Insecticide Resistance and Management Strategies in Urban Ecosystems
Abstract
:1. Introduction
Rank | Common Name | Scientific Name | Number * | Ecosystem |
---|---|---|---|---|
1 | Two-spotted spider mite | Tetranychus urticae | 94 | Agricultural |
2 | Diamondback moth | Plutella xylostella | 92 | Agricultural |
3 | Green peach aphid | Myzus persicae | 76 | Agricultural |
4 | House fly | Musca domestica | 62 | Urban |
5 | Colorado potato beetle | Leptinotarsa decemlineata | 55 | Agricultural |
5 | Sweetpotato whitefly | Bemisia tabaci | 55 | Agricultural |
7 | Southern cattle tick | Rhipicephalus microplus | 50 | Agricultural |
8 | Cotton aphid | Aphis gossypii | 49 | Agricultural |
9 | Corn bollworm | Helicoverpa armigera | 48 | Agricultural |
9 | European red mite | Panonychus ulmi | 48 | Agricultural |
11 | German cockroach | Blattella germanica | 42 | Urban |
12 | Southern house mosquito | Culex quinquefasciatus | 40 | Urban |
13 | Beet armyworm | Spodoptera exigua | 38 | Agricultural |
13 | Oriental leafworm moth | Spodoptera litura | 38 | Agricultural |
15 | House mosquito | Culex pipiens pipiens | 36 | Urban |
16 | Yellow fever mosquito | Aedes aegypti | 35 | Urban |
16 | Tobacco budworm | Heliothis virescens | 35 | Agricultural |
18 | Hop aphid | Phorodon humuli | 34 | Agricultural |
19 | Red flour beetle | Tribolium castaneum | 33 | Urban |
20 | African cotton leafworm | Spodopotera littoralis | 30 | Agricultural |
2. Insecticide Resistance in Six Major Urban Insect Pests
2.1. House Fly
2.2. German Cockroach
2.3. Mosquitoes
2.4. Red Flour Beetle
2.5. Bed Bugs
2.6. Head Louse
3. Integrated Approaches Suitable for Urban Pest Management
3.1. Molecular and Biotechnological Approaches
3.1.1. Molecular Markers
3.1.2. Genetically Modified Insects
3.1.3. RNAi-based Insecticides
3.2. Biopesticides
3.3. Combination of Multiple Approaches
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Taylorluker—Own Work. Percentage of World Population Urban Rural. Licensed under Attribution via Wikimedia Commons. Available online: http://commons.wikimedia.org/wiki/File:Percentage_of_World_Population_Urban_Rural.PNG#mediaviewer/File:Percentage_of_World_Population_Urban_Rural.PNG (accessed on 8 December 2015).
- Smith, R.F.; van dan Bosch, R. Integrated control. In Pest Control: Biological, Physical, and Selected Chemical Methods; Kilgore, W.W., Doutt, R.L., Eds.; Academic Press: New York, NY, USA, 1967; pp. 295–340. [Google Scholar]
- Peshin, R.; Bandral, R.S.; Zhang, W.; Wilson, L.; Dhawan, A.K. Integrated pest management: A global overview of history, programs and adoption. In Integrated Pest Management: Innovation-Development Process, 1st ed.; Peshin, R., Dhawan, A.K., Eds.; Springer Science + Business Media: Berlin, Germany, 2009; pp. 1–49. [Google Scholar]
- Buczkowski, G. Urban pest management: The need for a correct mixture of knowledge and practice. In Urban Insect Pests-Sustainable Management Strategies, 1st ed.; Dhang, P., Ed.; CAB International: Oxfordshire, UK, 2014; pp. 195–204. [Google Scholar]
- Robinson, W.H. Integrated pest management in the urban environment. Am. Entomol. 1996, 42, 76–78. [Google Scholar] [CrossRef]
- Grube, A.; Donaldson, D.; Kiely, T.; Wu, L. Pesticides Industry Sales and Usage: 2006 and 2007 Market Estimates; U.S. Environmental Protection Agency: Washington, DC, USA, 2011.
- Whalon, M.E.; Mota-Sanchez, R.M.; Hollingworth, R.M. Arthropods Resistant to Pesticides Database (ARPD). Available online: http://www.pesticideresistance.org (accessed on 8 December 2015).
- Denholm, I.; Rowlan, M.W. Tactics for managing pesticide resistance in arthropods: Theory and practice. Annu. Rev. Entomol. 1992, 37, 91–112. [Google Scholar] [CrossRef] [PubMed]
- Rust, M.T. Managing insecticide resistance in urban insects. In Proceedings of the Second International Conference on Urban Pests, Edinburgh, Scotland, 7–10 July 1996; pp. 11–15.
- Georghiou, G.P. Principle of insecticide resistance management. Phytoprotection 1994, 75, 51–59. [Google Scholar] [CrossRef]
- Whalon, M.E.; Mota-Sanchez, R.M.; Hollingworth, R.M. Analysis of global pesticide resistance in arthropods. In Global Pesticide Resistance in Arthropods, 1st ed.; Whalon, M.E., Mota-Sanchez, D., Hollingworth, R.M., Eds.; CAB International: Oxfordshire, UK, 2008; pp. 5–31. [Google Scholar]
- Scott, J.G.; Warren, W.C.; Beukeboom, L.W.; Bopp, D.; Clark, A.G.; Giers, S.D.; Hediger, M.; Jones, A.K.; Kasai, S.; Leichter, C.A.; et al. Genome of the house fly, Musca domestica L., a global vector of diseases with adaptations to a septic environment. Genome Biol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Zurek, L.; Ghosh, A. Insects represent a link between food animal farms and the urban environment for antibiotic resistance traits. Appl. Environ. Microbiol. 2014, 80, 3562–3567. [Google Scholar] [CrossRef] [PubMed]
- Memmi, B.K. Mortality and knockdown effects of imidacloprid and methomyl in house fly (Musca domestica L., Diptera: Muscidae) populations. J. Vector Ecol. 2010, 35, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, M.; Pan, J.; Di, M.; Liu, Q.; Meng, F.; Scott, J.G.; Qiu, X. Diversity and frequencies of genetic mutations involved in insecticide resistance in field populations of the house fly (Musca domestica L.) from China. Pestic. Biochem. Physiol. 2012, 102, 153–159. [Google Scholar] [CrossRef]
- Scott, J.G.; Leichter, C.A.; Rinkevihc, F.D.; Harris, S.A.; Su, C.; Aberegg, L.C.; Moon, R.; Geden, C.J.; Gerry, A.C.; Taylor, D.B.; et al. Insecticide resistance in house flies from the United States: Resistance levels and frequency of pyrethroid resistance alleles. Pestic. Biochem. Physiol. 2013, 107, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Højland, D.H.; Jensen, K.V.; Kristensen, M. A comparative study of P450 gene expression in field and laboratory Musca domestica L. strains. Pest Manag. Sci. 2014, 70, 1237–1242. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Yue, X. Insecticide resistance and cross-resistance in the house fly (Diptera: Muscidae). J. Econ. Entomol. 2000, 93, 1269–1275. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.G. Cytochrome P450 and insecticide resistance. Insect Biochem. Mol. Biol. 1999, 29, 757–777. [Google Scholar] [CrossRef]
- Zhu, F.; Feng, J.; Zhang, L.; Liu, N. Differential expression between resistant and susceptible house flies, Musca domestica. SAAS Bull. Biochem. Biotechnol. 2005, 18, 20–31. [Google Scholar]
- Liu, N.; Zhu, F. House fly cytochrome P450s: Their role in insecticide resistance and strategies in the isolation and characterization. In Recent Advances in Entomological Research: From Molecular Biology to Pest Management, 1st ed.; Liu, T., Kang, L., Eds.; Springer-High Education Press: Beijing, China, 2012; pp. 246–257. [Google Scholar]
- Liu, N.; Li, M.; Gong, Y.; Liu, F.; Li, T. Cytochrome P450s-their expression, regulation, and role in insecticide resistance. Pestic. Biochem. Physiol. 2015, 120, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Williamson, M.S.; Martinez-Torres, D.; Hick, C.A.; Devonshire, A.L. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol. Gen. Genet. 1996, 252, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Kristensen, M.; Qiao, C.; Jespersen, J.B. Frequency of kdr gene in house fly field populations: Correlations of pyrethroid resistance and kdr frequency. J. Econ. Entomol. 2004, 97, 1036–1041. [Google Scholar] [CrossRef] [PubMed]
- Rinkevich, F.D.; Du, Y.; Dong, K. Diversity and convergence of sodium channel mutations involved in resistance to pyrethroids. Pestic. Biochem. Physiol. 2013, 106, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Scott, J.G. Genetic analysis of factors controlling high-level expression of cytochrome P450, CYP6D1, cytochrome b5, P450 reductase, and monooxygenase activities in LPR house flies, Musca domestica. Biochem. Genet. 1996, 34, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Scott, J.G. Increased transcription of CYP6D1 causes cytochrome P450-mediated insecticide resistance in house fly. Insect Biochem. Mol. Biol. 1998, 28, 531–535. [Google Scholar] [CrossRef]
- Carino, F.A.; Koener, J.F.; Plapp, F.W., Jr.; Feyereisen, R. Constitutive overexpression of the cytochrome P450 gene CYP6A1 in a house fly strain with metabolic resistance to insecticides. Insect Biochem. Mol. Biol. 1994, 24, 411–418. [Google Scholar] [CrossRef]
- Zhu, F.; Li, T.; Zhang, L.; Liu, N. Co-up-regulation of three P450 genes in response to permethrin exposure in permethrin resistant house flies, Musca domestica. BMC Physiol. 2008. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Feng, J.; Zhang, L.; Liu, N. Characterization of two novel cytochrome P450 genes in insecticide-resistant house-flies. Insect Mol. Biol. 2008, 17, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Liu, N. Differential expression of CYP6A5 and CYP6A5v2 in pyrethroid-resistant house flies, Musca domestica. Arch. Insect Biochem. Physiol. 2008, 67, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Rinkevich, F.D.; Zhang, L.; Hamm, R.L.; Brady, S.G.; Lazzaro, B.P.; Scott, J.G. Frequencies of the pyrethroid resistance alleles of Vssc1 and CYP6D1 in house flies from the eastern United States. Insect Mol. Biol. 2006, 15, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Du, Y.; Rinkevich, F.; Nomura, Y.; Xu, P.; Wang, L.; Silver, K.; Zhorov, B.S. Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochem. Mol. Biol. 2014, 50, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Kozaki, T.; Brady, S.G.; Scott, J.G. Frequencies and evolution of organophosphate insensitive acetylcholinesterase alleles in laboratory and field populations of the house fly, Musca domestica L. Pestic. Biochem. Physiol. 2009, 95, 6–11. [Google Scholar] [CrossRef]
- Walsh, S.B.; Dolden, T.A.; Moores, G.D.; Kristensen, M.; Lewis, T.; Devonshire, A.L.; Williamson, M.S. Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochem. J. 2001, 359, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Claudianos, C.; Russell, R.J.; Oakeshott, J.G. The same amino acid substitution in orthologous esterases confers organophosphate resistance on the house fly and a blowfly. Insect Biochem. Mol. Biol. 1999, 29, 675–686. [Google Scholar] [CrossRef]
- Kaufman, P.E.; Gerry, A.C.; Rutz, D.A.; Scott, J.G. Monitoring susceptibility of house flies (Musca domestica L.) in the United States to imidacloprid. J. Agric. Urban Entomol. 2006, 23, 195–200. [Google Scholar]
- Khan, H.; Abbas, N.; Shad, S.A.; Babar, M.; Afzal, M.B.S. Genetics and realized heritability of resistance to imidacloprid in a poultry population of house fly, Musca domestica L. (Diptera: Muscidae) from Pakistan. Pestic. Biochem. Physiol. 2014, 114, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Shono, T.; Scott, J.G. Spinosad resistance in the housefly, Musca domestica, is due to a recessive factor on autosome 1. Pestic. Biochem. Physiol. 2003, 75, 1–7. [Google Scholar] [CrossRef]
- Khan, H.A.A.; Akram, W.; Shad, S.A. Genetics, cross-resistance and mechanism of resistance to spinosad in a field strain of Musca domestica L. (Diptera: Muscidae). Acta Trop. 2014, 130, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Højland, D.H.; Jensen, K.V.; Kristensen, M. Expression of xenobiotic metabolizing cytochrome P450 genes in a spinosad-resistance Musca domestica L. strain. PLoS ONE 2014, 9, e103689. [Google Scholar] [CrossRef] [PubMed]
- Shono, T.; Zhang, L.; Scott, J.G. Indoxacarb resistance in the house fly, Musca domestica. Pestic. Biochem. Physiol. 2004, 80, 106–112. [Google Scholar] [CrossRef]
- Crespo, D.C.; Lecuona, R.E.; Hogsette, J.A. Strategies for controlling house fly populations resistant to cyromazine. Neotrop. Entomol. 2002, 31, 141–147. [Google Scholar] [CrossRef]
- Acevedo, G.R.; Zapater, M.; Toloza, A.C. Insecticide resistance of house fly, Musca domestic L. in Argentina. Parasitol. Res. 2009, 105, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Bell, H.A.; Robinson, K.A.; Weaver, R.J. First report of cyromazine resistance in a population of UK house fly (Musca domestica) associated with intensive livestock production. Pest Manag. Sci. 2010, 66, 693–695. [Google Scholar] [CrossRef] [PubMed]
- Brenner, R.J. Economics and medical importance of German cockroaches. In Understanding and Controlling the German Cockroach; Rust, M.K., Owens, J.M., Reierson, D.A., Eds.; Oxford University Press: New York, NY, USA, 1995; pp. 77–92. [Google Scholar]
- Wang, C.; Bennett, G.W. Comparative study of integrated pest management and baiting for German cockroach management in public housing. J. Econ. Entomol. 2006, 99, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Tee, H.; Lee, C. Sustainable cockroach management using insecticidal baits: Formulations, behavioral responses and issues. In Urban Insect Pests-Sustainable Management Strategies; Dhang, P., Ed.; CAB International: Oxfordshire, UK; Boston, MA, USA, 2014; pp. 65–85. [Google Scholar]
- Scott, J.G.; Cochran, D.G.; Siegfried, B.D. Insecticide toxicity, synergism, and resistance in the German cockroach (Dictyoptera: Blattellidae). J. Econ. Entomol. 1990, 83, 1698–1703. [Google Scholar] [CrossRef] [PubMed]
- Cochran, D.G. Insecticide resistance. In Understanding and Controlling the German Cockroach; Rust, M.K., Owens, J.M., Reierson, D.A., Eds.; Oxford University Press: New York, NY, USA, 1995; pp. 179–192. [Google Scholar]
- Cochran, D.G. Relevance of resistance ratios to operational control in the German cockroach (Dictyoptera: Blattellidae). J. Econ. Entomol. 1996, 89, 318–321. [Google Scholar] [CrossRef]
- Lee, C.Y.; Yap, H.H.; Chong, N.L. Insecticide resistance and synergism in field collected German cockroaches (Dictyoptera: Blattellidae) in Peninsular Malaysia. Bull. Entomol. Res. 1996, 86, 675–682. [Google Scholar] [CrossRef]
- Limoee, M.; Enayati, A.A.; Ladonni, H.; Vatandoost, H.; Baseri, H.; Oshaghi, M.A. Various mechanisms responsible for permethrin metabolic resistance in seven field-collected strains of the German cockroach from Iran, Blattella germanica (L.) (Dictyoptera: Blattellidae). Pestic. Biochem. Physiol. 2007, 87, 138–146. [Google Scholar] [CrossRef]
- Chai, R.Y.; Lee, C.Y. Insecticide resistance profiles and synergism in field populations of the German cockroach (Dictyoptera: Blattellidae) from Singapore. J. Econ. Entomol. 2010, 103, 460–471. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.S.; Shin, E.H.; Jung, J.S.; Park, C.; Ahn, Y.-J. Monitoring for insecticide resistance in field-collected populations of Blattella germanica (Blattaria: Blattellidae). J. Asia Pac. Entomol. 2010, 13, 309–312. [Google Scholar] [CrossRef]
- Liu, N.; Zhu, F.; Xu, Q.; Pridgeon, J.W.; Zhang, L. Behavioral change, physiological modification, and metabolic detoxification: Mechanisms of insecticide resistance. Acta Entomol. Sin. 2006, 49, 671–679. [Google Scholar]
- Dong, K. A single amino acid change in the para sodium channel protein is associated with knockdown-resistance (kdr) to pyrethroid insecticides in German cockroach. Insect Biochem. Mol. Biol. 1997, 27, 93–100. [Google Scholar] [CrossRef]
- Pridgeon, J.W.; Appel, A.G.; Moar, W.J.; Liu, N. Variability of resistance mechanisms in pyrethroid resistant German cockroaches (Dictyoptera: Blattellidae). Pestic. Biochem. Physiol. 2002, 73, 149–156. [Google Scholar] [CrossRef]
- Pridgeon, J.W.; Zhang, L.; Liu, N. Overexpression of CYP4G19 associated with a pyrethroid resistant strain of the German cockroaches, Blattella germanica (L.). Gene 2003, 314, 157–163. [Google Scholar] [CrossRef]
- Gondhalekar, A.D.; Song, C.; Scharf, M.E. Development of strategies for monitoring indoxacarb and gel bait susceptibility in the German cockroach (Blattodea: Blattellidae). Pest Manag. Sci. 2011, 67, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Nalyanya, G.; Gore, J.C.; Linker, H.M.; Schal, C. German cockroach allergen levels in North Carolina schools: Comparison of integrated pest management and conventional cockroach control. J. Med. Entomol. 2009, 46, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Jordan, B.W.; Bayer, B.E.; Koehler, P.G.; Pereira, R.M. Bait evaluation methods for urban pest management. In Insecticides—Development of Safer and More Effective Technologies; Trdan, S., Ed.; InTech: Rijeka, Croatia, 2013; pp. 445–469. [Google Scholar]
- Gondhalekar, A.D.; Scharf, M.E. Mechanisms underlying fipronil resistance in a multiresistant field strain of the German cockroach (Blattodea: Blattellidae). J. Med. Entomol. 2012, 49, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Gondhalekar, A.D.; Scherer, C.W.; Saran, R.K.; Scharf, M.E. Implementation of an indoxacarb susceptibility monitoring program using field-collected German cockroach isolates from the United States. J. Econ. Entomol. 2013, 106, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Silverman, J.; Bieman, D.N. Glucose aversion in the German cockroach, Blattella germanica. J. Insect Physiol. 1993, 39, 925–933. [Google Scholar] [CrossRef]
- Wang, C.; Sharf, M.E.; Bennett, G.W. Behavioral and physiological resistance of the German cockroach to gel baits (Blattodea: Blattellidae). J. Econ. Entomol. 2004, 97, 2067–2072. [Google Scholar] [CrossRef] [PubMed]
- Wada-Katsumata, A.; Silverman, J.; Schal, C. Changes in taste neurons support the emergence of an adaptive behavior in cockroaches. Science 2013, 340, 972–975. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Malaria; Fact Sheet Number 95; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- World Health Organization (WHO). Dengue and Severe Dengue; Fact Sheet Number 117; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Arensburger, P.; Megy, K.; Waterhouse, R.M.; Abrudan, J.; Amedeo, P.; Antelo, B.; Bartholomay, L.; Bidwell, S.; Caler, E.; Camara, F.; et al. Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science 2010, 330, 86–88. [Google Scholar] [CrossRef] [PubMed]
- Liu, N. Insecticide resistance in mosquitoes: Impact, mechanisms, and research directions. Annu. Rev. Entomol. 2015, 60, 537–559. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Global Plan for Insecticide Resistance Management in Malaria Vectors (GPIRM); WHO: Geneva, Switzerland, 2012. [Google Scholar]
- Hemingway, J. The role of vector control in stopping the transmission of malaria: Threats and opportunities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014. [Google Scholar] [CrossRef] [PubMed]
- Nauen, R. Insecticide resistance in disease vectors of public health importance. Pest Manag. Sci. 2007, 63, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Hemingway, J.; Ranson, H. Insecticide resistance in insect vectors on human disease. Annu. Rev. Entomol. 2000, 45, 371–391. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Xu, Q.; Zhu, F.; Zhang, L. Pyrethroid resistance in mosquitoes. Insect Sci. 2006, 13, 159–166. [Google Scholar] [CrossRef]
- Ranson, H.; N’Guessan, R.; Lines, J.; Moiroux, N.; Nkuni, Z.; Corbel, V. Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria control? Trends Parasitol. 2011, 27, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Knox, T.B.; Juma, E.O.; Ochomo, E.O.; Jamet, H.P.; Ndungo, L.; Chege, P.; Bayoh, N.M.; N’Guessan, R.; Christian, R.N.; Hunt, R.H.; et al. An online tool for mapping insecticide resistance in major Anopheles vectors of human malaria parasites and review of resistance status for the Afrotropical region. Parasit. Vectors 2014. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.G.; Yoshimizu, M.H.; Kasai, S. Pyrethroid resistance in Culex pipiens mosquitoes. Pestic. Biochem. Physiol. 2015, 120, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Koou, S.; Chong, C.; Vythilingam, I.; Lee, C.; Ng, L. Insecticide resistance and its underlying mechanisms in field populations of Aedes aegypti adults (Diptera: Culicidae) in Singapore. Parasit. Vectors 2014. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhang, L.; Reid, W.R.; Xu, Q.; Dong, K.; Liu, N. Multiple mutations and mutation combinations in the sodium channel of permethrin resistant mosquitoes, Culex quinquefasciatus. Sci. Rep. 2012. [Google Scholar] [CrossRef] [PubMed]
- Brooke, B.D.; Kloke, G.; Hunt, R.H.; Koekemoer, L.L.; Temu, E.A.; Taylor, M.E.; Small, G.; Hemingway, J.; Coetzee, M. Bioassay and biochemical analyses of insecticide resistance in southern African Anopheles funestus (Diptera: Culicidae). Bull. Entomol. Res. 2001, 91, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Liu, H.; Zhang, L.; Liu, N. Resistance in the mosquito, Culex quinquefasciatus, and possible mechanisms for resistance. Pest Manag. Sci. 2005, 61, 1096–1102. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Liu, H.; Zhu, F.; Zhang, L. Differential expression of genes in pyrethroid resistant and susceptible mosquitoes, Culex quinquefasciatus (S.). Gene 2007, 394, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Hardstone, M.C.; Leichter, C.A.; Scott, J.G. Multiplicative interaction between the two major mechanisms of permethrin resistance, kdr and cytochrome P450-monooxygenase detoxification, in mosquitoes. J. Evol. Biol. 2009, 22, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Müller, P.; Warr, E.; Stevenson, B.J.; Pignatelli, P.M.; Morgan, J.C.; Steven, A.; Yawson, A.E.; Mitchell, S.N.; Ranson, H.; Hemingway, J.; et al. Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids. PLoS Genet. 2008, 4, e1000286. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.N.; Stevenson, B.J.; Müller, P.; Wilding, C.S.; Egyir-Yawson, A.; Field, S.G.; Hemingway, J.; Paine, M.J.I.; Ranson, H.; Donnelly, M.J. Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana. Proc. Natl. Acad. Sci. USA 2012, 109, 6147–6152. [Google Scholar] [CrossRef] [PubMed]
- Riverson, J.M.; Irving, H.; Ndula, M.; Barnes, K.G.; Ibrahim, S.S.; Paine, M.J.I.; Wondji, C.S. Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus. Proc. Natl. Acad. Sci. USA 2013, 110, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Liu, N. Genome analysis of cytochrome P450s and their expression profiles in insecticide resistant mosquitoes, Culex quniquefasciatus. PLoS ONE 2011, 6, e29418. [Google Scholar] [CrossRef] [PubMed]
- Toé, K.H.; N’Falé, S.; Dabiré, R.K.; Ranson, H.; Jones, C.M. The recent escalation in strength of pyrethroid resistance in Anopheles coluzzi in West Africa is linked to increased expression of multiple gene families. BMC Genom. 2015. [Google Scholar] [CrossRef] [PubMed]
- Wood, O.R.; Hanrahan, S.; Coetzee, M.; Koekemoer, L.L.; Brooke, B.D. Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus. Parasit. Vectors 2010. [Google Scholar] [CrossRef] [PubMed]
- Vannini, L.; Reed, T.W.; Willis, J.H. Temporal and spatial expression of cuticular proteins of Anopheles gambiae implicated in insecticide resistance or differentiation of M/S incipient species. Parasit. Vectors 2014. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Wang, W.; Zhang, D.; Lv, Y.; Zhou, D.; Ma, L.; Shen, B.; Sun, Y.; Zhu, C. The cuticle proteins: A putative role for deltamethrin resistance in Culex pipiens pallens. Parasitol. Res. 2015, 114, 4421–4429. [Google Scholar] [CrossRef] [PubMed]
- Chandre, F.; Dabire, R.K.; Hougard, J.; Djogbenou, L.S.; Irish, S.R.; Rowland, M.; N’Guessan, R. Field efficacy of pyrethroid treated plastic sheeting (durable lining) in combination with long lasting insecticidal nets against malaria vectors. Parasit. Vectors 2010. [Google Scholar] [CrossRef] [PubMed]
- Russell, T.L.; Govella, N.J.; Azizi, S.; Drakeley, C.J.; Kachur, S.P.; Killeen, G.F. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malaria J. 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatton, M.L.; Chitnis, N.; Churcher, T.; Donnelly, M.J.; Ghani, A.C.; Godfray, H.C.J.; Gould, F.; Hastings, I.; Marshall, J.; Ranson, H.; et al. The importance of mosquito behavioral adaptations to malaria control in Africa. Evolution 2013, 67, 1218–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Berg, H.; Zaim, M.; Yadav, R.S.; Soares, A.; Ameneshewa, B.; Mnzava, A.; Hii, J.; Dash, A.P.; Ejov, M. Global trends in the use of insecticides to control vector-borne diseases. Environ. Health Perspect. 2012, 120, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, K.; Koekemoer, L.L.; Brooke, B.D.; Hunt, R.H.; Mthembu, J.; Coetzee, M. Anopheles funestus resistant to pyrethroid insecticides in South Africa. Med. Vet. Entomol. 2000, 14, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Maharaj, R.; Mthembu, D.J.; Sharp, B.L. Impact of DDT re-introduction on malaria transmission in KwaZulu-Natal. S. Afr. Med. J. 2005, 95, 871–874. [Google Scholar] [PubMed]
- Riveron, J.M.; Yunta, C.; Ibrahim, S.S.; Djouaka, R.; Irving, H.; Menze, B.D.; Ismail, H.M.; Hemingway, J.; Ranson, H.; Albert, A.; et al. A single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector. Genome Biol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Mulamba, C.; Riveron, J.M.; Ibrahim, S.S.; Irving, H.; Barnes, K.G.; Mukwaya, L.G.; Birungi, J.; Wondji, C.S. Widespread pyrethroid and DDT resistance in the major malaria vector Anopheles funestus in East Africa is driven by metabolic resistance mechanisms. PLoS ONE 2014, 9, e110058. [Google Scholar] [CrossRef] [PubMed]
- Corbel, V.; N’Guessan, R.; Brengues, C.; Chandre, F.; Djogbenou, L.; Martin, T.; Akogbéto, M.; Hougard, J.M.; Rowland, M. Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa. Acta Trop. 2007, 101, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Djègbè, I.; Agossa, F.R.; Jones, C.M.; Poupardin, R.; Cornelie, S.; Akogbéto, M.; Ranson, H.; Corbel, V. Molecular characterization of DDT resistance in Anopheles gambiae from Benin. Parasit. Vectors 2014. [Google Scholar] [CrossRef] [PubMed]
- Gunasekaran, K.; Muthukumaravel, S.; Sahu, S.S.; Vijayakumar, T.; Jambulingam, P. Glutathione S transferase activity in Indian vectors of malaria: A defense mechanism against DDT. J. Med. Entomol. 2011, 48, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Edi, C.V.; Koudou, G.B.; Jones, C.M.; Weetman, D.; Ranson, H. Multiple insecticide resistance in Anopheles gambiae mosquitoes, Southern Côte d’Ivoire. Emerg. Infect. Dis. 2012, 18, 1508–1511. [Google Scholar] [CrossRef] [PubMed]
- Edi, C.V.; Djogbénou, L.; Jenkins, A.M.; Regna, K.; Muskavitch, M.A.T.; Poupardin, R.; Jones, C.M.; Essandoh, J.; Kétoh, G.K.; Paine, M.J.I.; et al. CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae. PLoS Genet. 2014, 10, e1004236. [Google Scholar] [CrossRef] [PubMed]
- Guillemaud, T.; Makate, N.; Raymond, M.; Hirst, B.; Callaghan, A. Esterase gene amplification in Culex pipiens. Insect Mol. Biol. 1997, 6, 319–327. [Google Scholar]
- Vaughan, A.; Hawkes, N.; Hemingway, J. Co-amplification explains linkage disequilibrium of two mosquito esterase genes in insecticide-resistant Culex quinquefasciatus. Biochem. J. 1997, 325, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Malcolm, C.A.; Bourguet, D.; Ascolillo, A.; Rooker, S.J.; Garvey, C.F.; Hall, L.M.C.; Pasteur, N.; Raymond, M. A sex-linked Ace gene, not linked to insensitive acetylcholinesterase mediated insecticide resistance in Culex pipiens. Insect Mol. Biol. 1998, 7, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Cupp, E.W.; Micher, K.W.; Guo, A.; Liu, N. Insecticide resistance and cross-resistance in Alabama and Florida strains of Culex quinquefasciatus. J. Med. Entomol. 2004, 41, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Phillips, T.W.; Throne, J.E. Biorational approaches to managing stored-product insects. Annu. Rev. Entomol. 2010, 55, 375–397. [Google Scholar] [CrossRef] [PubMed]
- Boyer, S.; Zhang, H.; Lempérière, G. A review of control methods and resistance mechanisms in stored-product insects. Bull. Entomol. Res. 2012, 102, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Tribolium Genome Sequencing Consortium. The genome of the model beetle and pest Tribolium castaneum. Nature 2008, 452, 949–955. [Google Scholar]
- Collins, P.J. A new resistance to pyrethroids in Tribolium castaneum (Herbst). Pestic. Sci. 1990, 28, 101–115. [Google Scholar] [CrossRef]
- Zhu, F.; Parthasarathy, R.; Bai, H.; Woithe, K.; Kaussmann, M.; Nauen, R.; Harrison, D.A.; Palli, S.R. A brain-specific cytochrome P450 responsible for the majority of deltamethrin resistance in the QTC279 strain of Tribolium castaneum. Proc. Natl. Acad. Sci. USA 2010, 107, 8557–8562. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Moural, T.W.; Shah, K.; Palli, S.R. Integrated analysis of cytochrome P450 gene superfamily in the red flour beetle, Tribolium castaneum. BMC Genom. 2013. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Xiao, D.; He, Y.; Yao, J.; Zhu, G.; Zhu, K.Y. Insecticide-mediated up-regulation of cytochrome P450 genes in the red flour beetle (Tribolium castaneum). Int. J. Mol. Sci. 2015, 16, 2078–2098. [Google Scholar] [CrossRef] [PubMed]
- Nayak, M.L.; Collins, P.J. Influence of concentration, temperature and humidity on the toxicity of phosphine to the strongly phosphine-resistant psocid Liposcelis bostrychophila Badonnel (Psocoptera: Liposcelididae). Pest Manag. Sci. 2008, 64, 971–976. [Google Scholar] [CrossRef] [PubMed]
- Opit, G.P.; Phillips, T.W.; Aikins, M.J.; Hasan, M.M. Phosphine resistance in Tribolium castaneum and Rhyzopertha dominica from stored wheat in Oklahoma. J. Econ. Entomol. 2012, 105, 1107–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benhalima, H.; Chaudhry, M.Q.; Mills, K.A.; Price, N.R. Phosphine resistance in stored-product insects collected from various grain storage facilities in Morocco. J. Stored Prod. Res. 2004, 40, 241–249. [Google Scholar] [CrossRef]
- Pimentel, M.A.G.; Faroni, L.R.; da Silva, F.H.; Batista, M.D.; Guedes, R.N.C. Spread of phosphine resistance among Brazilian populations of three species of stored product insects. Neotrop. Entomol. 2010, 39, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Jagadeesan, R.; Collins, P.J.; Daglish, G.J.; Ebert, P.R.; Schlipalius, D.I. Phosphine Resistance in the rust red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae): Inheritance, gene interactions and fitness costs. PLoS ONE 2012, 7, e31582. [Google Scholar] [CrossRef] [PubMed]
- Daglish, G.J.; Nayak, M.K.; Pavic, H.; Smith, L.W. Prevalence and potential fitness cost of weak phosphine resistance in Tribolium castaneum (Herbst) in eastern Australia. J. Stored Prod. Res. 2015, 61, 54–58. [Google Scholar] [CrossRef]
- Jagadeesan, R.; Fotheringham, A.; Ebert, P.R.; Schlipalius, D.I. Rapid genome wide mapping of phosphine resistance loci by a simple regional averaging analysis in the red flour beetle, Tribolium castaneum. BMC Genom. 2013. [Google Scholar] [CrossRef] [PubMed]
- Schlipalius, D.I.; Valmas, N.; Tuck, A.G.; Jagadeesan, R.; Ma, L.; Kaur, R.; Goldinger, A.; Anderson, C.; Kuang, J.; Zuryn, S.; et al. A core metabolic enzyme mediates resistance to phosphine gas. Science 2012, 338, 807–810. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Schlipalius, D.; Opit, G.; Subramanyam, B.; Phillips, T.W. Diagnostic molecular markers for phosphine resistance in U.S. populations of Tribolium castaneum and Rhyzopertha dominica. PLoS ONE 2015, 10, e0121343. [Google Scholar] [CrossRef] [PubMed]
- Turcker, A.M.; Campbell, J.F.; Arthur, F.H.; Zhu, K.Y. Mechanisms for horizontal transfer of methoprene from treated to untreated Tribolium castaneum (Herbst). J. Stored Prod. Res. 2014, 57, 36–42. [Google Scholar] [CrossRef]
- Usinger, R.L. Monograph of Cimicidae (Hemiptera-Heteroptera); The Thomas Say Foundation-Entomological Society of America: Lanham, MD, USA, 1966. [Google Scholar]
- Doggett, S.L.; Geary, M.J.; Russell, R.C. The resurgence of bed bugs in Australia: With notes on their ecology and control. Environ. Health 2004, 4, 30–38. [Google Scholar]
- Doggett, S.L.; Dwyer, D.E.; Peñas, P.F.; Russell, R.C. Bed bug clinical relevance and control options. Clin. Microbiol. Rev. 2012, 25, 164–192. [Google Scholar] [CrossRef] [PubMed]
- Doggett, S.L.; Russell, R.C. The resurgence of bed bugs, Cimex spp. (Hemiptera: Cimicidae) in Australia. In Proceedings of the 6th International Conference on Urban Pests, Budapest, Hungary, 13–16 July 2008; Robinson, W.H., Bajomi, D., Eds.; OOK-Press: Papai, Hungary, 2008. [Google Scholar]
- Dang, K.; Toi, C.S.; Lilly, D.G.; Lee, C.Y.; Naylor, R.; Tawatsin, A.; Thavara, U.; Bu, W.; Doggett, S.L. Identification of putative kdr mutations in the tropical bed bug, Cimex hemipterus (Hemiptera: Cimicidae). Pest Manag. Sci. 2015, 71, 1015–1020. [Google Scholar] [CrossRef] [PubMed]
- Reinhardt, K.; Siva-Jothy, M.T. Biology of the bed bugs (Cimicidae). Annu. Rev. Entomol. 2007, 52, 351–374. [Google Scholar] [CrossRef] [PubMed]
- Adelman, Z.N.; Miller, D.M.; Myles, K.M. Bed bugs and infectious disease: A case for the arboviruses. PLoS Pathog. 2013, 9, e1003462. [Google Scholar] [CrossRef] [PubMed]
- Saenz, V.L.; Maggi, R.G.; Breitschwerdt, E.B.; Kim, J.; Vargo, E.L.; Schal, C. Survey of Bartonella spp. in U.S. bed bugs detects Burkholderia multivorans but not Bartonella. PLoS ONE 2013, 8, e73661. [Google Scholar] [CrossRef] [PubMed]
- Goddard, J.; de Shazo, R. Psychological effects of bed bug attacks (Cimex lectularius L.). Am. J. Med. 2012, 125, 101–103. [Google Scholar] [CrossRef] [PubMed]
- Potter, M.F. The perfect storm: An extension view on bed bugs. Am. Entomol. 2006, 52, 102–104. [Google Scholar] [CrossRef]
- Panagiotakopulu, E.; Buckland, P.C. Cimex lectularius L., the common bed bug from Pharaonic Egypt. Antiquity 1999, 73, 908–911. [Google Scholar]
- Haynes, K.F. Sleeping with the enemy. Sci. Am. 2012, 306, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.G. The ecology of the bed-bug, Cimex lectularius L., in Britain. J. Hyg. 1941, 41, 345–461. [Google Scholar] [CrossRef]
- Potter, M.F. The history of bed bug management-with lessons from the past. Am. Entomol. 2011, 57, 14–25. [Google Scholar] [CrossRef]
- Gangloff-Kaufmann, J.; Hollingworth, C.; Hahn, J.; Hansen, L.; Kard, B.; Waldvogel, M. Bed bugs in America: A pest management industry survey. Am. Entomol. 2006, 52, 105–106. [Google Scholar] [CrossRef]
- Boase, C.J. Bedbugs—Back from the brink. Pestic. Outlook 2001, 12, 159–162. [Google Scholar] [CrossRef]
- Ter Poorten, M.C.; Prose, N.S. The return of the common bed bug. Pediatr. Dermatol. 2005, 22, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Koganemaru, R.; Miller, D.M. The bed bug problem: Past, present, and future control methods. Pestic. Biochem. Physiol. 2013, 106, 177–189. [Google Scholar] [CrossRef]
- Mumcuoglu, K.; Shalom, U. Questionnaire survey of the common bed bug (Cimex lectularius) infestations in Israel. J. Med. Entomol. 2010, 40, 1–10. [Google Scholar]
- Doggett, S.L.; Orton, C.J.; Lilly, D.G.; Russell, R.C. Bed bugs: The Australian response. Insects 2011, 2, 96–111. [Google Scholar] [CrossRef] [PubMed]
- Faundez, E.I.; Carvajal, M.A. Bed bugs are back and also arriving in the southernmost record of Cimex lectularius (Heteropetra: Cimicidae) in South America. J. Med. Entomol. 2014, 51, 1073–1076. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wen, X. Bed bug infestations and control practices in China: Implications for fighting the global bed bug resurgence. Insects 2011, 2, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, Y.; Zeng, L. Resurgence of bed bugs (Hemiptera: Cimicidae) in mainland China. Fla. Entomol. 2013, 96, 131–136. [Google Scholar] [CrossRef]
- Moore, D.J.; Miller, D.M. Laboratory evaluations of insecticide product efficacy for control of Cimex lectularius. J. Econ. Entomol. 2006, 99, 2080–2086. [Google Scholar] [CrossRef] [PubMed]
- Romero, A.; Potter, M.F.; Potter, D.A.; Haynes, K.F. Insecticide resistance in the bed bug: A factor in the pest’s sudden resurgence? J. Med. Entomol. 2007, 44, 175–178. [Google Scholar] [CrossRef] [PubMed]
- The U.S. Centers for Disease Control and Prevention (CDC); The U.S. Environmental Protection Agency (EPA). Joint Statement on Bed Bug Control in the United States from the U.S. Centers for Disease Control and Prevention (CDC) and the U.S. Environmental Protection Agency (EPA); U.S. Department of Health and Human Services: Atlanta, GA, USA, 2010.
- Yoon, K.S.; Kwon, D.H.; Strycharz, J.P.; Hollingsworth, C.S.; Lee, S.H.; Clark, J.M. Biochemical and molecular analysis of deltamethrin resistance in the common bed bug (Hemiptera: Cimicidae). J. Med. Entomol. 2008, 45, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Seong, K.M.; Lee, D.Y.; Yoon, K.S.; Kwon, D.H.; Kim, H.C.; Klein, T.A.; Clark, J.M.; Lee, S.H. Establishment of quantitative sequencing and filter contact vial bioassay for monitoring pyrethroid resistance in the common bed bug, Cimex lectularius. J. Med. Entomol. 2010, 47, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Wigginton, J.; Romero, A.; Moore, A.; Ferguson, K.; Palli, R.; Potter, M.F.; Haynes, K.F.; Palli, S.R. Widespread distribution of knockdown resistance mutations in the bed bug, Cimex lectularius (Hemiptera: Cimicidae), populations in the United States. Arch. Insect Biochem. Physiol. 2010, 73, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Durand, R.; Cannet, A.; Berdjane, Z.; Bruel, C.; Haouchine, D.; Delaunay, P.; Izri, A. Infestation by pyrethroids resistant bed bugs in the suburb of Paris, France. Parasite 2012, 19, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Dang, K.; Toi, C.S.; Lilly, D.G.; Bu, W.; Doggett, S.L. Detection of knockdown resistance mutations in the common bed bug, Cimex lectularius (Hemiptera: Cimicidae), in Australia. Pest Manag. Sci. 2015, 71, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Palenchar, D.J.; Gellatly, K.J.; Yoon, K.S.; Mumcuoglu, K.Y.; Shalom, U.; Clark, J.M. Quantitative sequencing for the determination of kdr-type resistance allele (V419L, L925I, I936F) frequencies in common bed bug (Hemiptera: Cimicidae) populations collected from Israel. J. Med. Entomol. 2015, 52, 1018–1027. [Google Scholar] [CrossRef] [PubMed]
- Romero, A.; Potter, M.F.; Haynes, K.F. Evaluation of piperonyl butoxide as a deltamethrin synergist for pyrethroid-resistant bed bugs. J. Econ. Entomol. 2009, 102, 2310–2315. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Sams, S.; Moural, T.; Haynes, K.F.; Potter, M.F.; Palli, S.R. RNA interference of NADPH-cytochrome P450 reductase results in reduced insecticide resistance in the bed bug, Cimex lectularius. PLoS ONE 2012, 7, e31037. [Google Scholar] [CrossRef] [PubMed]
- Adelman, Z.N.; Kilcullen, K.A.; Koganemaru, R.; Anderson, M.A.E.; Anderson, T.D.; Miller, D.M. Deep sequencing of pyrethroid-resistant bed bugs reveals multiple mechanisms of resistance within a single population. PLoS ONE 2011, 6, e26228. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Mamidala, P.; Rajarapu, S.P.; Jones, S.C.; Mittapalli, O. Transcriptomics of the bed bug (Cimex lectularius). PLoS ONE 2011, 6, e16336. [Google Scholar] [CrossRef] [PubMed]
- Mamidala, P.; Wijeratne, A.J.; Wijeratne, S.; Kornacker, K.; Sudhamalla, B.; Rivera-Vega, L.J.; Hoelmer, A.; Meulia, T.; Jones, S.C.; Mittapalli, O. RNA-Seq and molecular docking reveal multi-level pesticide resistance in the bed bug. BMC Genom. 2012. [Google Scholar] [CrossRef] [PubMed]
- Koganemaru, R.; Miller, D.M.; Adelman, Z.N. Robust cuticular penetration resistance in the common bed bug (Cimex lectularius L.) correlates with increased steady-state transcript levels of CPR-type cuticle protein genes. Pestic. Biochem. Physiol. 2013, 106, 190–197. [Google Scholar] [CrossRef]
- Zhu, F.; Gujar, H.; Gordon, J.R.; Haynes, K.F.; Potter, M.F.; Palli, S.R. Bed bugs evolved unique adaptive strategy to resist pyrethroid insecticides. Sci. Rep. 2013. [Google Scholar] [CrossRef] [PubMed]
- Potter, M.F.; Haynes, K.F.; Gordon, J.R.; Hardebeck, E.; Wickemeyer, W. Dual-action bed bug killers. Pest Control Technol. 2012, 40, 62–68, 75–76. [Google Scholar]
- Gordon, J.R.; Goodman, M.H.; Potter, M.F.; Haynes, K.F. Population variation in and selection for resistance to pyrethroid-neonicotinoid insecticides in the bed bug. Sci. Rep. 2014. [Google Scholar] [CrossRef] [PubMed]
- Romero, A.; Potter, M.F.; Haynes, K.F. Evaluation of chlorfenapyr for control of the bed bug, Cimex lectularius L. Pest Manag. Sci. 2010, 66, 1243–1248. [Google Scholar] [CrossRef] [PubMed]
- Goodman, M.H.; Potter, M.F.; Haynes, K.F. Effects of juvenile hormone analog formulations on development and reproduction in the bed bug Cimex lectularius (Hemiptera: Cimicidae). Pest Manag. Sci. 2013, 69, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, Y.; Isman, M.B. Horizontal transfer of diatomaceous earth and botanical insecticides in the common bed bug, Cimex lectularius L.; Hemiptera: Cimicidae. PLoS ONE 2013, 8, e75626. [Google Scholar] [CrossRef] [PubMed]
- Phillips, T.W.; Aikins, M.J.; Thoms, E.; Demark, J.; Wang, C. Fumigation of bed bugs (Hemiptera: Cimicidae): Effective application rates for sulfuryl fluoride. J. Econ. Entomol. 2014, 107, 1582–1589. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.M.; Yoon, K.S.; Lee, S.H.; Pittendrigh, B.R. Human lice: Past, present and future control. Pestic. Biochem. Physiol. 2013, 106, 162–171. [Google Scholar] [CrossRef]
- Gratz, N.G. Emerging and resurging vector-borne diseases. Annu. Rev. Entomol. 1999, 44, 51–75. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.S.; Previte, D.J.; Hodgdon, H.E.; Poole, B.C.; Kwon, D.H.; Aboelghar, G.E.; Lee, S.H.; Clark, J.M. Knockdown resistance allele frequencies in North American head louse (Anoplura: Pediculidae) populations. J. Med. Entomol. 2014, 51, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Durand, R.; Bouvresse, S.; Berdjane, Z.; Izri, A.; Chosidow, O.; Clark, J.M. Insecticide resistance in head lice: Clinical, parasitological and genetic aspects. Clin. Microbiol. Infect. 2012, 18, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Chosidow, O.; Chastang, C.; Brue, C.; Bouvet, E.; Izri, M.; Monteny, N.; Bastuji-Garin, S.; Rousset, J.; Revuz, J. Controlled study of malathion and d-phenothrin lotions for Pediculus humanus var capitis-infested schoolchildren. Lancet 1994, 344, 1724–1727. [Google Scholar] [CrossRef]
- Lee, S.H.; Gao, J.; Yoon, K.S.; Mumcuoglu, K.Y.; Taplin, D.; Edman, J.D.; Takano-Lee, M.; Clark, J.M. Sodium channel mutations associated with knockdown resistance in the human head louse, Pediculus capitis (De Geer). Pestic. Biochem. Physiol. 2003, 75, 79–91. [Google Scholar] [CrossRef]
- Yoon, K.S.; Symington, S.B.; Lee, S.H.; Soderlund, D.M.; Clark, J.M. Three mutations identified in the voltage-sensitive sodium channel α-subunit gene of permethrin-resistant human head lice reduce the permethrin sensitivity of house fly Vssc1 sodium channels expressed in Xenopus oocytes. Insect Biochem. Mol. Biol. 2008, 38, 296–306. [Google Scholar]
- Hodgdon, H.E.; Yoon, K.S.; Previte, D.J.; Kim, H.J.; Aboelghar, G.E.; Lee, S.H.; Clark, J.M. Determination of knockdown resistance allele frequencies in global human head louse populations using the serial invasive signal amplification reaction. Pest Manag. Sci. 2010, 66, 1031–1040. [Google Scholar] [CrossRef] [PubMed]
- Hemingway, J.; Miller, J.; Mumcuoglu, K.Y. Pyrethroid resistance mechanisms in the head louse Pediculus capitis from Israel: Implications for control. Med. Vet. Entomol. 1999, 13, 89–96. [Google Scholar] [CrossRef] [PubMed]
- González Audino, P.; Barrios, S.; Vassena, C.; Mougabure Cueto, G.; Zerba, E.; Picollo, M.I. Increased monooxygenase activity associated with resistance to permethrin in Pediculus humanus capitis (Anoplura: Pediculidae) from Argentina. J. Med. Entomol. 2005, 42, 342–345. [Google Scholar] [CrossRef] [PubMed]
- Izri, M.A.; Brière, C. First cases of resistance of Pediculus capitis Linné 1758 to malathion in France. Presse Med. 1995, 24, 1444. (In French) [Google Scholar] [PubMed]
- Downs, A.M.R.; Stafford, K.A.; Harvey, I.; Coles, G.C. Evidence for double resistance to permethrin and malathion in head lice. Br. J. Dermatol. 1999, 141, 508–511. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.A.; Barker, S.C. Susceptibility of head lice (Pediculus humanus capitis) to pediculicides in Australia. Parasitol. Res. 2003, 90, 476–478. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, M.; Knorr, M.; Rasmussen, A.; Jespersen, J.B. Survey of permethrin and malathion resistance in human head lice populations from Denmark. J. Med. Entomol. 2006, 43, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.S.; Gao, J.; Lee, S.H.; Coles, G.C.; Meinking, T.L.; Taplin, D.; Edman, J.D.; Takano-Lee, M.; Clark, J.M. Resistance and cross-resistance to insecticides in human head lice from Florida and California. Pestic. Biochem. Physiol. 2004, 80, 192–201. [Google Scholar] [CrossRef]
- Gao, J.; Yoon, K.S.; Frisbie, R.K.; Coles, G.C.; Clark, J.M. Esterase-mediated malathion resistance in the human head louse, Pediculus capitis (Anoplura: Pediculidae). Pestic. Biochem. Physiol. 2006, 85, 28–37. [Google Scholar] [CrossRef]
- Kwon, D.H.; Kim, J.H.; Kim, Y.H.; Yoon, K.S.; Clark, J.M.; Lee, S.H. Identification and characterization of an esterase involved in malathion resistance in the head louse Pediculus humanus capitis. Pestic. Biochem. Physiol. 2014, 112, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Burgess, I.F. The mode of action of dimeticone 4% lotion against head lice, Pediculus capitis. BMC Pharmacol. 2009. [Google Scholar] [CrossRef] [PubMed]
- Meinking, T.L.; Villar, M.E.; Vicaria, M.; Eyerdam, D.H.; Paquet, D.; Mertz-Rivera, K.; Rivera, H.F.; Hiriart, J.; Susan Reyna, S. The clinical trials supporting benzyl alcohol lotion 5% (Ulesfia™): A safe and effective topical treatment for head lice (Pediculosis humanus capitis). Pediatr. Dermatol. 2010, 27, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Strycharz, J.P.; Yoon, K.S.; Clark, J.M. A new ivermectin formulation topically kills permethrin-resistant human head lice (Anoplura: Pediculidae). J. Med. Entomol. 2008, 45, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Mougabure Cueto, G.; Zerba, E.N.; Picollo, M.I. Permethrin-resistant head lice (Anoplura: Pediculidae) in Argentina are susceptible to spinosad. J. Med. Entomol. 2006, 43, 634–635. [Google Scholar] [PubMed]
- Clark, J.M.; Yoon, K.S.; Kim, J.H.; Lee, S.H.; Pittendrigh, B.R. Utilization of the human louse genome to study insecticide resistance and innate immune response. Pestic. Biochem. Physiol. 2015, 120, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.S.; Strycharz, J.P.; Baek, J.H.; Sun, W.; Kim, J.H.; Kang, J.S.; Pittendrigh, B.R.; Lee, S.H.; Clark, J.M. Brief exposures of human body lice to sublethal amounts of ivermectin over-transcribes detoxification genes involved in tolerance. Insect Mol. Biol. 2011, 20, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Alphey, L. Genetic control of mosquitoes. Annu. Rev. Entomol. 2014, 59, 205–224. [Google Scholar] [CrossRef] [PubMed]
- Knipling, E.F. Possibilities of insect control or eradication through the use of sexually sterile males. J. Econ. Entomol. 1955, 48, 459–462. [Google Scholar] [CrossRef]
- Robinson, A.S.; Franz, G.; Atkinson, P.W. Insect transgenesis and its potential role in agriculture and human health. Insect Biochem. Mol. Biol. 2004, 34, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Krafsur, E.S. Sterile insect technique for suppressing and eradicating insect population: 55 years and counting. J. Agric. Entomol. 1998, 15, 303–317. [Google Scholar]
- Alphey, L.; Benedict, M.; Bellini, R.; Clark, G.G.; Dame, D.A.; Service, M.W.; Dobson, S.L. Sterile-insect methods for control of mosquito-borne diseases: An analysis. Vector Borne Zoonotic Dis. 2010, 10, 295–311. [Google Scholar] [CrossRef] [PubMed]
- Wimmer, E.A. Eco-friendly insect management. Nat. Biotechnol. 2005, 23, 432–433. [Google Scholar] [CrossRef] [PubMed]
- Burt, A. Heritable strategies for controlling insect vectors of disease. Philos. Trans. R. Soc. B Biol. Sci. 2014. [Google Scholar] [CrossRef]
- McGraw, E.A.; O’Neill, S.L. Beyond insecticides: New thinking on an ancient problem. Nat. Rev. Microbiol. 2013, 11, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.F.; Nimmo, D.; McKemey, A.R.; Kelly, N.; Scaife, S.; Donnelly, C.A.; Beech, C.; Petrie, W.D.; Alphey, L. Field performance of engineered male mosquitoes. Nat. Biotech. 2011, 29, 1034–1039. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.F.; McKemey, A.R.; Nimmo, D.; Curtis, Z.; Black, I.; Morgan, S.A.; Oviedo, M.N.; Lacroix, R.; Naish, N.; Morrison, N.I.; et al. Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes. Nat. Biotechnol. 2012, 30, 828–830. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, R.; McKemey, A.R.; Raduan, N.; Wee, L.K.; Ming, W.H.; Ney, T.G.; Rahidah, A.A.S.; Salman, S.; Subramaniam, S.; Nordin, O.; et al. Open field release of genetically engineered sterile male Aedes aegypti in Malaysia. PLoS ONE 2012, 7, e42771. [Google Scholar] [CrossRef] [PubMed]
- Burt, A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc. R. Soc. Lond. B 2003, 270, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Deredec, A.; Godfray, H.C.J.; Burt, A. Requirements for effective malaria control with homing endonuclease genes. Proc. Natl. Acad. Sci. USA 2011, 108, E874–E880. [Google Scholar] [CrossRef] [PubMed]
- Windbichler, N.; Menichelli, M.; Papathanos, P.A.; Thyme, S.B.; Li, H.; Ulge, U.Y.; Hovde, B.T.; Baker, D.; Monnat, R.J.; Burt, A.; et al. A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature 2011, 473, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Carroll, D. Genome engineering with targetable nucleases. Annu. Rev. Biochem. 2014, 83, 409–439. [Google Scholar] [CrossRef] [PubMed]
- Gabrieli, P.; Smidler, A.; Catteruccia, F. Engineering the control of mosquito-borne infectious diseases. Genome Biol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Criscione, F.; O’Brochta, D.A.; Reid, W. Genetic technologies for disease vectors. Curr. Opin. Insect Sci. 2015, 10, 90–97. [Google Scholar] [CrossRef]
- DeGennaro, M.; McBride, C.S.; Seeholzer, L.; Nakagawa, T.; Dennis, E.J.; Goldman, C.; Jasinskiene, N.; James, A.A.; Vosshall, L.B. Orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature 2013, 498, 487–491. [Google Scholar] [CrossRef] [PubMed]
- McMeniman, C.J.; Corfas, R.A.; Matthews, B.J.; Ritchie, S.A.; Vosshall, L.B. Multimodal integration of carbon dioxide and other sensory cues drives mosquito attraction on humans. Cell 2014, 156, 1060–1071. [Google Scholar] [CrossRef] [PubMed]
- Smidler, A.L.; Terenzi, O.; Soichot, J.; Levashina, E.A.; Marois, E. Targeted mutagenesis in the malaria mosquito using TALE nucleases. PLoS ONE 2013, 8, e74511. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, H.; Shivalila, C.S.; Dawlaty, M.M.; Cheng, A.W.; Zhang, F.; Jaenisch, R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-medicated genome engineering. Cell 2013, 153, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Seruggia, D.; Montoliu, L. The new CRISPR-Cas system: RNA-guided genome engineering to efficiently produce any desired genetic alteration in animals. Transgenic Res. 2014, 23, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Kistler, K.E.; Vosshall, L.B.; Matthews, B.J. Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Rep. 2015, 11, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.B.; Basu, S.; Jiang, X.; Qi, Y.; Timoshevskiy, V.A.; Biedler, J.K.; Sharakhova, M.V.; Elahi, R.; Anderson, M.A.E.; Chen, X.; et al. A male-determining factor in the mosquito Aedes aegypti. Science 2015, 348, 1268–1270. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Cui, Y.; Walsh, D.B.; Lavine, L.C. Application of RNAi toward insecticide resistance management. In Short Views on Insect Biochemistry and Molecular Biology; Chandrasekar, R., Tyagi, B.K., Gui, Z., Reeck, G.R., Eds.; International Book Mission, Academic Publisher: Manhattan, NY, USA, 2014; pp. 595–619. [Google Scholar]
- Lycell, G.J.; McLaughlin, L.A.; Ranson, H.; Hemingway, J.; Kafatos, F.C.; Loukeris, T.G.; Paine, M.J.I. Anopheles gambiae P450 reductase is highly expressed in oenocytes and in vivo knockdown increases permethrin susceptibility. Insect Mol. Biol. 2006, 15, 321–327. [Google Scholar]
- Ciudad, L.; Piulachs, M.D.; Bellés, X. Systemic RNAi of the cockroach vitellogenin receptor results in a phenotype similar to that of the Drosophila yolkless mutant. FEBS J. 2006, 273, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Sant’Anna, M.R.V.; Alexander, B.; Bates, P.A.; Dillon, R.J. Gene silencing in phlebotomine sand flies: Xanthine dehydrogenase knock down by dsRNA microinjections. Insect Biochem. Mol. Biol. 2008, 38, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Attardo, G.M.; Benoit, J.B.; Michalkova, V.; Yang, G.; Roller, L.; Bohova, J.; Takác, P.; Aksoy, S. Analysis of lipolysis underlying lactation in the tsetse fly, Glossina morsitans. Insect Biochem. Mol. Biol. 2012, 42, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Scharf, M. Termites as targets and models for biotechnology. Annu. Rev. Entomol. 2015, 60, 77–102. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wheeler, M.M.; Oi, F.M.; Scharf, M.E. RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochem. Mol. Biol. 2008, 38, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Whyard, S.; Erdelyan, C.N.G.; Partridge, A.L.; Singh, A.D.; Beebe, N.W.; Capina, R. Silencing the buzz: A new approach to population suppression of mosquitoes by feeding larvae double-stranded RNAs. Parasit. Vectors 2015. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, J.; Zhu, K.Y. Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol. Biol. 2010, 19, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Debnath, N.; Cui, Y.; Unrine, J.; Palli, S.R. Chitosan, carbon quantum dot, and silica nanoparticle mediated dsRNA delivery for gene silencing in Aedes aegypti: A comparative analysis. ACS Appl. Mater. Interfaces 2015, 7, 19530–19535. [Google Scholar] [CrossRef] [PubMed]
- Chandler, D.; Bailey, A.S.; Tatchell, G.M.; Davidson, G.; Greaves, J.; Grant, W.P. The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. Lond. B 2011, 366, 1987–1998. [Google Scholar] [CrossRef] [PubMed]
- Regnault-Roger, C. Botanicals in pest management. In Integrated Pest Management; Abrol, D.P., Shankar, U., Eds.; CAB International: Oxfordshire, UK, 2012; pp. 119–132. [Google Scholar]
- Rizvi, P.Q.; Ahmad, S.K.; Choudhury, R.A.; Ali, A. Biopesticides in ecologically-based integrated pest management. In Integrated Pest Management; Abrol, D.P., Shankar, U., Eds.; CAB International: Oxfordshire, UK, 2012; pp. 133–161. [Google Scholar]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Dhang, P.; Sanjayan, K.P. Plants with pest control properties against urban pests. In Urban Insect Pests-Sustainable Management Strategies; Dhang, P., Ed.; CAB International: Oxfordshire, UK, 2014; pp. 216–238. [Google Scholar]
- Blanford, S.; Chan, B.H.K.; Jenkins, N.; Sim, D.; Turner, R.J.; Read, A.F.; Thomas, M.B. Fungal pathogen reduces potential for malaria transmission. Science 2005, 308, 1638–1641. [Google Scholar] [CrossRef] [PubMed]
- Scholte, E.-J.; Ng’habi, K.; Kihonda, J.; Takken, W.; Paaijmans, K.; Abdulla, S.; Killeen, G.F.; Knols, B.G.J. An entomopathogenic fungus for control of adult African malaria mosquitoes. Science 2005, 308, 1641–1642. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.B.; Read, A.F. Can fungal biopesticides control malaria? Nat. Rev. Microbiol. 2007, 5, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Howard, A.F.V.; Koenraadt, C.J.M.; Farenhorst, M.; Knols, B.G.J.; Takken, W. Pyrethroid resistance in Anopheles gambiae leads to increased susceptibility to the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Malar. J. 2010. [Google Scholar] [CrossRef] [PubMed]
- Farenhorst, M.; Mouatcho, J.C.; Kikankie, C.K.; Brooke, B.D.; Hunt, R.H.; Thomas, M.B.; Koekemoer, L.L.; Knols, B.G.; Coetzee, M. Fungal infection counters insecticide resistance in African malaria mosquitoes. Proc. Natl. Acad. Sci. USA 2009, 106, 17443–17447. [Google Scholar] [CrossRef] [PubMed]
- Farenhorst, M.; Knols, B.G.; Thomas, M.B.; Howard, A.F.V.; Takken, W.; Rowland, M.; N’Guessan, R. Synergy in efficacy of fungal entomopathogens and permethrin against West African insecticide-resistant Anopheles gambiae mosquitoes. PLoS ONE 2010, 5, e12081. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Vega-Rodríguez, J.; Ghosh, A.K.; Jacobs-Lorena, M.; Kang, A.; St. Leger, R.J. Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science 2011, 331, 1074–1077. [Google Scholar] [CrossRef] [PubMed]
- Werren, J.H. Biology of Wolbachia. Annu. Rev. Entomol. 1997, 42, 587–609. [Google Scholar] [CrossRef] [PubMed]
- Iturbe-Ormaetxe, I.; Walker, T.; O’Neill, S.L. Wolbachia and the biological control of mosquito-borne disease. EMBO Rep. 2011, 12, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Xi, Z.; Khoo, C.C.H.; Dobson, S.L. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 2005, 310, 326–328. [Google Scholar] [CrossRef] [PubMed]
- Xi, Z.; Khoo, C.C.H.; Dobson, S.L. Interspecific transfer of Wolbachia into the mosquito disease vector Aedes albopictus. Proc. R. Soc. Lond. B 2006, 273, 1317–1322. [Google Scholar] [CrossRef] [PubMed]
- Bian, G.; Joshi, D.; Dong, Y.; Lu, P.; Zhou, G.; Pan, X.; Xu, Y.; Dimopoulos, G.; Xi, Z. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science 2013, 340, 748–751. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, T.; Koga, R.; Kikuchi, Y.; Meng, X.-Y.; Fukatsu, T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl. Acad. Sci. USA 2010, 107, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Isman, M.B. Botanical insecticide, deterrents, and repellents in modern agriculture and increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [PubMed]
- Amer, A.; Mehlhorn, H. Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol. Res. 2006, 99, 478–490. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Wang, C.; Cooper, R. Natural pesticides for bed bug control: Do they work? Pest Control Technol. 2013, 41, 28. [Google Scholar]
- Singh, N.; Wang, C.; Cooper, R. Potential of essential oil-based pesticides and detergents for bed bug control. J. Econ. Entomol. 2014, 107, 2163–2170. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Singh, N.; Cooper, R. Efficacy of an essential oil-based pesticide for controlling bed bug (Cimex lectularius) infestations in apartment buildings. Insects 2014, 5, 849–859. [Google Scholar] [CrossRef] [PubMed]
- Phillips, T.W.; Cogan, P.M.; Fadamiro, H.Y. Pheromones. In Alternatives to Pesticides in Stored Product IPM; Subramanyam, B., Hagstrum, D.W., Eds.; Kluwer Academic Publishers: Norwell, MA, USA, 2000; pp. 273–302. [Google Scholar]
- VanRyckeghem, A. Pheromones: A resourceful tool in urban pest management. In Urban Pest Management: An Environmental Perspective; Dhang, P., Ed.; CAB International: Oxfordshire, UK; Boston, MA, USA, 2011; pp. 169–186. [Google Scholar]
- Gries, R.; Britton, R.; Holmes, M.; Zhai, H.; Draper, J.; Gries, G. Bed bug aggregation pheromone finally identified. Angew. Chem. Int. Ed. 2015, 54, 1135–1138. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.F.; Ferrandino, F.J.; Mcknight, S.; Nolen, J.; Miller, J. A carbon dioxide, heat and chemical lure trap for the bedbug, Cimex lectularius. Med. Vet. Entomol. 2009, 23, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Gibb, T.J.; Bennett, G.W. Bed bug attraction to pitfall traps baited with carbon dioxide, heat, and chemical lure. J. Econ. Entomol. 2009, 102, 1580–1585. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Cooper, R. Environmentally sound bed bug management solutions. In Urban Pest Management: An Environmental Perspective; Dhang, P., Ed.; CAB International: Oxfordshire, UK; Boston, MA, USA, 2011; pp. 44–63. [Google Scholar]
- Bennett, G.W.; Gondhalekar, A.D.; Wang, C.; Buczkowski, G.; Gibb, T.J. Using research and education to implement practical bed bug control programs in multifamily housing. Pest Manag. Sci. 2015. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, F.; Lavine, L.; O’Neal, S.; Lavine, M.; Foss, C.; Walsh, D. Insecticide Resistance and Management Strategies in Urban Ecosystems. Insects 2016, 7, 2. https://doi.org/10.3390/insects7010002
Zhu F, Lavine L, O’Neal S, Lavine M, Foss C, Walsh D. Insecticide Resistance and Management Strategies in Urban Ecosystems. Insects. 2016; 7(1):2. https://doi.org/10.3390/insects7010002
Chicago/Turabian StyleZhu, Fang, Laura Lavine, Sally O’Neal, Mark Lavine, Carrie Foss, and Douglas Walsh. 2016. "Insecticide Resistance and Management Strategies in Urban Ecosystems" Insects 7, no. 1: 2. https://doi.org/10.3390/insects7010002