Investigating the Disparity in Visual Stimuli-Induced Behavioral Responses Between Bactrocera dorsalis and Zeugodacus tau (Diptera: Tephritidae)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Flies
2.2. Wavelength and Intensity
2.3. Phototaxis Test Model
2.4. Responses of B. dorsalis and Zeugodacus tau to Varied Wavelengths in Laboratory Conditions
(No. of flies in all chambers)
2.5. Response of Gravid Females of Two Species to Different Colors and Shapes in the Greenhouse
2.6. The Response of Gravid Female Flies to the Most Attractive Visual Stimuli in a Closed Orchard
2.7. Statistical Analysis
3. Results
3.1. Attraction Rate of Sexually Immature and Mature Females
3.2. Attraction Rate of Unmated and Mated Females
3.3. Response of Mated Female Flies to Different Colors of Models
3.4. Response of Mated Female Flies to Models of Different Shapes
3.5. Response of Flies to the Most Attractive Light and Models in a Closed Orchard
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radonjić, S.; Hrnčić, S.; Perović, T. Overview of fruit flies important for fruit production on the Montenegro seacoast. Protec. Plants Agroecosyst. Mediterr. 2019, 23, 1–10. [Google Scholar]
- Robacker, D.C.; Moreno, D.S.; Wolfenbarger, D.A. Effects of trap color, height, and placement around trees on capture of Mexican fruit flies (Diptera: Tephritidae). J. Econ. Entomol. 1990, 83, 412–419. [Google Scholar] [CrossRef]
- Vang, L.L.; Medvedev, A.V.; Adler, J. Simple ways to measure behavioral responses of Drosophila to stimuli and use of these methods to characterize a novel mutant. PLoS ONE 2012, 7, e37495. [Google Scholar] [CrossRef]
- Piñero, J.C.; Souder, S.K.; Vargas, R.I. Vision-mediated exploitation of a novel host plant by a Tephritid fruit fly. PLoS ONE 2017, 12, e0174636. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fang, G.; Xu, P.; Gao, B.; Liu, X.; Qi, X.; Zhang, G.; Cao, S.; Li, Z.; Ren, X. Behavioral and genomic divergence between a generalist and a specialist fly. Cell Rep. 2022, 41, 111654. [Google Scholar] [CrossRef]
- Briscoe, A.D.; Chittka, L. The evolution of color vision in insects. Annu. Rev. Entomol. 2001, 46, 471–510. [Google Scholar] [CrossRef]
- Horváth, G.; Varjú, D. Polarized Light in Animal Vision: Polarization Patterns in Nature; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Cowan, T.; Gries, G. Ultraviolet and violet light: Attractive orientation cues for the Indian meal moth. Plodia interpunctella. Entomol. Exp. Appl. 2009, 131, 148–158. [Google Scholar] [CrossRef]
- Xue, H.; Zheng, L.; Wu, W. Morphometry of compound eyes of three Bactrocera (Diptera: Tephritidae) species. Fla. Entomol. 2015, 98, 807–809. [Google Scholar] [CrossRef]
- Liénard, M.A.; Valencia-Montoya, W.A.; Pierce, N.E. Molecular advances to study the function, evolution and spectral tuning of arthropod visual opsins. Philos. Trans. R. Soc. B 2022, 377, 20210279. [Google Scholar] [CrossRef] [PubMed]
- Schnaitmann, C.; Pagni, M.; Reiff, D.F. Color vision in insects: Insights from Drosophila. J. Comp. Physiol. A 2020, 206, 183–198. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, G.; Wang, Y.; Cao, Z.; Cao, S.; Wei, B.; Liu, Y.; Liénard, M.A.; Niu, C. Specific transcription factors regulate the expression of Rh6 in Bactrocera minax and Bactrocera dorsalis (Diptera: Tephritidae). Int. J. Biol. Macromol. 2025, 305, 141201. [Google Scholar] [CrossRef]
- Liu, H.; Gao, Z.; Deng, S.Z.; Cao, F.Q.; Lu, Y.Y. The photokinesis of oriental fruit flies, Bactrocera dorsalis, to LED lights of various wavelengths. Entomol. Exp. Appl. 2018, 166, 102–112. [Google Scholar] [CrossRef]
- Singh, S.; Singh, A. Skewed distribution of melon fruit flies, Bactrocera cucurbitae (Coquillett), owing to colour preference. Indian. J. Sci. Res. 2018, 8, 1–4. [Google Scholar]
- Yee, W.L. Three-dimensional versus rectangular sticky yellow traps for western cherry fruit fly (Diptera: Tephritidae). J. Econ. Entomol. 2019, 112, 1780–1788. [Google Scholar] [CrossRef]
- Jiang, J.-A.; Liu, Y.-Y.; Liao, M.-S.; Yang, E.-C.; Chen, M.-Y.; Chuang, Y.-Y.; Wang, J.-C. Complementary use of visual and olfactory cues to assess capture of Bactrocera dorsalis (Hendel): Implementation and field verification via an IoT-based automatic monitoring system. Proc. Jpn. Acad. Ser. B 2024, 100, 68–85. [Google Scholar] [CrossRef]
- Dearden, A.E.; Wood, M.J.; Frend, H.O.; Butt, T.M.; Allen, W.L. Visual modelling can optimise the appearance and capture efficiency of sticky traps used to manage insect pests. J. Pest Sci. 2024, 97, 469–479. [Google Scholar] [CrossRef]
- Said, A.E.; Fatahuddin, A.; Nasruddin, A. Effect of sticky trap color and height on the capture of adult oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) on chili pepper. Am. J. Agric. Biol. Sci. 2017, 12, 13–17. [Google Scholar] [CrossRef]
- Mayer, D.F.; Long, L.E.; Smith, T.J.; Olsen, J.; Riedl, H.; Heath, R.R.; Leskey, T.C.; Prokopy, R.J. Attraction of adult Rhagoletis indifferens (Diptera: Tephritidae) to unbaited and odor-baited red spheres and yellow rectangles. J. Econ. Entomol. 2000, 93, 347–351. [Google Scholar] [CrossRef] [PubMed]
- López-Guillén, G.; Valle-Mora, J.; Llanderal Cazares, C.; Rojas, J.C. Response of Anastrepha obliqua (Diptera: Tephritidae) to visual and chemical cues under seminatural conditions. J. Econ. Entomol. 2009, 102, 954–959. [Google Scholar] [CrossRef]
- Yee, W.L. Captures of Rhagoletis indifferens (Diptera: Tephritidae) and nontarget insects on red spheres versus yellow spheres and panels. J. Econ. Entomol. 2013, 106, 2109–2117. [Google Scholar] [CrossRef] [PubMed]
- Iwase, S.I.; Tuda, M.; Sugawara, Y.; Fukuda, K.; Miksanek, J.R.; Watanabe, M. Negative phototaxis of jumping cocooned parasitoid wasp larvae against short wavelengths and physicochemical properties of the cocoon shell. Sci. Rep. 2023, 13, 9562. [Google Scholar] [CrossRef]
- Clarke, A.R.; Armstrong, K.F.; Carmichael, A.E.; Milne, J.R.; Raghu, S.; Roderick, G.K.; Yeates, D.K. Invasive phytophagous pests arising through a recent tropical evolutionary radiation: The Bactrocera dorsalis complex of fruit flies. Annu. Rev. Entomol. 2005, 50, 293–319. [Google Scholar] [CrossRef]
- Singh, S.K.; Kumar, D.; Ramamurthy, V.V. Biology of Bactrocera (Zeugodacus) tau (Walker) (Diptera: Tephritidae). Entomol. Res. 2010, 40, 259–263. [Google Scholar] [CrossRef]
- Wan, X.; Liu, Y.; Zhang, B. Invasion history of the oriental fruit fly, Bactrocera dorsalis, in the Pacific-Asia region: Two main invasion routes. PLoS ONE 2012, 7, E36176. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, D.-J.; Xu, Y.-J.; Wang, L.; Cheng, D.-F.; Qi, Y.-X.; Zeng, L.; Lu, Y.-Y. Invasion, expansion, and control of Bactrocera dorsalis (Hendel) in China. J. Integr. Agric. 2018, 17, 1612–1628. [Google Scholar] [CrossRef]
- Jaleel, W.; Yin, J.; Wang, D.; He, Y.; Lu, L.; Shi, H. Using two-sex life tables to determine fitness parameters of four Bactrocera species (Diptera: Tephritidae) reared on a semi-artificial diet. Bull. Entomol. Res. 2017, 107, 1–8. [Google Scholar] [CrossRef]
- Li, L.; Ma, H.; Niu, L.; Han, D.; Zhang, F.; Chen, J.; Fu, Y. Evaluation of chromatic cues for trapping Bactrocera tau. Pest Manag. Sci. 2017, 73, 217–222. [Google Scholar] [CrossRef]
- Bi, Y.; Zhang, X.; Chang, X.; Li, J.; Xiao, S.; Zhang, B.; Dang, C.; Sun, L.; Yao, H.; Fang, Q. Olfactory behavioral responses of two Drosophila species and their pupal parasitoid to volatiles from bananas. Pest Manag. Sci. 2023, 79, 4309–4318. [Google Scholar] [CrossRef]
- Jaleel, W.; He, Y.; Lü, L. The response of two Bactrocera species (Diptera: Tephritidae) to fruit volatiles. J. Asia Pac. Entomol. 2019, 22, 758–765. [Google Scholar] [CrossRef]
- Scolari, F.; Valerio, F.; Benelli, G.; Papadopoulos, N.T.; Vaníčková, L. Tephritid fruit fly semiochemicals: Current knowledge and future perspectives. Insects 2021, 12, 408. [Google Scholar] [CrossRef]
- Li, X.; Zhang, M.; Zhang, H. RNA interference of four genes in adult Bactrocera dorsalis by feeding their dsRNAs. PLoS ONE 2011, 6, e17788. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.-Y.; Chen, Y.-P.; Yang, E.-C. Chromatic cues to trap the oriental fruit fly, Bactrocera dorsalis. J. Insect Physiol. 2007, 53, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Wu, W. Preferences of Bactrocera cucurbitae (Diptera: Tephritidae) to different colors: A quantitative investigation using virtual wavelength. Acta Entomol. Sin. 2013, 56, 161–166. [Google Scholar]
- Meza, J.S.; Fleischer, F.D.; Orozco, D. Pupariation time as a source of variability in mating performance in mass-reared Anastrepha ludens (Diptera: Tephritidae). J. Econ. Entomol. 2005, 98, 1930–1936. [Google Scholar] [CrossRef]
- Buffry, A.D.; Currea, J.P.; Franke-Gerth, F.A.; Palavalli-Nettimi, R.; Bodey, A.J.; Rau, C.; Samadi, N.; Gstöhl, S.J.; Schlepütz, C.M.; McGregor, A.P. Evolution of compound eye morphology underlies differences in vision between closely related Drosophila species. BMC Biol. 2024, 22, 67. [Google Scholar] [CrossRef]
- Cheng, W.-J.; Zheng, X.-L.; Wang, P.; Lei, C.-L.; Wang, X.-P. Sexual differences of insect phototactic behavior and related affecting factors. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2011, 22, 3351–3357. [Google Scholar]
- Park, J.-H.; Lee, H.-S. Phototactic behavioral response of agricultural insects and stored-product insects to light-emitting diodes (LEDs). Appl. Biol. Chem. 2017, 60, 137–144. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, X.-F.; Fu, L.; Han, Y.-Y.; Chen, J.; Lu, Y.-Y. BdorOBP2 plays an indispensable role in the perception of methyl eugenol by mature males of Bactrocera dorsalis (Hendel). Sci. Rep. 2017, 7, 15894. [Google Scholar] [CrossRef]
- Blackmer, J.L.; Byers, J.A.; Rodriguez-Saona, C. Evaluation of color traps for monitoring Lygus spp.: Design, placement, height, time of day, and non-target effects. Crop Prot. 2008, 27, 171–181. [Google Scholar] [CrossRef]
- Drew, R.A.; Prokopy, R.J.; Romig, M.C. Attraction of fruit flies of the genus Bactrocera to colored mimics of host fruit. Entomol. Exp. Appl. 2003, 107, 39–45. [Google Scholar] [CrossRef]
- Yu, H. The Phototaxis of Grapholitha molesta Busck and the Effect of Green Light on Its Biological Characteristics. Master’s Thesis, Northwest Agriculture and Forestry University, Yangling, China, 2011. [Google Scholar]
- Wei, G.; Zhang, Q.; Zhou, M.; Wu, W. Studies on the phototaxis of Helicoverpa armigera. Acta Biophys. Sin. 2000, 16, 89–95. [Google Scholar]
- Jiang, X.F.; Zhang, Z.Z.; Liu, L.Z. Phototaxis of the beet webworm Loxostege sticticalis to different wavelengths and light intensity. Acta Phytophy. Sin. 2010, 6, 16. [Google Scholar]
- Zhu, J.; Zhu, W.; Liu, H.; Lu, Y.; Zhang, C. Effects of LED lights on phototaxis and reproduction of small brown planthopper. Jiangsu J. Agric. Sci. 2014, 30, 508–513. [Google Scholar]
- Elens, A. Influence of aging on behavior of D. melanogaster. Dros. Inf. Serv. 1972, 48, 108. [Google Scholar]
- Drew, R.A.; Dorji, C.; Romig, M.C.; Loday, P. Attractiveness of various combinations of colors and shapes to females and males of Bactrocera minax (Diptera: Tephritidae) in a commercial mandarin grove in Bhutan. J. Econ. Entomol. 2006, 99, 1651–1656. [Google Scholar] [CrossRef]
- Robacker, D.C. Effects of shape and size of colored traps on attractiveness to irradiated, laboratory-strain Mexican fruit flies (Diptera: Tephritidae). Fla. Entomol. 1992, 75, 230–241. [Google Scholar] [CrossRef]
- Piñero, J.C.; Jácome, I.; Vargas, R.; Prokopy, R.J. Response of female melon fly, Bactrocera cucurbitae, to host-associated visual and olfactory stimuli. Entomol. Exp. Appl. 2006, 121, 261–269. [Google Scholar] [CrossRef]
- Economopoulos, A. Use of traps based on color and/or shape. Fruit Flies Their Biol. Nat. Enemies Control 1989, 3, 315–327. [Google Scholar]
- Rutowski, R.L. Variation of eye size in butterflies: Inter-and intraspecific patterns. J. Zool. 2000, 252, 187–195. [Google Scholar] [CrossRef]






| Wavelength (mean ± SE) | 454 ± 2.0 | 480 ± 2.0 | 520 ± 3.0 | 560 ± 2.0 | 580 ± 2.0 | 620 ± 3.0 |
|---|---|---|---|---|---|---|
| Irradiance under 200 lx (mean ± SE) (μW/cm2) | 29.6 ± 2.0 | 29.6 ± 3.0 | 29.8 ± 2.0 | 30.8 ± 3.0 | 31.2 ± 3.0 | 30.7± 2.0 |
| Range of colors | 450 nm | 500 nm | 550 nm | 600 nm | 650 nm | |
![]() | ||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Naiem, F.A.; Zheng, W.; Haider, K.; Kabir, K.; Afzal, I.; Zhang, H. Investigating the Disparity in Visual Stimuli-Induced Behavioral Responses Between Bactrocera dorsalis and Zeugodacus tau (Diptera: Tephritidae). Insects 2026, 17, 8. https://doi.org/10.3390/insects17010008
Naiem FA, Zheng W, Haider K, Kabir K, Afzal I, Zhang H. Investigating the Disparity in Visual Stimuli-Induced Behavioral Responses Between Bactrocera dorsalis and Zeugodacus tau (Diptera: Tephritidae). Insects. 2026; 17(1):8. https://doi.org/10.3390/insects17010008
Chicago/Turabian StyleNaiem, Fathelrahman Ahmed, Weiwei Zheng, Kamran Haider, Kamil Kabir, Imran Afzal, and Hongyu Zhang. 2026. "Investigating the Disparity in Visual Stimuli-Induced Behavioral Responses Between Bactrocera dorsalis and Zeugodacus tau (Diptera: Tephritidae)" Insects 17, no. 1: 8. https://doi.org/10.3390/insects17010008
APA StyleNaiem, F. A., Zheng, W., Haider, K., Kabir, K., Afzal, I., & Zhang, H. (2026). Investigating the Disparity in Visual Stimuli-Induced Behavioral Responses Between Bactrocera dorsalis and Zeugodacus tau (Diptera: Tephritidae). Insects, 17(1), 8. https://doi.org/10.3390/insects17010008


