344–48. [Google Scholar] [CrossRef]
- Jacques De Reuck, and B. Van Vleymen. “The clinical safety of high-dose piracetam–its use in the treatment of acute stroke.” Pharmacopsychiatry 32 (1999): 33–37. [Google Scholar] [CrossRef] [PubMed]
- Larry A. Kroutil, David L. Van Brunt, Mindy A. Herman-Stahl, David C. Heller, Robert M. Bray, and Michael A. Penne. “Nonmedical use of prescription stimulants in the United States.” Drug & Alcohol Dependence 84 (2006): 135–43. [Google Scholar] [CrossRef] [PubMed]
- Sean E. McCabe, Christian J. Teter, and Carol J. Boyd. “Medical use, illicit use, and diversion of abusable prescription drugs.” Journal of American College Health 54 (2006): 269–78. [Google Scholar] [CrossRef] [PubMed]
- Quinton Babcock, and Tom Byrne. “Student perceptions of methylphenidate abuse at a public liberal arts college.” Journal of American College Health 49 (2000): 143–45. [Google Scholar] [CrossRef] [PubMed]
- Sean E. McCabe, John E. Schulenberg, Lloyd D. Johnston, Patrick M. O'Malley, Jerald G. Bachman, and Deborah D. Kloska. “Selection and socialization effects of fraternities and sororities on US college student substance use: A multi-cohort national longitudinal study.” Addiction 100 (2005): 512–24. [Google Scholar] [CrossRef] [PubMed]
- Christian J. Teter, Sean E. McCabe, Kristy LaGrange, James A. Cranford, and Carol J. Boyd. “Illicit use of specific prescription stimulants among college students: Prevalence, motives, and routes of administration.” Pharmacotherapy: The Journal of Human Pharmacology & Drug Therapy 26 (2006): 1501–10. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lloyd D. Johnston, Patrick M. O’Malley, Jerald G. Bachman, and John E. Schulenberg. Monitoring the Future National Results on Adolescent Drug Use: Overview of Key Findings. Bethesda, MD: National Institute on Drug Abuse, 2011. [Google Scholar]
- Leo J. Schep, Robin J. Slaughter, J. Allister Vale, D. Michael G. Beasley, and Paul Gee. “The clinical toxicology of the designer ‘party pills’ benzylpiperazine and trifluoromethylphenylpiperazine.” Clinical Toxicology 49 (2011): 131–41. [Google Scholar] [CrossRef] [PubMed]
- William E. Fantegrossi, G. Winger, J.H. Woods, W.L. Woolverton, and A. Coop. “Reinforcing and discriminative stimulus effects of 1-benzylpiperazine and trifluoromethylphenylpiperazine in rhesus monkeys.” Drug & Alcohol Dependence 77 (2005): 161–68. [Google Scholar] [CrossRef] [PubMed]
- David J. Heal, and David M. Pierce. “Methylphenidate and its isomers: Their role in the treatment of attention-deficit hyperactivity disorder using a transdermal delivery system.” CNS Drugs 20 (2006): 713–38. [Google Scholar] [CrossRef] [PubMed]
- Leslie Iversen. “Neurotransmitter transporters and their impact on the development of psychopharmacology.” British Journal of Pharmacology 147 (2006): S82–S88. [Google Scholar] [CrossRef] [PubMed]
- David Sulzer, Mark S. Sonders, Nathan W. Poulsen, and Aurelio Galli. “Mechanisms of neurotransmitter release by amphetamines: A review.” Progress in Neurobiology 75 (2005): 406–33. [Google Scholar] [CrossRef] [PubMed]
- Nora D. Volkow, J.S. Fowler, G. Wang, Y. Ding, and S. John Gatley. “Mechanism of action of methylphenidate: Insights from PET imaging studies.” Journal of Attention Disorders 6 (2002): S31–S43. [Google Scholar] [PubMed]
- Samantha A. Hollingworth, Lisa M. Nissen, Stephen S. Stathis, Dan J. Siskind, John M. N. Varghese, and James G. Scott. “Australian national trends in stimulant dispensing: 2002–2009.” Australian & New Zealand Journal of Psychiatry 45 (2011): 332–36. [Google Scholar] [CrossRef] [PubMed]
- Johan Zetterqvist, P. Asherson, Linda Halldner, Niklas Långström, and Henrik Larsson. “Stimulant and non-stimulant attention deficit/hyperactivity disorder drug use: Total population study of trends and discontinuation patterns 2006–2009.” Acta Psychiatrica Scandinavica, 2012. [Google Scholar] [CrossRef] [PubMed]
- Mark Olfson, Steven C. Marcus, Myrna M. Weissman, and Peter S. Jensen. “National trends in the use of psychotropic medications by children.” Journal of the American Academy of Child & Adolescent Psychiatry 41 (2002): 514–21. [Google Scholar] [CrossRef] [PubMed]
- Yacov Fogelman, Shlomo Vinker, Nir Guy, and Ernesto Kahan. “Prevalence of and change in the prescription of methylphenidate in Israel over a 2-year period.” CNS Drugs 17 (2003): 915–19. [Google Scholar] [CrossRef] [PubMed]
- Kerstin Konrad, Thomas Günther, Charlotte Hanisch, and Beate Herpertz-Dahlmann. “Differential effects of methylphenidate on attentional functions in children with attention-deficit/hyperactivity disorder.” Journal of the American Academy of Child & Adolescent Psychiatry 43 (2004): 191–98. [Google Scholar] [CrossRef] [PubMed]
- Hanna A. Kubas, Erica M. Backenson, Gabrielle Wilcox, Jamie C. Piercy, and James B. Hale. “The effects of methylphenidate on cognitive function in children with attention-deficit/hyperactivity disorder.” Postgraduate Medical Journal 124 (2012): 33–48. [Google Scholar] [CrossRef] [PubMed]
- Margaret Wulbert, and Robert Dries. “The relative efficacy of methylphenidate (ritalin) and behavior-modification techniques in the treatment of a hyperactive child.” Journal of Applied Behavior Analysis 10 (1977): 21–31. [Google Scholar] [CrossRef] [PubMed]
- Rosemary Tannock, Russell J. Schachar, Robert P. Carr, Diane Chajczyk, and Gordon D. Logan. “Effects of methylphenidate on inhibitory control in hyperactive children.” Journal of Abnormal Child Psychology 17 (1989): 473–91. [Google Scholar] [CrossRef] [PubMed]
- W. Alexander Morton, and Gwendolyn G. Stockton. “Methylphenidate abuse and psychiatric side effects.” Primary Care Companion to the Journal of Clinical Psychiatry 2 (2000): 159–64. [Google Scholar] [CrossRef] [PubMed]
- Philip Firestone, Lynette Monteiro Musten, Susan Pisterman, John Mercer, and Susan Bennett. “Short-term side effects of stimulant medication are increased in preschool children with attention-deficit/hyperactivity disorder: A double-blind placebo-controlled study.” Journal of Child & Adolescent Psychopharmacology 8 (1998): 13–25. [Google Scholar] [CrossRef]
- Novartis. Ritalin [package insert]. Summit: Novartis, 1999. [Google Scholar]
- Marsha D. Rappley. “Safety issues in the use of methylphenidate. An American perspective.” Drug Safety 17 (1997): 143–48. [Google Scholar] [CrossRef] [PubMed]
- Stephen V. Faraone, Joseph Sergeant, Christopher Gillberg, and Joseph Biederman. “The worldwide prevalence of ADHD: Is it an American condition? ” World Psychiatry 2 (2003): 104–13. [Google Scholar] [PubMed]
- Guilherme Polanczyk, Maurício S. de Lima, Bernardo L. Horta, Joseph Biederman, and Luis A. Rohde. “The worldwide prevalence of ADHD: A systematic review and metaregression analysis.” American Journal of Psychiatry 164 (2007): 942–48. [Google Scholar] [CrossRef] [PubMed]
- Hugh Myrick, Robert Malcolm, Brent Taylor, and Steven LaRowe. “Modafinil: Preclinical, clinical, and post-marketing surveillance—a review of abuse liability issues.” Annals of Clinical Psychiatry 16 (2004): 101–09. [Google Scholar] [CrossRef] [PubMed]
- Edward Teitelman. “Off-label uses of modafinil.” American Journal of Psychiatry 158 (2001): 1341. [Google Scholar] [CrossRef] [PubMed]
- Kelli J. Westcott. “Modafinil, sleep deprivation, and cognitive function in military and medical settings.” Military Medicine 170 (2005): 333–35. [Google Scholar] [CrossRef] [PubMed]
- Robert Thirsk, Andre Kuipers, Chiaki Mukai, and David R. Williams. “The space-flight environment: The International Space Station and beyond.” Canadian Medical Association Journal 180 (2009): 1216–20. [Google Scholar] [CrossRef] [PubMed]
- Arthur Estrada, Amanda M. Kelley, Catherine M. Webb, Jeremy R. Athy, and John S. Crowley. “Modafinil as a replacement for dextroamphetamine for sustaining alertness in military helicopter pilots.” Aviation Space & Environmental Medicine 83 (2012): 556–64. [Google Scholar] [CrossRef]
- John A. Caldwell, J. Lynn Caldwell, Jennifer K. Smith, and David L. Brown. “Modafinil's effects on simulator performance and mood in pilots during 37 h without sleep.” Aviation Space & Environmental Medicine 75 (2004): 777–84. [Google Scholar]
- John S. Cuddy, Andrew R. Reinert, Kent C. Hansen, and Brent C. Ruby. “Effects of modafinil and sleep loss on physiological parameters.” Military Medicine 173 (2008): 1092–97. [Google Scholar] [CrossRef] [PubMed]
- Ulrich Müller, Nikolai Steffenhagen, Ralf Regenthal, and Peter Bublak. “Effects of modafinil on working memory processes in humans.” Psychopharmacology (Berlin) 177 (2004): 161–69. [Google Scholar] [CrossRef] [PubMed]
- Danielle C. Turner, Trevor W. Robbins, Luke Clark, Adam R. Aron, Jonathan Dowson, and Barbara J. Sahakian. “Cognitive enhancing effects of modafinil in healthy volunteers.” Psychopharmacology (Berl) 165 (2003): 260–69. [Google Scholar] [PubMed]
- Delia C. Randall, Aparna Viswanath, Punam Bharania, Sarah M. Elsabagh, David E. Hartley, John M. Shneerson, and Sandra E. File. “Does modafinil enhance cognitive performance in young volunteers who are not sleep-deprived? ” Journal of Clinical Psychopharmacology 25 (2005): 175–79. [Google Scholar] [CrossRef] [PubMed]
- Joseph V. Baranski, Ross Pigeau, Peter Dinich, and Ira Jacobs. “Effects of modafinil on cognitive and meta-cognitive performance.” Human Psychopharmacology 19 (2004): 323–32. [Google Scholar] [CrossRef] [PubMed]
- Ulrich Müller, Nikolai Steffenhagen, Ralf Regenthal, and Peter Bublak. “Effects of modafinil on working memory processes in humans.” Psychopharmacology 177 (2004): 161–69. [Google Scholar] [CrossRef] [PubMed]
- Colin Sugden, Charlotte R. Housden, Rajesh Aggarwal, Barbara J. Sahakian, and Ara Darzi. “Effect of pharmacological enhancement on the cognitive and clinical psychomotor performance of sleep-deprived doctors: A randomized controlled trial.” Annals of Surgery 255 (2012): 222–27. [Google Scholar] [CrossRef] [PubMed]
- Paul Gerrard, and Robert Malcolm. “Mechanisms of modafinil: A review of current research.” Neuropsychiatric Disease and Treatment 3 (2007): 349–64. [Google Scholar] [PubMed]
- Michael J. Minzenberg, and Cameron S. Carter. “Modafinil: A review of neurochemical actions and effects on cognition.” Neuropsychopharmacology 33 (2008): 1477–502. [Google Scholar] [CrossRef] [PubMed]
- Bertha K. Madras, Zhihua Xie, Zhicheng Lin, Amy J. Jassen, Helen Panas, Laurie Lynch, Ryan S. Johnson, Eli Livni, Thomas J. Spencer, Ali A. Bonab, Gregory M. Miller, and Alan J. Fischman. “Modafinil occupies dopamine and norepinephrine transporters in vivo and modulates the transporters and trace amine activity in vitro.” Journal of Pharmacology & Experimental Therapeutics 319 (2006): 561–69. [Google Scholar] [CrossRef] [PubMed]
- Thomas M. Engber, Elizabeth J. Koury, Shelley A. Dennis, Matthew S. Miller, Patricia C. Contreras, and Ratan V. Bhat. “Differential patterns of regional c-Fos induction in the rat brain by amphetamine and the novel wakefulness-promoting agent modafinil.” Neuroscience Letters 241 (1998): 95–98. [Google Scholar] [CrossRef]
- Dorota Zolkowska, Raka Jain, Richard B. Rothman, John S. Partilla, Bryan L. Roth, Vincent Setola, Thomas E. Prisinzano, and Michael H. Baumann. “Evidence for the involvement of dopamine transporters in behavioral stimulant effects of modafinil.” Journal of Pharmacology & Experimental Therapeutics 329 (2009): 738–46. [Google Scholar] [CrossRef] [PubMed]
- N. D. Volkow, J. S. Fowler, J. Logan, D. Alexoff, W. Zhu, F. Telang, G. J. Wang, M. Jayne, J. M. Hooker, C. Wong, and et al. “Effects of modafinil on dopamine and dopamine transporters in the male human brain: Clinical implications.” Journal of the American Medical Association 301 (2009): 1148–54. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. “Provigil (modafinil) Tablets.” 2007. Available online: http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm152701.htm (accessed on 20 February 2013). [Google Scholar]
- M. J. Elman, J. Sugar, R. Fiscella, T. A. Deutsch, J. Noth, M. Nyberg, K. Packo, and R. J. Anderson. “The effect of propranolol versus placebo on resident surgical performance.” Transactions of the American Ophthalmological Society 96 (1998): 283–91, discussion 91–94. [Google Scholar] [PubMed]
- Alan H. Lockwood. “Medical problems of musicians.” New England Journal of Medicine 320 (1989): 221–27. [Google Scholar] [CrossRef] [PubMed]
- Ed J. M. Pennings, Arthur P. Leccese, and Frederik A. de Wolff. “Effects of concurrent use of alcohol and cocaine.” Addiction 97 (2002): 773–83. [Google Scholar] [CrossRef] [PubMed]
- Fred H. Previc. The Dopaminergic Mind in Human Evolution and History. Cambridge: Cambridge University Press, 2011. [Google Scholar]
- Viviane Labrie, Shraddha Pai, and Arturas Petronis. “Epigenetics of major psychosis: Progress, problems and perspectives.” Trends Genet 28 (2012): 427–35. [Google Scholar] [CrossRef] [PubMed]
- Mark Mayford, Isabelle M. Mansuy, Robert U. Muller, and Eric R. Kandel. “Memory and behavior: A second generation of genetically modified mice.” Current Biology 7 (1997): R580–89. [Google Scholar] [CrossRef]
- Ya-Ping Tang, Eiji Shimizu, Gilles R. Dube, Claire Rampon, Geoffrey A. Kerchner, Min Zhuo, Guosong Liu, and Joe Z. Tsien. “Genetic enhancement of learning and memory in mice.” Nature 401 (1999): 63–69. [Google Scholar] [PubMed]
- Deheng Wang, Zhenzhong Cui, Qingwen Zeng, Hui Kuang, L. Phillip Wang, Joe Z. Tsien, and Xiaohua Cao. “Genetic enhancement of memory and long-term potentiation but not CA1 long-term depression in NR2B transgenic rats.” PLoS One 4 (2009): e7486. [Google Scholar] [CrossRef] [PubMed]
- Guo-rong Zhang, Xiaodan Wang, Lingxin Kong, Xiu-gui Lu, Brian Lee, Meng Liu, Mei Sun, Corinna Franklin, Robert G. Cook, and Alfred I. Geller. “Genetic enhancement of visual learning by activation of protein kinase C pathways in small groups of rat cortical neurons.” Journal of Neuroscience 25 (2005): 8468–81. [Google Scholar] [CrossRef] [PubMed]
- K. Sakurai, S. Iizuka, J.S. Shen, X.L. Meng, T. Mori, A. Umezawa, T. Ohashi, and Y. Eto. “Brain transplantation of genetically modified bone marrow stromal cells corrects CNS pathology and cognitive function in MPS VII mice.” Gene Therapy 11 (2004): 1475–81. [Google Scholar] [CrossRef] [PubMed]
- Deborah J. Watson, Luca Longhi, Edward B. Lee, Carl T. Fulp, Scott Fujimoto, Nicolas C. Royo, Marco A. Passini, John Q. Trojanowski, Virginia M. Y. Lee, Tracy K. McIntosh, and John H. Wolfe. “Genetically modified NT2N human neuronal cells mediate long-term gene expression as CNS grafts in vivo and improve functional cognitive outcome following experimental traumatic brain injury.” Journal of Neuropathology & Experimental Neurology 62 (2003): 368–80. [Google Scholar]
- Chung Sangmi, Sonntag Kai-C, Andersson Therese, Bjorklund Lars M, Park Jae-Joon, Kim Dong-Wook, Kang Un Jung, Isacson Ole, and Kim Kwang-Soo. “Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neurons.” European Journal of Neuroscience 16 (2002): 1829–38. [Google Scholar]
- George A. Carlson, David R. Borchelt, Angela Dake, Sherry Turner, Valerie Danielson, J. Douglas Coffin, Chris Eckman, James Meiners, Steven P. Nilsen, Steven G. Younkin, and Karen K. Hsiao. “Genetic modification of the phenotypes produced by amyloid precursor protein overexpression in transgenic mice.” Human Molecular Genetics 6 (1997): 1951–59. [Google Scholar] [CrossRef] [PubMed]
- Philip Brey. “Human Enhancement and Personal Identity.” In New Waves in Philosophy of Technology. Edited by Jan K. Berg Olsen, Evan Selinger and Søren Riis. New York: Palgrave Macmillan, 2008, pp. 169–85. [Google Scholar]
- Simon G. Lillico, Michael J. McGrew, Adrian Sherman, and Helen M. Sang. “Transgenic chickens as bioreactors for protein-based drugs.” Drug Discovery Today 10 (2005): 191–96. [Google Scholar] [CrossRef]
- Carole B. Fehilly, S.M. Willadsen, and Elizabeth M. Tucker. “Interspecific chimaerism between sheep and goat.” Nature 307 (1984): 634–36. [Google Scholar] [CrossRef] [PubMed]
- Chun-Chun Chen, Evan Balaban, and Erich D. Jarvis. “Interspecies avian brain chimeras reveal that large brain size differences are influenced by cell–interdependent processes.” PLoS One 7 (2012): e42477. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Maryann Mott. “Animal-Human Hybrids Spark Controversy.” National Geographic News. 25 January 2005. http://news.nationalgeographic.com/news/2005/01/0125_050125_chimeras.html.
- Mark H. Tuszynski, Leon Thal, Mary Pay, David P. Salmon, Hoi Sang U., Roy Bakay, Piyush Patel, Armin Blesch, H. Lee Vahlsing, Gilbert Ho, Gang Tong, Steven G. Potkin, James Fallon, Lawrence Hansen, Elliott J. Mufson, Jeffrey H. Kordower, Christine Gall, and James Conner. “A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease.” Nature Medicine 11 (2005): 551–55. [Google Scholar] [CrossRef] [PubMed]
- Han G. Brunner, M. Nelen, X.O. Breakefield, H.H. Ropers, and B.A. van Oost. “Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A.” Science 262 (1993): 578–80. [Google Scholar] [CrossRef] [PubMed]
- Avshalom Caspi, Joseph McClay, Terrie E. Moffitt, Jonathan Mill, Judy Martin, Ian W. Craig, Alan Taylor, and Richie Poulton. “Role of genotype in the cycle of violence in maltreated children.” Science 297 (2002): 851–54. [Google Scholar] [CrossRef] [PubMed]
- Randy J. Nelsona, and Silvana Chiavegatto. “Molecular basis of aggression.” Trends in Neurosciences 24 (2001): 713–19. [Google Scholar] [CrossRef]
- Matthew L. Baum. “The Monoamine Oxidase A (MAOA) genetic predisposition to impulsive violence: Is it relevant to criminal trials? ” Neuroethics, 2011, 1–20. [Google Scholar] [CrossRef]
- Sam Harris. The Moral Landscape: How Science Can Determine Human Values. New York: Free Press, 2010. [Google Scholar]
- James D. Watson, and Francis H. Crick. “Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid.” Nature 171 (1953): 737–38. [Google Scholar] [CrossRef] [PubMed]
- John McCarthy, Marvin Minsky, Nathan Rochester, and Claude Shannon. “A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence.” Dartmouth Summer Research Project on Artificial Intelligence, Hanover, NH, USA: Dartmouth College, 1955. [Google Scholar]
- Abi Berger. “Genetics revolution fails to live up to its promise.” New Scientist, 8 July 1995, 10. [Google Scholar]
- Douglas Wahlsten. “The hunt for gene effects pertinent to behavioral traits and psychiatric disorders: From mouse to human.” Developmental Psychobiology 54 (2012): 475–92. [Google Scholar] [CrossRef] [PubMed]
- David Deutsch. “Creative blocks: The very laws of physics imply that artificial intelligence must be possible. What's holding us up? ” Aeon. 2012. http://www.aeonmagazine.com/being-human/david-deutsch-artificial-intelligence/.
- Andy Clark, and David Chalmers. “The extended mind.” Analysis 58 (1998): 7–19. [Google Scholar] [CrossRef]
- Andy Clark. Natural-Born Cyborgs: Minds, Technologies, and the Future of Human Intelligence. Oxford: Oxford University Press, 2003. [Google Scholar]
- Andy Clark. Supersizing the Mind: Embodiment, Action, and Cognitive Extension. Oxford: Oxford University Press, 2008. [Google Scholar]
- Michele Merrit. Queering Cognition: Extended Minds and Sociotechnologically Hybridized Gender. Tampa: University of South Florida, 2010. [Google Scholar]
- Rodney Brooks. “A robot that walks; emergent behaviors from a carefully evolved network.” Neural Computation 1 (1989): 253–62. [Google Scholar] [CrossRef]
- Rodney Brooks. “The relationship between matter and life.” Nature 409 (2001): 409–11. [Google Scholar] [CrossRef] [PubMed]
- Junichi Takeno, Keita Inaba, and Tohru Suzuki. “Experiments and examination of mirror image cognition using a small robot.” IEEE International Symposium on Computational Intelligence in Robotics and Automation, 2005, 493–98. [Google Scholar]
- Kevin Warwick. I, Cyborg. Champaign: University of Illinois Press, 2004. [Google Scholar]
- Boicho Kokinov. “Micro-level hybridization in the cognitive architecture DUAL.” In Connectionist-Symbolic Integration: From Unified to Hybrid Architectures. Edited by Ron Sun and Frédéric Alexandre. Hilsdale: Lawrence Erlbaum Associates, 1997. [Google Scholar]
- Sara I. Walker, and Paul C. W. Davies. “The Algorithmic Origins of Life.” Journal of the Royal Society, Interface 10 (2013): 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sebastian Seung. Connectome: How the Brain's Wiring Makes Us Who We Are. New York: Houghton Mifflin Harcourt Trade, 2012. [Google Scholar]
- Ralph Merkle. “Large Scale Analysis of Neural Structures.” 1989. http://www.merkle.com/merkleDir/brainAnalysis.html.
- Tim E. Behrens, Heidi J. Berg, Saad Jbabdi, M.F. Rushworth, and M.W. Woolrich. “Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? ” Neuroimage 34 (2007): 144–55. [Google Scholar] [CrossRef] [PubMed]
- Patric Hagmann, Maciej Kurant, Xavier Gigandet, Patrick Thiran, Van J. Wedeen, Reto Meuli, and Jean-Philippe Thiran. “Mapping human whole-brain structural networks with diffusion MRI.” PLoS One 2 (2007): e597. [Google Scholar] [CrossRef] [PubMed]
- Van J. Wedeen, Douglas L. Rosene, Ruopeng Wang, Guangping Dai, Farzad Mortazavi, Patric Hagmann, Jon H. Kaas, and Wen-Yih I. Tseng. “The geometric structure of the brain fiber pathways.” Science 335 (2012): 1628–34. [Google Scholar] [CrossRef] [PubMed]
- Sean L. Hill, Yun Wang, Imad Riachi, Felix Schürmann, and Henry Markram. “Statistical connectivity provides a sufficient foundation for specific functional connectivity in neocortical neural microcircuits.” Proceedings of the National Academy of Sciences USA 109 (2012): 1–10. [Google Scholar] [CrossRef] [PubMed]
- Henry Markram. “The blue brain project.” Nature Reviews Neuroscience 7 (2006): 153–60. [Google Scholar] [CrossRef] [PubMed]
- Alcor Life Extension Foundation. Alcor 2011 Fact Sheet. Scottsdale: Alcor Life Extension Foundation, 2011. [Google Scholar]
- Freeman Dyson. Imagined Worlds. London: Harvard University Press, 1997. [Google Scholar]
- B. Franz Lang, Michael W. Gray, and Gertraud Burger. “Mitochondrial genome evolution and the origin of eukaryotes.” Annual Review of Genetics 33 (1999): 351–97. [Google Scholar] [CrossRef] [PubMed]
- Richard Condon. The Manchurian Candidate. New York: McGraw-Hill, 1959. [Google Scholar]
- Owen D. Jones, Joshua Buckholtz, Jeffrey D. Schall, and Rene Marois. “Brain Imaging for legal thinkers: A guide for the perplexed.” Stanford Technology Law Review, 2009, 5. [Google Scholar]
- Daniel D. Langleben, L. Schroeder, J. A. Maldjian, R. C. Gur, S. McDonald, J. D. Ragland, C. P. O'Brien, and Anna R. Childress. “Brain activity during simulated deception: An event-related functional magnetic resonance study.” Neuroimage 15 (2002): 727–32. [Google Scholar] [CrossRef] [PubMed]
- William J. Broad. “Lie-dector tests found too flawed to discover spies.” New York Times, 9 October 2002. [Google Scholar]
- Matthew Botvinick, and Jonathan Cohen. “Rubber hands ‘feel’ touch that eyes see.” Nature 391 (1998): 756. [Google Scholar] [CrossRef] [PubMed]
- Mel Slater, Daniel Perez-Marcoss, Henrik Ehrsson, and Maria V. Sanchez-Vives. “Inducing illusory ownership of a virtual body.” Frontiers in Neuroscience 3 (2009): 214–20. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mel Slater, Bernhard Spanlang, Maria V. Sanchez-Vives, and Olaf Blanke. “First person experience of body transfer in virtual reality.” PLoS One 5 (2010): e10564. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ap Dijksterhuis, Jesse Preston, Daniel M. Wegner, and Henk Aarts. “Effects of subliminal priming of self and god on self-attribution of authorship for events.” Journal of Experimental Social Psychology 44 (2007): 2–9. [Google Scholar] [CrossRef]
- L. Gibson, and Daniel M. Wegner. “Believing we’ve done what we were thinking: An illusion of authorship.” In Paper presented at the Society for Personality and Social Psychology, Los Angeles, CA, USA, 2003.
- World Health Organization. “The World Health Report 2001—Mental Health: New Understanding, New Hope.” 2001. http://www.who.int/whr/2001/en/.
- Race Ethnicity and Genetics Working Group. “The use of racial, ethnic, and ancestral categories in human genetics research.” American Journal of Human Genetics 77 (2005): 519–32. [Google Scholar]
© 2013 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Dielenberg, R.A. The Speculative Neuroscience of the Future Human Brain. Humanities 2013, 2, 209-252. https://doi.org/10.3390/h2020209
Dielenberg RA. The Speculative Neuroscience of the Future Human Brain. Humanities. 2013; 2(2):209-252. https://doi.org/10.3390/h2020209
Chicago/Turabian StyleDielenberg, Robert A. 2013. "The Speculative Neuroscience of the Future Human Brain" Humanities 2, no. 2: 209-252. https://doi.org/10.3390/h2020209