Interaction Effects of Farm-Scale Management of Natural Enemy Resources and the Surrounding Seminatural Habitat on Insect Biological Control
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Landscape Attributes and Site Selection
2.2. Abundance of Aphids and Parasitism Rates
2.3. Abundance of Predators
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | Linear dichroism |
References
- Chaplin-Kramer, R.; Neugarten, R.A.; Sharp, R.P.; Collins, P.M.; Polasky, S.; Hole, D.; Schuster, R.; Strimas-Mackey, M.; Mulligan, M.; Brandon, C.; et al. Mapping the planet’s critical natural assets. Nat. Ecol. Evol. 2022, 7, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Karp, D.S.; Chaplin-Kramer, R.; Meehan, T.D.; Martin, E.A.; DeClerck, F.; Grab, H.; Gratton, C.; Hunt, L.; Larsen, A.E.; Martínez-Salinas, A.; et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl. Acad. Sci. USA 2018, 115, E7863–E7870. [Google Scholar] [CrossRef] [PubMed]
- Gurr, G.M.; Wratten, S.D.; Landis, D.A.; You, M. Habitat Management to Suppress Pest Populations: Progress and Prospects. Annu. Rev. Èntomol. 2017, 62, 91–109. [Google Scholar] [CrossRef] [PubMed]
- Salliou, N.; Barnaud, C.; Vialatte, A.; Monteil, C. A participatory Bayesian Belief Network approach to explore ambiguity among stakeholders about socio-ecological systems. Environ. Model. Softw. 2017, 96, 199–209. [Google Scholar] [CrossRef]
- Gontijo, L.M. Engineering natural enemy shelters to enhance conservation biological control in field crops. Biol. Control 2019, 130, 155–163. [Google Scholar] [CrossRef]
- Iuliano, B.; Gratton, C. Temporal Resource (Dis)continuity for Conservation Biological Control: From Field to Landscape Scales. Front. Sustain. Food Syst. 2020, 4, 547848. [Google Scholar] [CrossRef]
- Lichtenberg, E.M.; Kennedy, C.M.; Kremen, C.; Batáry, P.; Berendse, F.; Bommarco, R.; Bosque-Pérez, N.A.; Carvalheiro, L.G.; Snyder, W.E.; Williams, N.M.; et al. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob. Chang. Biol. 2017, 23, 4946–4957. [Google Scholar] [CrossRef]
- Hogervorst, P.A.M.; Wäckers, F.L.; Romeis, J. Effects of honeydew sugar composition on the longevity of Aphidius ervi. Èntomol. Exp. Appl. 2007, 122, 223–232. [Google Scholar] [CrossRef]
- Landis, D.A.; Wratten, S.D.; Gurr, G.M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 2000, 45, 175–201. [Google Scholar] [CrossRef]
- Dainese, M.; Martin, E.A.; Aizen, M.A.; Albrecht, M.; Bartomeus, I.; Bommarco, R.; Carvalheiro, L.G.; Chaplin-Kramer, R.; Gagic, V.; Garibaldi, L.A.; et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 2019, 5, eaax0121. [Google Scholar] [CrossRef]
- Luquet, M.; Peñalver-Cruz, A.; Satour, P.; Anton, S.; Cortesero, A.-M.; Lavandero, B.; Jaloux, B. Aphid honeydew may be the predominant sugar source for Aphidius parasitoids even in nectar-providing intercrops. Biol. Control. 2021, 158, 104596. [Google Scholar] [CrossRef]
- González-Chang, M.; Tiwari, S.; Sharma, S.; Wratten, S.D. Habitat Management for Pest Management: Limitations and Prospects. Ann. Èntomol. Soc. Am. 2019, 112, 302–317. [Google Scholar] [CrossRef]
- Sarricolea, P.; Herrera-Ossandon, M.; Meseguer-Ruiz, Ó. Climatic regionalisation of continental Chile. J. Maps 2017, 13, 66–73. [Google Scholar] [CrossRef]
- Del Pozo, A.; Brunel-Saldias, N.; Engler, A.; Ortega-Farias, S.; Acevedo-Opazo, C.; Lobos, G.A.; Jara-Rojas, R.; Molina-Montenegro, M.A. Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs). Sustainability 2019, 11, 2769. [Google Scholar] [CrossRef]
- Montes, C.; Perez-Quezada, J.; Peña-Neira, A.; Tonietto, J. Climatic potential for viticulture in Central Chile. Aust. J. Grape Wine Res. 2011, 18, 20–28. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, D.; Yu, L.; Wang, X.; Chen, Y.; Bai, Y.; Hernández, H.J.; Galleguillos, M.; Estades, C.; Biging, G.S.; et al. Detailed dynamic land cover mapping of Chile: Accuracy improvement by integrating multi-temporal data. Remote. Sens. Environ. 2016, 183, 170–185. [Google Scholar] [CrossRef]
- del Pozo, A.; Catenacci-Aguilera, G.; Acosta-Gallo, B. Consequences of Land Use Changes on Native Forest and Agricultural Areas in Central-Southern Chile during the Last Fifty Years. Land 2024, 13, 610. [Google Scholar] [CrossRef]
- QGIS.org. QGIS Geographic Information System. QGIS Association. 2024. Available online: http://www.qgis.org (accessed on 1 January 2024).
- Hernández, A.; Miranda, M.D.; Arellano, E.C.; Dobbs, C. Landscape trajectories and their effect on fragmentation for a Mediterranean semi-arid ecosystem in Central Chile. J. Arid. Environ. 2016, 127, 74–81. [Google Scholar] [CrossRef]
- Garreaud, R. (2023, June 27) Analysis (CR)2|The Giants Return: A Preliminary Analysis of the Storm that Occurred Between June 21 and 26, 2023 in Central Chile. Available online: https://www.cr2.cl/eng/cr2-analysis-june-versus-june/ (accessed on 11 July 2024).
- Blackman, R.; Eastop, V. Aphids on the World’s Crops: An Identification and Information Guide; John Wiley & Sons Ltd.: New York, NY, USA, 2000. [Google Scholar] [CrossRef]
- Blackman, R.; Eastop, V. Taxonomic Issues; John Wiley & Sons: Chichester, UK, 2007. [Google Scholar]
- Starý, P. The Aphidiidae of Chile. Dtsch. Entomol. Z. 1995, 42, 113–138. [Google Scholar] [CrossRef]
- Tomanović, Ž.; Petrović, A.; Mitrović, M.; Kavallieratos, N.; Starý, P.; Rakhshani, E.; Rakhshanipour, M.; Popović, A.; Shukshuk, A.; Ivanović, A. Molecular and morphological variability within the Aphidius colemanigroup with redescription of Aphidius platensis Brethes (Hymenoptera: Braconidae: Aphidiinae). Bull. Èntomol. Res. 2014, 104, 552–565. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 1 January 2024).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 48. [Google Scholar] [CrossRef]
- Zuur, A.F.; Ieno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Springer: New York, NY, USA, 2009; pp. 209–259. ISBN 9780387874586. [Google Scholar]
- Hilbe, J.M. Modeling Count Data; Cambridge University Press (CUP): Cambridge, UK, 2014. [Google Scholar]
- Lesnoff, M.; Lancelot, R. aods3: Analysis of overdispersed data using S3 methods. aods3 package version 0.4-1.2. 2022. Available online: https://cran.r-project.org/web/packages/aods3/aods3.pdf (accessed on 1 January 2024).
- Albrecht, M.; Kleijn, D.; Williams, N.M.; Tschumi, M.; Blaauw, B.R.; Bommarco, R.; Campbell, A.J.; Dainese, M.; Drummond, F.A.; Entling, M.H.; et al. The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: A quantitative synthesis. Ecol. Lett. 2020, 23, 1488–1498. [Google Scholar] [CrossRef] [PubMed]
- Lérault, L.; Clavel, E.; Villegas, C.M.; Cabrera, N.; Jaloux, B.; Plantegenest, M.; Lavandero, B. Providing Alternative Hosts and Nectar to Aphid Parasitoids in a Plum Orchard to Determine Resource Complementarity and Distance Range Effect on Biological Control. Agronomy 2022, 12, 77. [Google Scholar] [CrossRef]
- Urbaneja-Bernat, P.; Tena, A.; González-Cabrera, J.; Rodriguez-Saona, C. Plant guttation provides nutrient-rich food for insects. Proc. R. Soc. B Biol. Sci. 2020, 287, 20201080. [Google Scholar] [CrossRef]
- Tscharntke, T.; Tylianakis, J.M.; Rand, T.A.; Didham, R.K.; Fahrig, L.; Batáry, P.; Bengtsson, J.; Clough, Y.; Crist, T.O.; Dormann, C.F.; et al. Landscape moderation of biodiversity patterns and processes—Eight hypotheses. Biol. Rev. 2012, 87, 661–685. [Google Scholar] [CrossRef]
- Costamagna, A.C.; Venables, W.N.; Schellhorn, N. Landscape-scale pest suppression is mediated by timing of predator arrival. Ecol. Appl. 2015, 25, 1114–1130. Available online: http://www.jstor.org/stable/24432113 (accessed on 1 January 2024). [CrossRef]
- Bianchi, F.; Walters, B.; Hove, A.T.; Cunningham, S.; van der Werf, W.; Douma, J.; Schellhorn, N. Early-season crop colonization by parasitoids is associated with native vegetation, but is spatially and temporally erratic. Agric. Ecosyst. Environ. 2015, 207, 10–16. [Google Scholar] [CrossRef]
- Athey, K.J.; Dreyer, J.; Kowles, K.A.; Penn, H.J.; Sitvarin, M.I.; Harwood, J.D. Spring Forward: Molecular detection of early season predation in agroecosystems. Food Webs 2016, 9, 25–31. [Google Scholar] [CrossRef]
- Jamont, M.; Crépellière, S.; Jaloux, B. Effect of extrafloral nectar provisioning on the performance of the adult parasitoid Diaeretiella rapae. Biol. Control. 2013, 65, 271–277. [Google Scholar] [CrossRef]
- Tylianakis, J.M.; Didham, R.K.; Wratten, S.D. Improved fitness of aphid parasitoids receiving resource subsidies. Ecology 2004, 85, 658–666. [Google Scholar] [CrossRef]
- Alvarez-Baca, J.K.; Montealegre, X.; Le Lann, C.; Van Baaren, J.; Lavandero, B. Effect of a cover crop on the aphid incidence is not explained by increased top-down regulation. PeerJ 2022, 10, e13299. [Google Scholar] [CrossRef] [PubMed]
- Peñalver-Cruz, A.; Alvarez, D.; Lavandero, B. Do hedgerows influence the natural biological control of woolly apple aphids in orchards? J. Pest Sci. 2020, 93, 219–234. [Google Scholar] [CrossRef]
- Saqib, H.S.A.; Chen, J.; Chen, W.; Pozsgai, G.; Akutse, K.S.; Ashraf, M.F.; You, M.; Gurr, G.M. Local management and landscape structure determine the assemblage patterns of spiders in vegetable fields. Sci. Rep. 2020, 10, 15130. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Martínez, S.; Staudacher, K.; Baumgartner, V.; Traugott, M.; Lavandero, B. Intraguild predation is independent of landscape context and does not affect the temporal dynamics of aphids in cereal fields. J. Pest Sci. 2020, 93, 235–249. [Google Scholar] [CrossRef]
- Vasconcellos-Neto, J.; Messas, Y.F.; da Silva Souza, H.; Villanueva-Bonila, G.A.; Romero, G.Q. Spider–Plant Interactions: An Ecological Approach. In Behaviour and Ecology of Spiders; Viera, C., Gonzaga, M., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Cardoso, P.; Pekár, S.; Jocqué, R.; Coddington, J.A. Global Patterns of Guild Composition and Functional Diversity of Spiders. PLoS ONE 2011, 6, e21710. [Google Scholar] [CrossRef]
Field | GPS | Treatment | AWV | ST | NF | BW | AS | PL | GR | CP | TBF | BSH | PBSH | PBW | %SNH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Farm 1 | 35°33′42″ S 71°34′51″ W | with flowers | 0 | 10.4 | 1.1 | 0 | 0.7 | 0 | 0 | 75.1 | 87.5 | 1.9 | 2.2 | 0 | 2.2 |
Farm 2 | 35°31′03″ S 71°37’29″ W | with flowers | 0.5 | 5.9 | 0.5 | 0 | 0 | 0 | 0 | 118.3 | 124.9 | 0 | 0.5 | 0 | 0.5 |
Farm 3 | 35°31’37″ S 71°38’40″ W | with flowers | 0 | 0 | 2.5 | 0.2 | 0.1 | 0.03 | 0 | 99.9 | 102.9 | 2.7 | 2.6 | 0.2 | 2.8 |
Farm 4 | 35°32’42″ S 71°36’25″ W | with flowers | 1.09 | 0 | 2.1 | 0 | 0 | 0 | 0 | 113.2 | 116.5 | 2.1 | 1.8 | 0 | 1.8 |
Farm 5 | 35°04’41″ S 71°35’59″ W | with flowers | 0 | 15.3 | 1.1 | 0 | 11.4 | 0 | 0 | 87.9 | 115.9 | 12.5 | 10.8 | 0 | 10.8 |
Farm 6 | 35°33’02″ S 71°38’56″ W | with flowers | 0 | 0.2 | 3.7 | 0 | 0 | 6.4 | 0.4 | 98.7 | 109.5 | 3.7 | 3.4 | 0 | 3.4 |
Farm 7 | 35°32′54″ S 71°36′21″ W | without flowers | 0 | 0 | 1.9 | 0 | 0 | 0 | 0 | 110.8 | 112.7 | 1.9 | 1.7 | 0 | 1.7 |
Farm 8 | 35°32′31″ S 71°37′38″ W | without flowers | 0 | 3.8 | 3.6 | 0 | 0 | 0 | 0 | 93.0 | 100.6 | 3.6 | 3.6 | 0 | 3.6 |
Farm 9 | 35°31′51″ S 71°36′49″ W | without flowers | 0.4 | 3.9 | 2.3 | 0 | 0 | 0 | 7.2 | 113.3 | 127.3 | 2.3 | 1.8 | 0 | 1.8 |
Farm 10 | 35°33′05″ S 71°39′25″ W | without flowers | 0 | 6.5 | 0 | 0 | 8.4 | 2.6 | 0 | 92.0 | 109.6 | 8.4 | 7.6 | 0 | 7.6 |
Farm 11 | 35°31’11″ S 71°38’02″ W | without flowers | 0 | 3.3 | 9.3 | 0 | 0 | 0 | 0 | 151.1 | 163.7 | 9.3 | 5.6 | 0 | 5.6 |
Farm 12 | 35°30’15″ S 71°38’12″ W | without flowers | 0 | 2.9 | 5.0 | 0 | 3.7 | 0 | 0 | 100.5 | 112.3 | 8.7 | 7.8 | 0 | 7.8 |
Farm 13 | 35°33’07″ S 71°37’44″ W | without flowers | 0.3 | 0.6 | 7.5 | 0 | 0 | 0 | 0 | 82.7 | 91.2 | 7.5 | 8.2 | 0 | 8.2 |
Farm 14 | 35°32’37″ S 71°37’14″ W | without flowers | 0 | 5.0 | 0.7 | 0 | 0 | 0 | 0 | 100.7 | 106.5 | 0.7 | 0.7 | 0 | 0.7 |
Random Effects | Pr (Chisq) | Df | χ2 | |||
---|---|---|---|---|---|---|
Response: Mean aphids plant/farm | ||||||
Std. Dev. 1.66 1.6 | Variance 2.77 2.58 | Groups sample farm | 0.16 | 1 | 1.96 | %SNH |
0.85 | 1 | 0.031 | Treatment | |||
0.12 | 1 | 2.41 | Date | |||
3.6 × 10−07 | 1 | 25.88 | % SNH:date | |||
5.8 × 10−06 | 1 | 20.53 | Date:treatment | |||
Response: Mean prop. mummies plant/farm | ||||||
Std. Dev. 2.03 1.35 | Variance 4.14 1.82 | Groups sample farm | 0.71 | 1 | 0.13 | %SNH |
0.22 | 1 | 1.48 | Treatment | |||
1.66 × 10−4 | 1 | 14.17 | Date | |||
4.83 × 10−7 | 1 | 25.33 | % SNH:date | |||
0.0479 | 1 | 3.91 | Date:treatment | |||
Response: Mean abund. total predators plant/farm | ||||||
Std. Dev. 0.77 | Variance 0.59 | Groups farm | 0.96 | 1 | 0.0016 | %SNH |
0.5 | 1 | 0.44 | Treatment | |||
0.03 | 1 | 4.25 | Date | |||
0.0014 | 1 | 10.13 | % SNH:date:treatment | |||
Pr(>|z|) = 0.11 | Z = 1.57 | SE = 0.10 | Estimator −0.15 | % SNH:date1:treatment (without flower) | ||
Pr(>|z|) = 0.001 | Z = 3.18 | SE = 0.11 | Estimator 0.37 | % SNH:date2:treatment (without flower) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavandero, B.; Maldonado-Santos, E.; Muñoz-Quilodran, E.; González-Chang, M.; Zepeda-Paulo, F.; Salazar-Rojas, Á.; Villegas, C. Interaction Effects of Farm-Scale Management of Natural Enemy Resources and the Surrounding Seminatural Habitat on Insect Biological Control. Insects 2025, 16, 286. https://doi.org/10.3390/insects16030286
Lavandero B, Maldonado-Santos E, Muñoz-Quilodran E, González-Chang M, Zepeda-Paulo F, Salazar-Rojas Á, Villegas C. Interaction Effects of Farm-Scale Management of Natural Enemy Resources and the Surrounding Seminatural Habitat on Insect Biological Control. Insects. 2025; 16(3):286. https://doi.org/10.3390/insects16030286
Chicago/Turabian StyleLavandero, Blas, Enrique Maldonado-Santos, Estefania Muñoz-Quilodran, Mauricio González-Chang, Francisca Zepeda-Paulo, Ángel Salazar-Rojas, and Cinthya Villegas. 2025. "Interaction Effects of Farm-Scale Management of Natural Enemy Resources and the Surrounding Seminatural Habitat on Insect Biological Control" Insects 16, no. 3: 286. https://doi.org/10.3390/insects16030286
APA StyleLavandero, B., Maldonado-Santos, E., Muñoz-Quilodran, E., González-Chang, M., Zepeda-Paulo, F., Salazar-Rojas, Á., & Villegas, C. (2025). Interaction Effects of Farm-Scale Management of Natural Enemy Resources and the Surrounding Seminatural Habitat on Insect Biological Control. Insects, 16(3), 286. https://doi.org/10.3390/insects16030286