Transcriptomic Analysis of the Diamondback Moth Under Exposure to the Juvenile Hormone Esterase (JHE) Inhibitor 3-Octylthio-1,1,1-trifluoro-2-propanone (OTFP)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. Chemical Treatment and Bioassay
2.3. Sample Collection and RNA Extraction
2.4. cDNA Library Construction and Transcriptome Sequencing
2.5. Bioinformatic Analysis
2.6. Data Visualization and Statistical Analysis
2.7. Quantitative Real-Time PCR (qRT-PCR) Validation
3. Results
3.1. Sequencing Data Summary and Quality Assessment
3.2. OTFP Treatment Induced Extensive Transcriptional Reprogramming in Fourth-Instar P. xylostella
3.3. Functional Enrichment Analysis Revealed Dynamic Toxicological Effects Centered on Endocrine Disruption
3.4. OTFP Induces an Integrative Molecular Response from Hormonal Imbalance to Suppression of Developmental Signaling
3.5. qRT-PCR Validation of Transcriptome Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| OTFP | 3-octylthio-1,1,1-trifluoro-2-propanone |
| JH | Juvenile Hormone |
| 20E | 20-Hydroxyecdysone |
| JHE | Juvenile Hormone esterase |
| P. xylostella | Plutella xylostella |
| JHEH | Juvenile Hormone epoxide hydrolase |
| JHAMT | Juvenile Hormone acid O-methyltransferase |
| Kr-h1 | Krueppel homolog 1 |
| EcR | Ecdysone receptor |
| BrC-Z4 | Broad-complex isoform Z4 |
| BrC-Z2 | Broad complex isoform Z2 |
| 74EF | Ecdysone-induced protein 74EF |
| HR3 | Hormone receptor HR3 |
| CYP307A1 | Cytochrome P450 307a1 |
| JHBP | Juvenile Hormone-binding protein |
| Met | Methoprene-tolerant |
References
- Jin, M.; Liu, B.; Zheng, W.; Liu, C.; Liu, Z.; He, Y.; Li, X.; Wu, C.; Wang, P.; Liu, K.; et al. Chromosome-level genome of black cutworm provides novel insights into polyphagy and seasonal migration in insects. BMC Biol. 2023, 21, 2. [Google Scholar] [CrossRef]
- Jindra, M.; Palli, S.R.; Riddiford, L.M. The juvenile hormone signaling pathway in insect development. Annu. Rev. Entomol. 2013, 58, 181–204. [Google Scholar] [CrossRef]
- Jindra, M. Where did the pupa come from? The timing of juvenile hormone signalling supports homology between stages of hemimetabolous and holometabolous insects. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20190064. [Google Scholar] [CrossRef]
- Bodenstein, D. The Induction of Larval Molts in Drosophila. Biol. Bull. 1944, 86, 113–124. [Google Scholar] [CrossRef]
- Kozlova, T.; Thummel, C.S. Essential roles for ecdysone signaling during Drosophila mid-embryonic development. Science 2003, 301, 1911–1914. [Google Scholar] [CrossRef]
- Petryk, A.; Warren, J.T.; Marques, G.; Jarcho, M.P.; Gilbert, L.I.; Kahler, J.; Parvy, J.P.; Li, Y.; Dauphin-Villemant, C.; O’Connor, M.B. Shade is the Drosophila P450 enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone. Proc. Natl. Acad. Sci. USA 2003, 100, 13773–13778. [Google Scholar] [CrossRef]
- Yamanaka, N.; Rewitz, K.F.; O’Connor, M.B. Ecdysone Control of Developmental Transitions: Lessons from Drosophila Research. Annu. Rev. Entomol. 2013, 58, 497–516. [Google Scholar] [CrossRef] [PubMed]
- King-Jones, K.; Thummel, C.S. Nuclear receptors—A perspective from Drosophila. Nat. Rev. Genet. 2005, 6, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Ruaud, A.F.; Lam, G.; Thummel, C.S. The Drosophila nuclear receptors DHR3 and betaFTZ-F1 control overlapping developmental responses in late embryos. Development 2010, 137, 123–131. [Google Scholar] [CrossRef]
- Yao, T.P.; Forman, B.M.; Jiang, Z.; Cherbas, L.; Chen, J.D.; McKeown, M.; Cherbas, P.; Evans, R.M. Functional ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature 1993, 366, 476–479. [Google Scholar] [CrossRef] [PubMed]
- Allam, M.; Spillings, B.L.; Abdalla, H.; Mapiye, D.; Koekemoer, L.L.; Christoffels, A. Identification and characterization of microRNAs expressed in the African malaria vector Anopheles funestus life stages using high throughput sequencing. Malar. J. 2016, 15, 542. [Google Scholar] [CrossRef]
- Jindra, M.; Bellés, X.; Shinoda, T. Molecular basis of juvenile hormone signaling. Curr. Opin. Insect Sci. 2015, 11, 39–46. [Google Scholar] [CrossRef]
- Abdou, M.A.; He, Q.; Wen, D.; Zyaan, O.; Wang, J.; Xu, J.; Baumann, A.A.; Joseph, J.; Wilson, T.G.; Li, S.; et al. Drosophila Met and Gce are partially redundant in transducing juvenile hormone action. Insect Biochem. Mol. Biol. 2011, 41, 938–945. [Google Scholar] [CrossRef]
- Liu, S.; Li, K.; Gao, Y.; Liu, X.; Chen, W.; Ge, W.; Feng, Q.; Palli, S.R.; Li, S. Antagonistic actions of juvenile hormone and 20-hydroxyecdysone within the ring gland determine developmental transitions in Drosophila. Proc. Natl. Acad. Sci. USA 2018, 115, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Lozano, J.; Belles, X. Role of Methoprene-tolerant (Met) in adult morphogenesis and in adult ecdysis of Blattella germanica. PLoS ONE 2014, 9, e103614. [Google Scholar] [CrossRef] [PubMed]
- Minakuchi, C.; Riddiford, L.M. Insect juvenile hormone action as a potential target of pest management. J. Pestic. Sci. 2006, 31, 77–84. [Google Scholar] [CrossRef]
- Truman, J.W.; Hiruma, K.; Allee, J.P.; Macwhinnie, S.G.; Champlin, D.T.; Riddiford, L.M. Juvenile hormone is required to couple imaginal disc formation with nutrition in insects. Science 2006, 312, 1385–1388. [Google Scholar] [CrossRef]
- Zhang, X.; Li, S.; Liu, S. Juvenile Hormone Studies in Drosophila melanogaster. Front. Physiol. 2021, 12, 785320. [Google Scholar] [CrossRef]
- Treiblmayr, K.; Pascual, N.; Piulachs, M.D.; Keller, T.; Belles, X. Juvenile hormone titer versus juvenile hormone synthesis in female nymphs and adults of the German cockroach, Blattella germanica. J. Insect Sci. 2006, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kamita, S.G.; Hammock, B.D. Juvenile hormone esterase: Biochemistry and structure. J. Pestic. Sci. 2010, 35, 265–274. [Google Scholar] [CrossRef]
- Bai, H.; Ramaseshadri, P.; Palli, S.R. Identification and characterization of juvenile hormone esterase gene from the yellow fever mosquito, Aedes aegypti. Insect Biochem. Mol. Biol. 2007, 37, 829–837. [Google Scholar] [CrossRef]
- Khalil, S.M.; Anspaugh, D.D.; Roe, R.M. Role of juvenile hormone esterase and epoxide hydrolase in reproduction of the cotton bollworm, Helicoverpa zea. J. Insect Physiol. 2006, 52, 669–678. [Google Scholar] [CrossRef]
- Tan, A.; Tanaka, H.; Tamura, T.; Shiotsuki, T. Precocious metamorphosis in transgenic silkworms over expressing juvenile hormone esterase. Proc. Natl. Acad. Sci. USA 2005, 102, 11751–11756. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Tian, S.; Ren, K.; Chen, Y.; Lin, S.; Chen, Y.; Tian, H.; Zhao, J.; Wang, C.; Wei, H.; et al. Effect of Treatment With 3-Octylthio-1,1,1-Trifluoropropan-2-One in the Diamondback Moth (Lepidoptera: Plutellidae) to the Toxicity of Diafenthiuron, Indoxacarb, and Bacillus thuringiensis. J. Econ. Entomol. 2020, 113, 1419–1425. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Yan, R.; Qian, J.; Chen, D.; Guo, Y.; Zhu, G.; Wu, H.; Chen, M. RNAi-mediated knockdown of juvenile hormone esterase causes mortality and malformation in Tribolium castaneum. Entomol. Res. 2022, 52, 476–482. [Google Scholar] [CrossRef]
- Duan, D.; Zheng, R.; Lin, S.; Chen, Y.; Tian, H.; Zhao, J.; Tian, S.; Wei, H.; Gu, X. Modulation of Juvenile Hormone Esterase Gene Expression Against Development of Plutella xylostella (Lepidoptera: Plutellidae). J. Econ. Entomol. 2016, 109, 865–872. [Google Scholar] [CrossRef]
- Abdel-Aal, Y.A.I.; Roe, R.M.; Hammock, B.D. Kinetic properties of the inhibition of juvenile hormone esterase by two trifluoromethylketones and O-ethyl,S-phenyl phosphoramidothioate. Pestic. Biochem. Physiol. 1984, 21, 232–241. [Google Scholar] [CrossRef]
- Hammock, B.D.; Abdel-Aal, Y.A.I.; Mullin, C.A.; Hanzlik, T.N.; Roe, R.M. Substituted thiotrifluoropropanones as potent selective inhibitors of juvenile hormone esterase. Pestic. Biochem. Physiol. 1984, 22, 209–223. [Google Scholar] [CrossRef]
- Reddy, G.V.; Quero, C.; Guerrero, A. Activity of octylthiotrifluoropropan-2-one, a potent esterase inhibitor, on growth, development, and intraspecific communication in Spodoptera littoralis and Sesamia nonagrioides. J. Agric. Food Chem. 2002, 50, 7062–7068. [Google Scholar] [CrossRef]
- You, M.; Ke, F.; You, S.; Wu, Z.; Liu, Q.; He, W.; Baxter, S.W.; Yuchi, Z.; Vasseur, L.; Gurr, G.M.; et al. Variation among 532 genomes unveils the origin and evolutionary history of a global insect herbivore. Nat. Commun. 2020, 11, 2321. [Google Scholar] [CrossRef]
- Li, X.; Schuler, M.A.; Berenbaum, M.R. Molecular Mechanisms of Metabolic Resistance to Synthetic and Natural Xenobiotics. Annu. Rev. Entomol. 2007, 52, 231–253. [Google Scholar] [CrossRef]
- Nauen, R.; Bass, C.; Feyereisen, R.; Vontas, J. The Role of Cytochrome P450s in Insect Toxicology and Resistance. Annu. Rev. Entomol. 2022, 67, 105–124. [Google Scholar] [CrossRef]
- Jiang, T.; Wu, S.; Yang, T.; Zhu, C.; Gao, C. Monitoring Field Populations of Plutella xylostella (Lepidoptera: Plutellidae) for Resistance to Eight Insecticides in China. Fla. Entomol. 2015, 98, 65–73. [Google Scholar] [CrossRef]
- Oliveira, A.C.d.; Siqueira, H.Á.A.; Oliveira, J.V.d.; Silva, J.E.; Filho, M.M. Resistance of Brazilian diamondback moth populations to insecticides. Sci. Agric. 2011, 68, 154–159. [Google Scholar] [CrossRef]
- Talekar, N.S.; Shelton, A.M. Biology, Ecology, and Management of the Diamondback Moth. Annu. Rev. Entomol. 1993, 38, 275–301. [Google Scholar] [CrossRef]
- Furlong, M.J.; Wright, D.J.; Dosdall, L.M. Diamondback moth ecology and management: Problems, progress, and prospects. Annu. Rev. Entomol. 2013, 58, 517–541. [Google Scholar] [CrossRef]
- Desneux, N.; Decourtye, A.; Delpuech, J.-M. The Sublethal Effects of Pesticides on Beneficial Arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef]
- Stark, J.D.; Banks, J.E. Population-Level Effects of Pesticides and Other Toxicants on Arthropods. Annu. Rev. Entomol. 2003, 48, 505–519. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Riddiford, L.M. Broad specifies pupal development and mediates the ‘status quo’ action of juvenile hormone on the pupal-adult transformation in Drosophila and Manduca. Development 2002, 129, 2259–2269. [Google Scholar] [CrossRef]
- Xu, J.; Sheng, Z.; Palli, S.R. Juvenile Hormone and Insulin Regulate Trehalose Homeostasis in the Red Flour Beetle, Tribolium castaneum. PLoS Genet. 2013, 9, e1003535. [Google Scholar] [CrossRef] [PubMed]
- Riddiford, L.M. How does juvenile hormone control insect metamorphosis and reproduction? Gen. Comp. Endocrinol. 2012, 179, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Sial, A.A.; Brunner, J.F. Lethal and Sublethal Effects of an Insect Growth Regulator, Pyriproxyfen, on Obliquebanded Leafroller (Lepidoptera: Tortricidae). J. Econ. Entomol. 2010, 103, 340–347. [Google Scholar] [CrossRef]
- Xu, K.; Lan, H.; He, C.; Wei, Y.; Lu, Q.; Cai, K.; Yu, D.; Yin, X.; Li, Y.; Lv, J. Toxicological effects of trace amounts of pyriproxyfen on the midgut of non-target insect silkworm. Pestic. Biochem. Physiol. 2022, 188, 105266. [Google Scholar] [CrossRef]
- Fiaz, M.; Martínez, L.C.; Plata-Rueda, A.; Gonçalves, W.G.; de Souza, D.L.L.; Cossolin, J.F.S.; Carvalho, P.E.G.R.; Martins, G.F.; Serrão, J.E. Pyriproxyfen, a juvenile hormone analog, damages midgut cells and interferes with behaviors of Aedes aegypti larvae. PeerJ. 2019, 7, e7489. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, X.; Wang, C.; Zhang, H.; Guo, H.; Qian, H.; Li, G.; Xu, A. Effect of pyriproxyfen exposure on cocooning and gene expression in the silk gland of Bombyx mori (Linnaeus, 1758). Ecotoxicol. Environ. Saf. 2020, 202, 110914. [Google Scholar] [CrossRef]
- Elayidam, U.G.; Muraleedharan, D. Juvenile hormone activity in Dysdercus cingulatus Fabr by juvenile hormone esterase inhibitor, OTFP. Indian. J. Exp. Biol. 2007, 45, 901–906. [Google Scholar]
- Xie, J.; De Clercq, P.; Pan, C.; Li, H.; Zhang, Y.; Pang, H. Physiological effects of compensatory growth during the larval stage of the ladybird, Cryptolaemus montrouzieri. J. Insect Physiol. 2015, 83, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Vandenberg, L.N.; Colborn, T.; Hayes, T.B.; Heindel, J.J.; Jacobs, D.R., Jr.; Lee, D.H.; Shioda, T.; Soto, A.M.; vom Saal, F.S.; Welshons, W.V.; et al. Hormones and endocrine-disrupting chemicals: Low-dose effects and nonmonotonic dose responses. Endocr. Rev. 2012, 33, 378–455. [Google Scholar] [CrossRef]
- Sørensen, J.G.; Kristensen, T.N.; Loeschcke, V. The evolutionary and ecological role of heat shock proteins. Ecol. Lett. 2003, 6, 1025–1037. [Google Scholar] [CrossRef]
- Despres, L.; David, J.P.; Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 2007, 22, 298–307. [Google Scholar] [CrossRef]
- Riddiford, L.M.; Hiruma, K.; Zhou, X.; Nelson, C.A. Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochem. Mol. Biol. 2003, 33, 1327–1338. [Google Scholar] [CrossRef]
- Claudianos, C.; Ranson, H.; Johnson, R.M.; Biswas, S.; Schuler, M.A.; Berenbaum, M.R.; Feyereisen, R.; Oakeshott, J.G. A deficit of detoxification enzymes: Pesticide sensitivity and environmental response in the honeybee. Insect Mol. Biol. 2006, 15, 615–636. [Google Scholar] [CrossRef]
- Hammock, B.D.; Bonning, B.C.; Possee, R.D.; Hanzlik, T.N.; Maeda, S. Expression and effects of the juvenile hormone esterase in a baculovirus vector. Nature 1990, 344, 458–461. [Google Scholar] [CrossRef]
- Amezian, D.; Nauen, R.; Le Goff, G. Transcriptional regulation of xenobiotic detoxification genes in insects—An overview. Pestic. Biochem. Physiol. 2021, 174, 104822. [Google Scholar] [CrossRef]
- Guo, Z.; Zhu, L.; Cheng, Z.; Dong, L.; Guo, L.; Bai, Y.; Wu, Q.; Wang, S.; Yang, X.; Xie, W.; et al. A midgut transcriptional regulatory loop favors an insect host to withstand a bacterial pathogen. Innovation 2024, 5, 100675. [Google Scholar] [CrossRef] [PubMed]
- Lei, G.; Zhou, H.; Yu, G.; Miao, X.; Zhang, Y.; Ma, Z.; Duan, Y.; Chen, Y.; Yao, F.; Vasseur, L.; et al. Metabolic network remodeling through PxJHE modulates temperature adaptation in a cosmopolitan insect. Insect Biochem. Mol. Biol. 2025, 182, 104348. [Google Scholar] [CrossRef]
- Guo, Z.; Bai, Y.; Zhang, X.; Guo, L.; Zhu, L.; Sun, D.; Sun, K.; Xu, X.; Yang, X.; Xie, W.; et al. RNA m6A Methylation Suppresses Insect Juvenile Hormone Degradation to Minimize Fitness Costs in Response to A Pathogenic Attack. Adv. Sci. 2024, 11, 2307650. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Shiotsuki, T.; Wang, Z.; Xu, X.; Huang, Y.; Li, M.; Li, K.; Tan, A. Depletion of juvenile hormone esterase extends larval growth in Bombyx mori. Insect Biochem. Mol. Biol. 2017, 81, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Browder, M.H.; D’Amico, L.J.; Nijhout, H.F. The role of low levels of juvenile hormone esterase in the metamorphosis of Manduca sexta. J. Insect Sci. 2001, 1, 11. [Google Scholar] [CrossRef]
- Shinoda, T.; Itoyama, K. Juvenile hormone acid methyltransferase: A key regulatory enzyme for insect metamorphosis. Proc. Natl. Acad. Sci. 2003, 100, 11986–11991. [Google Scholar] [CrossRef] [PubMed]
- Tobe, S.S.; Stay, B. Modulation of juvenile hormone synthesis by an analogue in the cockroach. Nature 1979, 281, 481–482. [Google Scholar] [CrossRef]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids. 2009, 37, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Orth, J.D.; Thiele, I.; Palsson, B.Ø. What is flux balance analysis? Nat. Biotechnol. 2010, 28, 245–248. [Google Scholar] [CrossRef]
- Lempiäinen, H.; Shore, D. Growth control and ribosome biogenesis. Curr. Opin. Cell Biol. 2009, 21, 855–863. [Google Scholar] [CrossRef] [PubMed]
- de la Cruz, J.; Karbstein, K.; Woolford, J.L. Functions of Ribosomal Proteins in Assembly of Eukaryotic Ribosomes In Vivo. Annu. Rev. Biochem. 2015, 84, 93–129. [Google Scholar] [CrossRef] [PubMed]
- Ibba, M.; Söll, D. Aminoacyl-tRNA Synthesis. Annu. Rev. Biochem. 2000, 69, 617–650. [Google Scholar] [CrossRef]
- Metcalfe, N.B.; Monaghan, P. Compensation for a bad start: Grow now, pay later? Trends Ecol. Evol. 2001, 16, 254–260. [Google Scholar] [CrossRef]
- Ali, M.; Nicieza, A.; Wootton, R.J. Compensatory growth in fishes: A response to growth depression. Fish Fish. 2003, 4, 147–190. [Google Scholar] [CrossRef]
- Saxton, R.A.; Sabatini, D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell 2017, 168, 960–976. [Google Scholar] [CrossRef]
- Wullschleger, S.; Loewith, R.; Hall, M.N. TOR signaling in growth and metabolism. Cell 2006, 124, 471–484. [Google Scholar] [CrossRef]
- Shah, O.J.; Wang, Z.; Hunter, T. Inappropriate Activation of the TSC/Rheb/mTOR/S6K Cassette Induces IRS1/2 Depletion, Insulin Resistance, and Cell Survival Deficiencies. Curr. Biol. 2004, 14, 1650–1656. [Google Scholar] [CrossRef] [PubMed]
- Puig, O.; Marr, M.T.; Ruhf, M.L.; Tjian, R. Control of cell number by Drosophila FOXO: Downstream and feedback regulation of the insulin receptor pathway. Genes. Dev. 2003, 17, 2006–2020. [Google Scholar] [CrossRef]
- Nässel, D.R.; Broeck, J.V. Insulin/IGF signaling in Drosophila and other insects: Factors that regulate production, release and post-release action of the insulin-like peptides. Cell Mol. Life Sci. 2016, 73, 271–290. [Google Scholar] [CrossRef] [PubMed]
- Dhadialla, T.S.; Carlson, G.R.; Le, D.P. New insecticides with ecdysteroidal and juvenile hormone activity. Annu. Rev. Entomol. 1998, 43, 545–569. [Google Scholar] [CrossRef] [PubMed]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, X.; Lin, Y.; Zheng, S.; Qiu, J.; Gao, J.; Gu, X.; Huang, J. Transcriptomic Analysis of the Diamondback Moth Under Exposure to the Juvenile Hormone Esterase (JHE) Inhibitor 3-Octylthio-1,1,1-trifluoro-2-propanone (OTFP). Insects 2025, 16, 1152. https://doi.org/10.3390/insects16111152
Wang Y, Wang X, Lin Y, Zheng S, Qiu J, Gao J, Gu X, Huang J. Transcriptomic Analysis of the Diamondback Moth Under Exposure to the Juvenile Hormone Esterase (JHE) Inhibitor 3-Octylthio-1,1,1-trifluoro-2-propanone (OTFP). Insects. 2025; 16(11):1152. https://doi.org/10.3390/insects16111152
Chicago/Turabian StyleWang, Yingbo, Xiying Wang, Yubin Lin, Shun Zheng, Jianrong Qiu, Jinheng Gao, Xiaojun Gu, and Jingfei Huang. 2025. "Transcriptomic Analysis of the Diamondback Moth Under Exposure to the Juvenile Hormone Esterase (JHE) Inhibitor 3-Octylthio-1,1,1-trifluoro-2-propanone (OTFP)" Insects 16, no. 11: 1152. https://doi.org/10.3390/insects16111152
APA StyleWang, Y., Wang, X., Lin, Y., Zheng, S., Qiu, J., Gao, J., Gu, X., & Huang, J. (2025). Transcriptomic Analysis of the Diamondback Moth Under Exposure to the Juvenile Hormone Esterase (JHE) Inhibitor 3-Octylthio-1,1,1-trifluoro-2-propanone (OTFP). Insects, 16(11), 1152. https://doi.org/10.3390/insects16111152

