4-Ethylacetophenone from Potato Plants Repels Phthorimaea operculella and Inhibits Oviposition: A Sustainable Management Strategy
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Chemicals
2.3. Antennal Responses of Phthorimaea operculella to the VOCs
2.4. Behavioral Response Assays
2.4.1. Y-Tube Olfactometer Experiment
2.4.2. Cage Experiments
2.5. Oviposition Choice Test
2.6. Statistical Analysis
3. Results
3.1. EAG Activity
3.2. Behavioral Responses of P. operculella Adults to the VOCs
3.3. Oviposition Selection of P. operculella to the VOCs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rondon, S.I. The Potato Tuberworm: A Literature Review of Its Biology, Ecology, and Control. AM. J. Potato Res. 2010, 87, 149–166. [Google Scholar] [CrossRef]
- Rondon, S.I.; Gao, Y. The Journey of the Potato Tuberworm Around the World. In Moths—Pests of Potato, Maize and Sugar Beet; Perveen, F.K., Ed.; IntechOpen: London, UK, 2018; pp. 17–52. [Google Scholar]
- Jung, J.; Lee, S.; Kim, K.; Jeon, S.; Jung, S.; Lee, W. The Potential Distribution of The Potato Tuber Moth (Phthorimaea operculella) Based on Climate and Host Availability of Potato. Agronomy 2020, 10, 12. [Google Scholar] [CrossRef]
- Chen, R.; Yan, J.; Wickham, J.D.; Gao, Y. Genomic Identification and Evolutionary Analysis of Chemosensory Receptor Gene Families in Two Phthorimaea Pest Species: Insights into Chemical Ecology and Host Adaptation. BMC Genom. 2024, 25, 1–17. [Google Scholar] [CrossRef]
- Cameron, P.J.; Walker, G.P.; Penny, G.M.; Wigley, P.J. Movement of Potato Tuberworm (Lepidoptera: Gelechiidae) Within and Between Crops, and Some Comparisons with Diamondback Moth (Lepidoptera: Plutellidae). Environ. Entomol. 2002, 31, 65–75. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, C.; Wang, C.; Xiong, Y.; Li, Z.; Xiao, C. Occurrence of Parthenogenesis in Potato Tuber Moth. J. Insect Sci. 2018, 18, 14. [Google Scholar] [CrossRef]
- Kroschel, J.; Sporleder, M.; Tonnang, H.E.Z.; Juarez, H.; Carhuapoma, P.; Gonzales, J.C.; Simon, R. Predicting Climate-Change-Caused Changes in Global Temperature on Potato Tuber Moth Phthorimaea operculella (Zeller) Distribution and Abundance Using Phenology Modeling and GIS Mapping. Agric. For. Meteorol. 2013, 170, 228–241. [Google Scholar] [CrossRef]
- Dogramaci, M.; Rondon, S.I.; DeBano, S.J. The Effect of Soil Depth and Exposure to Winter Conditions on Survival of the Potato Tuberworm, Phthorimaea operculella. Entomol. Exp. Appl. 2008, 129, 332–339. [Google Scholar] [CrossRef]
- Rondon, S.I.; Hane, D.C.; Brown, C.R.; Vales, M.I.; Dogramaci, M. Resistance of Potato Germplasm to the Potato Tuberworm (Lepidoptera: Gelechiidae). J. Econ. Entomol. 2009, 102, 1649–1653. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, M.; Ali, A.; Du, X.; Mei, X.; Gao, Y. Optimization and Field Evaluation of Sex-Pheromone of Potato Tuber Moth, Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae). Pest Manag. Sci. 2022, 78, 3903–3911. [Google Scholar] [CrossRef]
- Yuan, H.; Wu, S.; Lei, Z.; Rondon, S.I.; Gao, Y. Sub-Lethal Effects of Beauveria bassiana (Balsamo) on Field Populations of the Potato Tuberworm Phthorimaea operculella Zeller in China. J. Integr. Agric. 2018, 17, 911–918. [Google Scholar] [CrossRef]
- Zheng, Y.; Xiao, G.; Zhou, W.; Gao, Y.; Li, Z.; Du, G.; Chen, B. Midgut Microbiota Diversity of Potato Tuber Moth Associated with Potato Tissue Consumed. BMC Microbiol. 2020, 20, 58. [Google Scholar] [CrossRef]
- Li, J.; Yin, J.; Yan, J.; Zhang, M.; Chen, R.; Li, S.; Palli, S.R.; Gao, Y. Expression and Functional Analysis of an Odorant Binding Protein PopeOBP16 from Phthorimaea operculella (Zeller). Int. J. Biol. Macromol. 2023, 242, 124939. [Google Scholar] [CrossRef] [PubMed]
- Kessler, A.; Baldwin, I.T. Defensive Function of Herbivore-Induced Plant Volatile Emissions in Nature. Science 2001, 291, 2141–2144. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.A.M.; Erb, M.; Duployer, M.; Zwahlen, C.; Doyen, G.R.; Turlings, T.C.J. Herbivore-Induced Plant Volatiles Mediate Host Selection by a Root Herbivore. New Phytol. 2012, 194, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Zhang, K.; Wu, Z.; Xu, J.; Erb, M. Plant Volatiles as Regulators of Plant Defense and Herbivore Immunity: Molecular Mechanisms and Unanswered Questions. Curr. Opin. Insect Sci. 2021, 44, 82–88. [Google Scholar] [CrossRef]
- Chang, X.; Wang, F.; Fang, Q.; Chen, F.; Yao, H.; Gatehouse, A.M.R.; Ye, G. Virus-Induced Plant Volatiles Mediate the Olfactory Behaviour of Its Insect Vectors. Plant Cell Environ. 2021, 44, 2700–2715. [Google Scholar] [CrossRef]
- Wang, Q.; Xin, Z.; Li, J.; Hu, L.; Lou, Y.; Lu, J. (E)-β-Caryophyllene Functions as a Host Location Signal for the Rice White-Backed Planthopper Sogatella furcifera. Physiol. Mol. Plant. Pathol. 2015, 91, 106–112. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, G.; Huang, X.; Guo, H.; Su, X.; Han, L.; Zhang, Y.; Qi, Z.; Xiao, Y.; Cheng, H. Overexpression of the Caryophyllene Synthase Gene GhTPS1 in Cotton Negatively Affects Multiple Pests While Attracting Parasitoids. Pest Manag. Sci. 2020, 76, 1722–1730. [Google Scholar] [CrossRef]
- Ma, Y.; Xiao, C. Push-Pull Effects of Three Plant Secondary Metabolites on Oviposition of the Potato Tuber Moth, Phthorimaea operculella. J. Insect Sci. 2013, 13, 128. [Google Scholar] [CrossRef]
- Rafiee-Dastjerdi, H.; Khorrami, F.; Hassanpour, M. The Toxicity of Some Medicinal Plant Extracts to the Potato Tuber Moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). Arch. Phytopathol. Plant Protect. 2014, 47, 1827–1831. [Google Scholar] [CrossRef]
- Munawar, A.; Zhang, Y.; Zhong, J.; Ge, Y.; Abou, A.; Mao, Z.; Ntiri, E.S.; Mao, L.; Zhu, Z.; Zhou, W. Heat Stress Affects Potato’s Volatile Emissions That Mediate Agronomically Important Trophic Interactions. Plant Cell Environ. 2022, 45, 3036–3051. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Xiao, C.; Gao, Y.; Dong, W. Behavioral Responses of Potato Tuber Moth (Phthorimaea operculella) to Tobacco Plant Volatiles. J. Integ. Agric. 2020, 19, 325–332. [Google Scholar] [CrossRef]
- Mo, B.; Guo, H.; Li, G.; Cao, L.; Gong, X.; Huang, L.; Wang, C. Discovery of Insect Attractants Based on the Functional Analyses of Female-Biased Odorant Receptors and Their Orthologs in Two Closely Related Species. J. Agric. Food Chem. 2023, 71, 19408–19421. [Google Scholar] [CrossRef] [PubMed]
- Katte, T.; Shimoda, S.; Kobayashi, T.; Wada-Katsumata, A.; Nishida, R.; Ohshima, I.; Ono, H. Oviposition Stimulants Underlying Different Preferences Between Host Races in the Leaf-Mining Moth Acrocercops transecta (Lepidoptera: Gracillariidae). Sci. Rep. 2022, 12, 14498. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Huang, L.; Dong, J.; Wang, C. A Moth Odorant Receptor Highly Expressed in the Ovipositor Is Involved in Detecting Host-Plant Volatiles. eLife 2020, 9, e53706. [Google Scholar] [CrossRef]
- Gao, Y.; Alyokhin, A.; Prager, S.M.; Reitz, S.; Huseth, A. Complexities in the Implementation and Maintenance of Integrated Pest Management in Potato. Annu. Rev. Entomol. 2025, 70, 45–63. [Google Scholar] [CrossRef]
- Elkady, H. Insecticide Resistance in Potato Tuber Moth Phthorimaea operculella Zeller in Egypt. J. Am. Sci. 2011, 7, 263–266. [Google Scholar]
- Zhu, J.; Chen, R.; Liu, J.; Lin, W.; Liang, J.; Nauen, R.; Li, S.; Gao, Y. Presence of Multiple Genetic Mutations Related to Insecticide Resistance in Chinese Field Samples of Two Phthorimaea Pest Species. Insects 2024, 15, 194. [Google Scholar] [CrossRef]
- Tholl, D.; Hossain, O.; Weinhold, A.; Röse, U.S.R.; Wei, Q. Trends and Applications in Plant Volatile Sampling and Analysis. Plant J. 2021, 106, 314–325. [Google Scholar] [CrossRef]
- Shang, L.; Li, Z.; Tian, K.; Yang, B.; Wang, G.; Lin, K. Identification and Functional Characterization of Sex Pheromone Receptors in the Oriental Fruit Moth, Grapholita molesta (Lepidoptera: Tortricidae). J. Agric. Food Chem. 2022, 70, 9845–9855. [Google Scholar] [CrossRef]
- Collins, L.E.; Bryning, G.P.; Wakefield, M.E.; Chambers, J.; Cox, P.D. Progress Towards a Multi-Species Lure: Identification of Components of Food Volatiles as Attractants for Three Storage Beetles. J. Stored Prod. Res. 2007, 43, 53–63. [Google Scholar] [CrossRef]
- Zhang, X.; Bi, Z.; Huang, Z.; Yuan, H.; Zhang, Y. Oviposition Preference of Spodoptera frugiperda on 9 Selected Plants and Adult Behavioral Responses to Volatile Compounds from Ricinus communis. J. Jilin Agric. Univ. 2023, 46, 1–9. (In Chinese) [Google Scholar]
- Li, R.; Shan, S.; Song, X.; Khashaveh, A.; Wang, S.; Yin, Z.; Lu, Z.; Dhiloo, K.H.; Zhang, Y. Plant Volatile Ligands for Male-Biased MmedOBP14 Stimulate Orientation Behavior of the Parasitoid Wasp Microplitis mediator. Int. J. Biol. Macromol. 2022, 223, 1521–1529. [Google Scholar] [CrossRef] [PubMed]
- Volovych, O.; Lin, Z.; Du, J.; Jiang, H.; Zou, Z. Identification and Temporal Expression Profiles of Cuticular Proteins in the Endoparasitoid Wasp, Microplitis mediator. Insect Sci. 2020, 27, 998–1018. [Google Scholar] [CrossRef]
- Koner, A.; Das, S.; Karmakar, A.; Barik, A. Attraction of the Biocontrol Agent, Galerucella Placida Towards Volatile Blends of Two Polygonaceae Weeds, Rumex dentatus and Polygonum glabrum. J. Chem. Ecol. 2022, 48, 165–178. [Google Scholar] [CrossRef]
- Jacob, V.E.J.M. Current Source Density Analysis of Electroantennogram Recordings: A Tool for Mapping the Olfactory Response in an Insect Antenna. Front. Cell. Neurosci. 2018, 12, 287. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, C.; Yan, S.; Liu, Y.; Guo, M.; Dong, S.; Wang, G. An Odorant Receptor from the Common Cutworm (Spodoptera litura) Exclusively Tuned to the Important Plant Volatile Cis-3-Hexenyl Acetate. Insect Mol. Biol. 2013, 22, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Zhang, R.; Yang, L.; Cao, S.; Francis, F.; Wang, B.; Wang, G. Identification and Functional Characterization of ApisOr23 in Pea Aphid Acyrthosiphon Pisum. J. Integr. Agric. 2022, 21, 1414–1423. [Google Scholar] [CrossRef]
- Stensmyr, M.C.; Dweck, H.K.; Farhan, A.; Ibba, I.; Strutz, A.; Mukunda, L.; Linz, J.; Grabe, V.; Steck, K.; Lavista-Llanos, S.; et al. A Conserved Dedicated Olfactory Circuit for Detecting Harmful Microbes in Drosophila. Cell 2012, 151, 1345–1357. [Google Scholar] [CrossRef]
- Aryal, S.; Jung, C. IPM Tactics of Potato Tuber Moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae); Literature Study. Korean J. Soil Zool. 2015, 19, 42–51. [Google Scholar]
- Fang, Y.; Zeng, R.; Lu, S.; Dai, L.; Wan, X. The Synergistic Attractiveness Effect of Plant Volatiles to Sex Pheromones in a Moth. J. Asia Pac. Entomol. 2018, 21, 380–387. [Google Scholar] [CrossRef]
- Pan, H.; Zhao, H.; Ai, L.; Huang, J.; Chen, Y. Sex Pheromones of the Potato Tuber Moth (Phthorimaea operculella). Front. Chem. 2022, 10, 882400. [Google Scholar] [CrossRef] [PubMed]
- Dudareva, N.; Negre, F.; Nagegowda, D.; Orlova, I. Plant Volatiles: Recent Advances and Future Perspectives. Crit. Rev. Plant Sci. 2006, 25, 417–440. [Google Scholar] [CrossRef]
- Magalhães, D.M.; Borges, M.; Laumann, R.A.; Woodcock, C.M.; Withall, D.M.; Pickett, J.A.; Birkett, M.A.; Blassioli-Moraes, M.C. Identification of Volatile Compounds Involved in Host Location by Anthonomus grandis (Coleoptera: Curculionidae). Front. Ecol. Evol. 2018, 6, 98. [Google Scholar] [CrossRef]
- Kivelä, L.; Elgert, C.; Lehtonen, T.K.; Candolin, U. The Color of Artificial Light Affects Mate Attraction in the Common Glow-Worm. Sci Total Environ. 2023, 857, 159451. [Google Scholar] [CrossRef]
- Kirisik, M.; Erler, F.; Kahraman, T. A New-Designed Light Trap for the Control of Potato Tuber Moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), in Stored Potatoes. Potato Res. 2023, 66, 245–254. [Google Scholar] [CrossRef]
- Mu, N.; Tang, J.; Zhao, J.; Fu, Q.; Ma, Y.; Tang, R.; Dong, W. Caterpillar Responses to Gustatory Stimuli in Potato Tuber Moths: Electrophysiological and Behavioral Insights. Life 2023, 13, 2174. [Google Scholar] [CrossRef]
- Ma, X.; Yan, J.; Gao, Y. Advances, Opportunities and Challenges for Green Control of Potato Tuber Moth [Phthorimaea operculella (Zeller)]. Chin. Potato J. 2023, 37, 347–352. (In Chinese) [Google Scholar] [CrossRef]
Standard Compounds | CAS No. | Purity (%) | Manufacturer |
---|---|---|---|
3-Ethylacetophenone | 22699-70-3 | 98 | Yuanye Bio-Technology Co., Ltd. |
Geranylacetone | 3796-70-1 | 98 | |
Ethylbenzene | 100-41-4 | 95 | Macklin Biochemical Co., Ltd. |
4-Ethylacetophenone | 937-30-4 | 96 | Acmec Biochemical Technology Co., Ltd. |
4-Hydroxy-4-methyl-2-pentanone | 123-42-2 | 99 | |
n-Hexane | 110-54-3 | 95 | Aladdin Biochemical Technology Co., Ltd. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Yan, J.; Su, G.; Khamis, F.M.; Hategekiman, A.; Gao, Y. 4-Ethylacetophenone from Potato Plants Repels Phthorimaea operculella and Inhibits Oviposition: A Sustainable Management Strategy. Insects 2025, 16, 403. https://doi.org/10.3390/insects16040403
Ma X, Yan J, Su G, Khamis FM, Hategekiman A, Gao Y. 4-Ethylacetophenone from Potato Plants Repels Phthorimaea operculella and Inhibits Oviposition: A Sustainable Management Strategy. Insects. 2025; 16(4):403. https://doi.org/10.3390/insects16040403
Chicago/Turabian StyleMa, Xinyu, Junjie Yan, Guangyuan Su, Fathiya M. Khamis, Athanase Hategekiman, and Yulin Gao. 2025. "4-Ethylacetophenone from Potato Plants Repels Phthorimaea operculella and Inhibits Oviposition: A Sustainable Management Strategy" Insects 16, no. 4: 403. https://doi.org/10.3390/insects16040403
APA StyleMa, X., Yan, J., Su, G., Khamis, F. M., Hategekiman, A., & Gao, Y. (2025). 4-Ethylacetophenone from Potato Plants Repels Phthorimaea operculella and Inhibits Oviposition: A Sustainable Management Strategy. Insects, 16(4), 403. https://doi.org/10.3390/insects16040403