Combining Environmental Variables and Machine Learning Methods to Determine the Most Significant Factors Influencing Honey Production
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset Construction and Variables Pre-Processing
2.2. Machine Learning Procedures and Model Evaluation
3. Results
3.1. Descriptive Statistics
3.2. Features Selection
3.3. Model Training and Evaluation on Training and Test Sets
3.4. Feature Importance and Performance
4. Discussion
Scalability and Generalizability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Szabo, T.I. Effect of Weather Factors on Honeybee Flight Activity and Colony Weight Gain. J. Apic. Res. 1980, 19, 164–171. [Google Scholar] [CrossRef]
- Alhaddad, B.D. The influence of meteorological conditions on the feeding and egg-laying of the queen honey-bee. Comptes Rendus L’academie Sci. Ser. 3 Sci. Vie 1995, 318, 245–248. [Google Scholar]
- Stabentheiner, A.; Kovac, H.; Brodschneider, R. Honeybee Colony Thermoregulation—Regulatory Mechanisms and Contribution of Individuals in Dependence on Age, Location and Thermal Stress. PLoS ONE 2010, 5, e8967. [Google Scholar] [CrossRef] [PubMed]
- Stabentheiner, A.; Kovac, H. Honeybee economics: Optimisation of foraging in a variable world. Sci. Rep. 2016, 6, 28339. [Google Scholar] [CrossRef]
- Delgado, D.L.; Pérez, M.E.; Galindo-Cardona, A.; Giray, T.; Restrepo, C. Forecasting the Influence of Climate Change on Agroecosystem Services: Potential Impacts on Honey Yields in a Small-Island Developing State. Psyche A J. Entomol. 2012, 951215. [Google Scholar] [CrossRef]
- Langowska, A.; Zawilak, M.; Sparks, T.H.; Glazaczow, A.; Tomkins, P.W.; Tryjanowski, P. Long-term effect of temperature on honey yield and honeybee phenology. Int. J. Biometeorol. 2017, 61, 1125–1132. [Google Scholar] [CrossRef]
- Muhammad Shakir, Z.; Mohd Rasdi, Z.; Mohd Salleh, D. Honeybees, Apis cerana colony performance in the non-protected and protected beehive methods in relation to climatic factors. Food Res. 2022, 6, 112–123. [Google Scholar] [CrossRef]
- Vicens, N.; Bosch, J. Pollinating Efficacy of Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae, Apidae) on ‘Red Delicious’ Apple. Environ. Entomol. 2000, 29, 235–240. [Google Scholar] [CrossRef]
- Gounari, S.; Proutsos, N.; Goras, G. How does weather impact on beehive productivity in a Mediterranean island? Ital. J. Agrometeorol. 2022, 1, 65–81. [Google Scholar] [CrossRef]
- Joshi, N.C.; Joshi, P.C. Foraging Behaviour of Apis Spp. on Apple Flowers in a Subtropical Environment. NY Sci. J. 2010, 3, 71–76. [Google Scholar]
- Mattos, I.M.; de Souza, J.; Soares, A.E.E. Analysis of the effects of climate variables on Apis mellifera pollen foraging performance. Arq. Bras. Med. Veterinária Zootec. 2018, 70, 1301–1308. [Google Scholar] [CrossRef]
- Hennessy, G.; Harris, C.; Eaton, C.; Wright, P.; Jackson, E.; Goulson, D.; Ratnieks, F.F.L.W. Gone with the wind: Effects of wind on honey bee visit rate and foraging behaviour. Anim. Behav. 2020, 161, 23–31. [Google Scholar] [CrossRef]
- Switanek, M.; Crailsheim, K.; Truhetz, H.; Brodschneider, R. Modelling seasonal effects of temperature and precipitation on honey bee winter mortality in a temperate climate. Sci. Total Environ. 2017, 579, 1581–1587. [Google Scholar] [CrossRef] [PubMed]
- Tarca, A.L.; Carey, V.J.; Chen, X.; Romero, R.; Drăghici, S. Machine Learning and Its Applications to Biology. PLoS Comput. Biol. 2007, 3, e116. [Google Scholar] [CrossRef] [PubMed]
- Jovel, J.; Greiner, R. An Introduction to Machine Learning Approaches for Biomedical Research. Front. Med. 2021, 8, 771607. [Google Scholar] [CrossRef]
- Nasteski, V. An overview of the supervised machine learning methods. HORIZONS B 2017, 4, 51–62. [Google Scholar] [CrossRef]
- Hino, M.; Benami, E.; Brooks, N. Machine learning for environmental monitoring. Nat. Sustain. 2018, 1, 583–588. [Google Scholar] [CrossRef]
- Bobbo, T.; Biffani, S.; Taccioli, C.; Penasa, M.; Cassandro, M. Comparison of machine learning methods to predict udder health status based on somatic cell counts in dairy cows. Sci. Rep. 2021, 11, 13642. [Google Scholar] [CrossRef]
- Lang, L.; Tiancai, L.; Shan, A.; Xiangyan, T. An improved random forest algorithm and its application to wind pressure prediction. Int. J. Intell. Syst. 2021, 36, 4016–4032. [Google Scholar] [CrossRef]
- Bentéjac, C.; Csörgő, A.; Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 2021, 54, 1937–1967. [Google Scholar] [CrossRef]
- Rufo, D.D.; Debelee, T.G.; Ibenthal, A.; Negera, W.G. Diagnosis of Diabetes Mellitus Using Gradient Boosting Machine (LightGBM). Diagnostics 2021, 11, 1714. [Google Scholar] [CrossRef] [PubMed]
- Tabak, M.A.; Norouzzadeh, M.S.; Wolfson, D.W.; Sweeney, S.J.; Vercauteren, K.C.; Snow, N.P.; Halseth, J.; Salvo, P.; Lewis, J.; White, M.; et al. Machine learning to classify animal species in camera trap images: Applications in ecology. Methods Ecol. Evol. 2019, 10, 585–590. [Google Scholar] [CrossRef]
- Peters, D.P.C.; Havstad, K.M.; Cushing, J.; Tweedie, C.; Fuentes, O.; Villanueva-Rosales, N. Harnessing the power of big data: Infusing the scientific method with machine learning to transform ecology. Ecosphere 2014, 5, 1–15. [Google Scholar] [CrossRef]
- Mahmudul Hassan, S.K.; Kumar Maji, A. Identification of Plant Species Using Deep Learning. In Proceedings of the International Conference on Frontiers in Computing and Systems: COMSYS 2020, West Bengal, India, 13–15 January 2019; Springer: Singapore, 2021; pp. 115–125. [Google Scholar]
- Wäldchen, J.; Rzanny, M.; Seeland, M.; Mäder, P. Automated plant species identification—Trends and future directions. PLoS Comput. Biol. 2018, 14, e1005993. [Google Scholar] [CrossRef]
- Li, R.; Sun, Y.; Sun, Q. Automated Flowering Time Prediction Using Data Mining and Machine Learning. In Proceedings of the Machine Learning and Intelligent Communications: Second International Conference, MLICOM 2017, Weihai, China, 5–6 August 2017; Springer International Publishing: Cham, Switzerland, 2018; pp. 518–527. [Google Scholar]
- Kim, T.K.; Kim, S.; Won, M.; Lim, J.H.; Yoon, S.; Jang, K.; Lee, K.H.; Park, Y.; Kim, H.S. Utilizing machine learning for detecting flowering in mid-range digital repeat photography. Ecol. Model. 2021, 440, 109419. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, S.; Liu, J.; Wang, H.; Zhu, J.; Li, D.; Zhao, R. Application of machine learning in intelligent fish aquaculture: A review. Aquaculture 2021, 540, 736724. [Google Scholar] [CrossRef]
- Piles, M.; Fernandez-Lozano, C.; Velasco-Galilea, M.; González-Rodríguez, O.; Sánchez, J.P.; Torrallardona, D.; Ballester, M.; Quintanilla, R. Machine learning applied to transcriptomic data to identify genes associated with feed efficiency in pigs. Genet. Sel. Evol. 2019, 51, 10. [Google Scholar] [CrossRef] [PubMed]
- Mahdizadeh Gharakhanlou, N.; Perez, L. From data to harvest: Leveraging ensemble machine learning for enhanced crop yield predictions across Canada amidst climate change. Sci. Total Environ. 2024, 951, 175764. [Google Scholar] [CrossRef]
- Cabbri, R.; Ferlizza, E.; Bellei, E.; Andreani, G.; Galuppi, R.; Isani, G.A. Machine learning approach to study demographic alterations in honeybee colonies using SDS–PAGE Fingerprinting. Animals 2021, 11, 1823. [Google Scholar] [CrossRef]
- Bernardes, R.C.; Botina, L.L.; da Silva, F.P.; Fernandes, K.M.; Lima, M.A.P.; Martins, G.F. Toxicological assessment of agrochemicals on bees using machine learning tools. J. Hazard. Mater. 2022, 424, 127344. [Google Scholar] [CrossRef]
- Kulyukin, V.; Mukherjee, S.; Amlathe, P. Toward Audio Beehive Monitoring: Deep Learning vs. Standard Machine Learning in Classifying Beehive Audio Samples. Appl. Sci. 2018, 8, 1573. [Google Scholar] [CrossRef]
- Kaplan Berkaya, S.; Sora Gunal, E.; Gunal, S. Deep learning-based classification models for beehive monitoring. Ecol. Inform. 2021, 64, 101353. [Google Scholar] [CrossRef]
- Veiner, M.; Morimoto, J.; Leadbeater, E.; Manfredini, F. Machine learning models identify gene predictors of waggle dance behaviour in honeybees. Mol. Ecol. Resour. 2022, 22, 2248–2261. [Google Scholar] [CrossRef]
- Fathian, M.; Amiri, B.; Maroosi, A. Application of honey-bee mating optimization algorithm on clustering. Appl. Math. Comput. 2007, 190, 1502–1513. [Google Scholar] [CrossRef]
- Prešern, J.; Smodiš Škerl, M.I. Parameters influencing queen body mass and their importance as determined by machine learning in honey bees (Apis mellifera carnica). Apidologie 2019, 50, 745–757. [Google Scholar] [CrossRef]
- Formosa, J.P.; Lia, F.; Mifsud, D.; Farrugia, C. Application of ATR-FT-MIR for Tracing the Geographical Origin of Honey Produced in the Maltese Islands. Foods 2020, 9, 710. [Google Scholar] [CrossRef]
- Damiani, T.; Alonso-Salces, R.M.; Aubone, I.; Baeten, V.; Arnould, Q.; Dall’Asta, C.; Fuselli, S.R.; Fernández Pierna, J.A. Vibrational Spectroscopy Coupled to a Multivariate Analysis Tiered Approach for Argentinean Honey Provenance Confirmation. Foods 2020, 9, 1450. [Google Scholar] [CrossRef]
- Didaras, N.A.; Kafantaris, I.; Dimitriou, T.G.; Mitsagga, C.; Karatasou, K.; Giavasis, I.; Stagos, D.; Amoutzias, G.D.; Hatjina, F.; Mossialos, D. Biological Properties of Bee Bread Collected from Apiaries Located across Greece. Antibiotics 2021, 10, 555. [Google Scholar] [CrossRef]
- Giliba, R.A.; Mpinga, I.H.; Ndimuligo, S.A.; Mpanda, M.M. Changing climate patterns risk the spread of Varroa destructor infestation of African honey bees in Tanzania. Ecol. Process. 2020, 9, 48. [Google Scholar] [CrossRef]
- Braga, D.; Madureira, A.; Scotti, F.; Piuri, V.; Abraham, A. An Intelligent Monitoring System for Assessing Bee Hive Health. IEEE Access 2021, 9, 89009–89019. [Google Scholar] [CrossRef]
- Campbell, T.; Dixon, K.W.; Dods, K.; Fearns, P.; Handcock, R. Machine learning regression model for predicting honey harvests. Agriculture 2020, 10, 118. [Google Scholar] [CrossRef]
- Ibrahim, L.; Mesinovic, M.; Yang, K.W.; Eid, M.A. Explainable prediction of acute myocardial infarction using machine learning and shapley values. IEEE Access 2020, 8, 210410–210417. [Google Scholar] [CrossRef]
- Rocha, H.; Dias, J. Honey yield forecast using radial basis functions. In Proceedings of the Machine Learning, Optimization, and Big Data: Third International Conference, MOD 2017, Volterra, Italy, 14–17 September 2017; Springer International Publishing: Cham, Switzerland, 2018; pp. 483–495. [Google Scholar]
- Brini, A.; Giovannini, E.; Smaniotto, E. A Machine Learning Approach to Forecasting Honey Production with Tree-Based Methods. arXiv 2023, arXiv:2304.01215. [Google Scholar] [CrossRef]
- Ramirez-Diaz, J.; Manunza, A.; De Oliveira, T.A.; Bobbo, T.; Silva, V.; Cozzi, P.; Biffani, S.; Stella, A.; Minozzi, G. Using supervised machine learning for honey harvest prediction. In Proceedings of the 12th World Congress on Genetics Applied to Livestock Production (WCGALP) Technical and Species Orientated Innovations in Animal Breeding, and Contribution of Genetics to Solving Societal Challenges, Hybrid Event, 3–8 July 2022; Wageningen Academic Publishers: Wageningen, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Karadas, K.; Kadırhanogullari, I.H. Predicting honey production using data mining and artificial neural network algorithms in apiculture. Pak. J. Zool. 2017, 49, 1611–1619. [Google Scholar] [CrossRef]
- Istituto di Servizi per il Mercato Agricolo Alimentare ISMEA. Il Settore Apistico Nazionale. 2019. Available online: https://www.ismea.it/flex/cm/pages/ServeAttachment.php/L/IT/D/b%252F4%252F2%252FD.6a8dfa6e6fabd481ab85/P/BLOB:ID=10772/E/pdf (accessed on 1 February 2015).
- De Iorio, M.G.; Lazzari, B.; Colli, L.; Pagnacco, G.; Minozzi, G. Variability and number of circulating complementary sex determiner (csd) alleles in a breeding population of italian honeybees under controlled mating. Genes 2024, 15, 652. [Google Scholar] [CrossRef]
- Sparks, A. nasapower: A NASA POWER Global Meteorology, Surface Solar Energy and Climatology Data Client for R. J. Open Source Softw. 2018, 3, 1035. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by random Forest. R News 2002, 2, 18–22. [Google Scholar]
- Kursa, M.B.; Miron, R.R.W. Feature selection with the Boruta package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef]
- Kursa, M.B. Robustness of Random Forest-based gene selection methods. BMC Bioinform. 2014, 15, 8. [Google Scholar] [CrossRef]
- LaValle, S.M.; Branicky, M.S.; Lindemann, S.R. On the relationship between classical grid search and probabilistic roadmaps. Int. J. Robot. Res. 2004, 23, 673–692. [Google Scholar] [CrossRef]
- Kuhn, M.; Vaughan, D.H.E. Package ‘Yardstick’—Tidy Characterizations of Model Performance. 2022. Available online: https://github.com/tidymodels/yardstick (accessed on 1 February 2025).
- Wright, M.N.; Ziegler, A. ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 2017, 77, 1–17. [Google Scholar] [CrossRef]
- Kuhn, M.; Wickham, H. Tidymodels: A Collection of Packages for Modeling and Machine Learning Using Tidyverse Principles. 2020. Available online: https://www.tidymodels.org (accessed on 1 February 2025).
- Dimitrijevic, S.; Zogović, N. Machine Learning Advances in Beekeeping. In Proceedings of the Conference: 12th International Conference on Information Society and Technology—ICIST 2022, Kopaonik, Serbia, 13–16 March 2022; Zdravković, M., Trajanović, M., Konjović, Z., Eds.; Researchgate: Berlin, Germany, 2022; pp. 59–63. [Google Scholar]
- Knight, C.; Khouakhi, A.; Waine, T.W. The impact of weather patterns on inter-annual crop yield variability. Sci. Total Environ. 2024, 955, 177181. [Google Scholar] [CrossRef] [PubMed]
- Schierhorn, F.; Hofmann, M.; Gagalyuk, T.; Ostapchuk, I.; Muller, D. Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages. Clim. Change 2021, 169, 39. [Google Scholar] [CrossRef]
- Wassan, S.; Xi, C.; Jhanjhi, N.; Binte-Imran, L. Effect of frost on plants, leaves, and forecast of frost events using convolutional neural networks. Int. J. Distrib. Sens. Netw. 2021, 17, 15501477211053777. [Google Scholar] [CrossRef]
- Kovac, H.; Käfer, H.; Stabentheiner, A.; Costa, C. Metabolism and upper thermal limits of Apis mellifera carnica and A. m. ligustica. Apidologie 2014, 45, 664–677. [Google Scholar] [CrossRef] [PubMed]
- Szopek, M.; Schmickl, T.; Thenius, R.; Radspieler, G.; Crailsheim, K. Dynamics of collective decision making of honeybees in complex temperature fields. PLoS ONE 2013, 8, e76250. [Google Scholar] [CrossRef] [PubMed]
- Petz, M.; Stabentheiner, A.; Crailsheim, K. Respiration of individual honeybee larvae in relation to age and ambient temperature. J. Comp. Physiol. B 2004, 174, 511–518. [Google Scholar] [CrossRef]
- Human, H.; Nicolson, S.W.; Dietemann, V. Do honeybees, Apis mellifera scutellata, regulate humidity in their nest? Naturwissenschaften 2006, 93, 397–401. [Google Scholar] [CrossRef]
- Boes, K.E. Honeybee colony drone production and maintenance in accordance with environmental factors: An interplay of queen and worker decisions. Insectes Sociaux 2010, 57, 1–9. [Google Scholar] [CrossRef]
- Neupane, K.; Thapa, R. Pollen collection and brood production by honeybees (Apis mellifera L.) under Chitwan condition of Nepal. J. Inst. Agric. Anim. Sci. 2005, 26, 143–148. [Google Scholar] [CrossRef]
- Lensky, Y.; Demter, M. Mating flights of the queen honeybee (Apis mellifera) in a subtropical climate. Comp. Biochem. Physiol. Part A Physiol. 1985, 81, 229–241. [Google Scholar] [CrossRef]
- Heidinger, I.; Meixner, M.; Berg, S.; Büchler, R. Observation of the mating behavior of honey bee (Apis mellifera L.) queens using radio-frequency identification (RFID): Factors influencing the duration and frequency of nuptial flights. Insects 2014, 5, 513–527. [Google Scholar] [CrossRef]
- Van der Zee, R.; Brodschneider, R.; Brusbardis, V.; Charrière, J.D.; Chlebo, R.; Coffey, M.F.; Dahle, B.; Dražić, M.; Kauko, L.; Kretavicius, J.; et al. Results of international standardised beekeeper surveys of colony losses for winter 2012–2013: Analysis of winter loss rates and mixed effects modelling of risk factors for winter loss. J. Apic. Res. 2014, 53, 19–34. [Google Scholar]
- Goblirsch, M. Nosema ceranae disease of the honey bee (Apis mellifera). Apidologie 2018, 49, 131–150. [Google Scholar] [CrossRef]
- Esch, H. The effects of temperature on flight muscle potentials in honeybees and cuculiinid winter moths. J. Exp. Biol. 1988, 135, 109–117. [Google Scholar] [CrossRef]
- Szentgyörgyi, H.; Czekońska, K.; Tofilski, A. The effects of starvation of honey bee larvae on reproductive quality and wing asymmetry of honey bee drones. J. Apic. Sci. 2017, 61, 233–243. [Google Scholar] [CrossRef]
- Farooqi, M.A.; Aslam, M.N.; Sajjad, A.; Akram, W.; Maqsood, A. Impact of abiotic factors on the foraging behavior of two honeybee species on canola in Bahawalpur, Punjab-Pakistan. Asian J. Agric. Biol. 2021, 9, 43. [Google Scholar]
- Oliveira, R.C.; Contrera, F.A.L.; Arruda, H.; Jaffé, R.; Costa, L.; Pessin, G.; Venturieri, G.; De Souza, P.; Imperatriz-Fonseca, V.L. Foraging and drifting patterns of the highly eusocial neotropical stingless bee melipona fasciculata assessed by radio-frequency identification tags. Front. Ecol. Evol. 2021, 9, 708178. [Google Scholar] [CrossRef]
- De Iorio, M.G.; Giulio, P.; Tiezzi, F.; Minozzi, G. Effect of host genetics on gut microbiota composition in an italian honeybee breeding population. Ital. J. Anim. Sci. 2024, 23, 1732–1740. [Google Scholar] [CrossRef]
- Rangel, J.; Fisher, A. Factors affecting the reproductive health of honey bee (Apis mellifera) drones—A review. Apidologie 2019, 50, 759–778. [Google Scholar] [CrossRef]
- McMenamin, A.J.; Daughenbaugh, K.F.; Flenniken, M.L. The heat shock response in the western honey bee (Apis mellifera) is Antiviral. Viruses 2020, 12, 245. [Google Scholar] [CrossRef] [PubMed]
- De Iorio, M.G.; Ramirez-Diaz, J.; Biffani, S.; Pagnacco, G.; Stella, A.; Minozzi, G. Deciphering the genetic architecture of honey production in a selected honeybee population. In Proceedings of the Book of Abstracts of the 73rd Annual Meeting of the European Federation of Animal Science, Porto, Portougal, 5–9 September 2022. [Google Scholar]
- Southwick, E.E.; Moritz, R.F.A. Effects of meteorological factors on defensive behaviour of honey bees. Int. J. Biometeorol. 1987, 31, 259–265. [Google Scholar] [CrossRef]
Time Period | Features | Abbreviation |
---|---|---|
Winter prior to harvest | Mean temperature (°C) at 2 m in December (12), January (1) and February (2) | T2M |
Maximum temperature (°C) at 2 m in December (12), January (1) and February (2) | T2M_MAX | |
Minimum temperature (°C) at 2 m in December (12), January (1) and February (2) | T2M_MIN | |
Mean drew/frost point temperature (°C) at 2 m in December (12), January (1) and February (2) | T2MDEW | |
Mean specific humidity (g/kg) at 2 m in December (12), January (1) and February (2) | QV2M | |
Mean relatives humidity (%) at 2 m in December (12), January (1) and February (2) | RH2M | |
Bias corrected average of total precipitation at the surface of the earth in water mass (mm/day) in December (12), January (1) and February (2) | PRECTOTCORR | |
Average of surface pressure at the surface of the earth (kPa) in December (12), January (1) and February (2) | PS | |
Mean wind speed (m/s) at 2 m in December (12), January (1) and February (2) | WS2M | |
Maximum wind speed (m/s) at 2 m in December (12), January (1) and February (2) | WS2M_MAX | |
Minimum wind speed (m/s) at 2 m in December (12), January (1) and February (2) | WS2M_MIN | |
Harvesting season | Enhanced Vegetation Index in March (3), April (4), May (5), June (6), and July (7) | EVI |
Time Period | Variable | Mean (SD) | Percentiles | ||||
---|---|---|---|---|---|---|---|
p0 | p25 | p50 | p75 | p100 | |||
Winter prior to harvest to February) | THH | 23.40 (11.40) | 5.2 | 14.6 | 21.2 | 31.2 | 63.2 |
T2M_12 | 4.48 (1.020) | 2.65 | 4.03 | 4.76 | 5.11 | 5.9 | |
T2M_MAX_12 | 14.00 (1.66) | 10.5 | 14.3 | 14.8 | 14.8 | 15.2 | |
T2M_MIN_12 | −2.59 (1.90) | −5.25 | −3.98 | −2.31 | −0.65 | −0.45 | |
T2MDEW_12 | 0.70 (1.59) | −1.74 | −0.1 | 0.32 | 2.39 | 2.82 | |
QV2M_12 | 4.16 (0.49) | 3.48 | 3.91 | 3.97 | 4.76 | 4.76 | |
RH2M_12 | 77.70 (3.96) | 74.2 | 74.2 | 76.1 | 81.6 | 83.4 | |
PRECTOTCORR_12 | 1.29 (1.20) | 0.13 | 0.13 | 0.68 | 2.53 | 2.92 | |
PS_12 | 99.8 (0.52) | 99.2 | 99.3 | 99.6 | 100 | 101 | |
WS2M_12 | 1.05 (0.15) | 0.76 | 0.99 | 1.08 | 1.12 | 1.26 | |
WS2M_MAX_12 | 4.03 (0.49) | 3.23 | 3.63 | 4.15 | 4.36 | 4.69 | |
WS2M_MIN_12 | 0.06 (0.02) | 0.04 | 0.05 | 0.05 | 0.06 | 0.11 | |
T2M_1 | 2.95 (1.53) | 0.86 | 0.86 | 3.21 | 3.65 | 5.37 | |
T2M_MAX_1 | 12.4 (2.36) | 8.77 | 8.77 | 12.7 | 14.4 | 15.1 | |
T2M_MIN_1 | −3.85 (1.93) | −6.53 | −6.53 | −4.03 | −2.65 | −0.88 | |
T2M_DEW_1 | −1.48 (2.19) | −4.39 | −4.39 | −0.82 | −0.16 | 1.74 | |
QV2M_1 | 3.59 (0.60) | 2.81 | 2.81 | 3.78 | 3.91 | 4.52 | |
RH2M_1 | 74.10 (4.03) | 69.2 | 69.2 | 76.5 | 77.2 | 79.1 | |
PRECTOTCORR_1 | 1.02 (0.66) | 0.23 | 0.23 | 1 | 1.63 | 1.86 | |
PS_1 | 99.20 (0.28) | 98.8 | 99.1 | 99.2 | 99.6 | 99.6 | |
WS2M_1 | 1.29 (0.09) | 1.15 | 1.21 | 1.3 | 1.35 | 1.4 | |
WS2M_MAX_1 | 5.67 (1.25) | 4.29 | 4.29 | 5.55 | 6.48 | 7.66 | |
WS2M_MIN_1 | 0.052 (0.02) | 0.02 | 0.03 | 0.05 | 0.07 | 0.09 | |
T2M_2 | 4.93 (1.44) | 2.8 | 3.57 | 5.92 | 6.14 | 6.31 | |
T2M_MAX_2 | 15.1 (3.31) | 11.5 | 11.7 | 15 | 19.2 | 19.4 | |
T2M_MIN_2 | −2.77 (2.49) | −5.52 | −5.47 | −2.17 | 0.65 | 0.65 | |
T2MDEW_2 | 0.77 (1.47) | −1.2 | −0.23 | 0.28 | 2.6 | 2.6 | |
QV2M_2 | 4.2 (0.42) | 3.66 | 3.91 | 4.03 | 4.7 | 4.7 | |
RH2M_2 | 76.40 (4.52) | 67.8 | 76.6 | 77.4 | 80.9 | 80.9 | |
PRECTOTCORR_2 | 2.95 (1.54) | 1.09 | 1.78 | 2.42 | 4.41 | 5.46 | |
PS_2 | 99.10 (0.38) | 98.8 | 98.8 | 98.9 | 99.4 | 99.8 | |
WS2M_2 | 1.33 (0.15) | 1.2 | 1.2 | 1.3 | 1.38 | 1.66 | |
WS2M_MAX_2 | 5.28 (1.02) | 4.21 | 4.21 | 6.11 | 6.12 | 6.6 | |
WS2M_MIN_2 | 0.057 (0.03) | 0.02 | 0.03 | 0.04 | 0.09 | 0.09 | |
Harvest Season | EVI3 | 0.42 (0.09) | 0.22 | 0.33 | 0.46 | 0.49 | 0.51 |
EVI4 | 0.52 (0.09) | 0.31 | 0.5 | 0.54 | 0.59 | 0.62 | |
EVI5 | 0.49 (0.11) | 0.24 | 0.43 | 0.51 | 0.58 | 0.64 | |
EVI6 | 0.54 (0.07) | 0.42 | 0.49 | 0.52 | 0.64 | 0.64 | |
EVI7 | 0.55 (0.05) | 0.42 | 0.53 | 0.53 | 0.58 | 0.66 |
Algorithm | Hyperparameters * | Values |
---|---|---|
DT | cost_complexity | 3.53 × 10−6 |
min_n | 19 | |
RF | Mtry | 7 |
min_n | 22 | |
XGBoost | Trees | 682 |
min_n | 4 | |
tree_depth | 5 | |
learn_rate | 0.0424 | |
loss_reduction | 4.64 × 10−7 | |
sample_size | 0.958 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramirez-Diaz, J.; Manunza, A.; de Oliveira, T.A.; Bobbo, T.; Nutini, F.; Boschetti, M.; De Iorio, M.G.; Pagnacco, G.; Polli, M.; Stella, A.; et al. Combining Environmental Variables and Machine Learning Methods to Determine the Most Significant Factors Influencing Honey Production. Insects 2025, 16, 278. https://doi.org/10.3390/insects16030278
Ramirez-Diaz J, Manunza A, de Oliveira TA, Bobbo T, Nutini F, Boschetti M, De Iorio MG, Pagnacco G, Polli M, Stella A, et al. Combining Environmental Variables and Machine Learning Methods to Determine the Most Significant Factors Influencing Honey Production. Insects. 2025; 16(3):278. https://doi.org/10.3390/insects16030278
Chicago/Turabian StyleRamirez-Diaz, Johanna, Arianna Manunza, Tiago Almeida de Oliveira, Tania Bobbo, Francesco Nutini, Mirco Boschetti, Maria Grazia De Iorio, Giulio Pagnacco, Michele Polli, Alessandra Stella, and et al. 2025. "Combining Environmental Variables and Machine Learning Methods to Determine the Most Significant Factors Influencing Honey Production" Insects 16, no. 3: 278. https://doi.org/10.3390/insects16030278
APA StyleRamirez-Diaz, J., Manunza, A., de Oliveira, T. A., Bobbo, T., Nutini, F., Boschetti, M., De Iorio, M. G., Pagnacco, G., Polli, M., Stella, A., & Minozzi, G. (2025). Combining Environmental Variables and Machine Learning Methods to Determine the Most Significant Factors Influencing Honey Production. Insects, 16(3), 278. https://doi.org/10.3390/insects16030278