The Effect of Growth and Nutrition in Black Soldier Fly Larvae Fed by Hemp Seed Oil Mixed Diets
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Black Soldier Fly Colony
2.2. HSO Preparation
2.3. Study of the Chemical Composition of HSO
2.4. Growth Performances
2.5. Proximate Analysis
2.6. Fatty Acid Analysis
2.7. Statistical Analysis
3. Results
3.1. Chemical Composition of HSO
3.2. Growth Performances
3.3. Proximate Composition and Fatty Acid Profile
4. Discussion
4.1. Chemical Composition of HSO
4.2. Growth Performance
4.3. Macronutrient Composition
4.4. Fatty Acid Composition
4.5. Correlations Between HSO Dosage and Important Chemical Compositions as Well as Larvae Weight
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abd El-Hack, M.E.; Shafi, M.E.; Alghamdi, W.Y.; Abdelnour, S.A.; Shehata, A.M.; Noreldin, A.E.; Ashour, E.A.; Swelum, A.A.; Al-Sagan, A.A.; Alkhateeb, M. Black soldier fly (Hermetia illucens) meal as a promising feed ingredient for poultry: A comprehensive review. Agriculture 2020, 10, 339. [Google Scholar] [CrossRef]
- Liland, N.S.; Araujo, P.; Xu, X.; Lock, E.-J.; Radhakrishnan, G.; Prabhu, A.; Belghit, I. A meta-analysis on the nutritional value of insects in aquafeeds. J. Insects Food Feed 2021, 7, 743–760. [Google Scholar] [CrossRef]
- Van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- McLeod, A. World Livestock 2011-Livestock in Food Security; FAO: Rome, Italy, 2011. [Google Scholar]
- Van Huis, A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 2013, 58, 563–583. [Google Scholar] [CrossRef]
- Oonincx, D.G.; Van Broekhoven, S.; Van Huis, A.; Van Loon, J.J. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef]
- Ffoulkes, C.; Illman, H.; O’connor, R.; Lemon, F.; Behrendt, K.; Wynn, S.; Wright, P.; Godber, O.; Ramsden, M.; Adams, J. Development of a Roadmap to Scale Up Insect Protein Production in the UK for Use in Animal Feed; WWF & ADAS: Woking, UK, 2021. [Google Scholar]
- Schiavone, A.; Cullere, M.; De Marco, M.; Meneguz, M.; Biasato, I.; Bergagna, S.; Dezzutto, D.; Gai, F.; Dabbou, S.; Gasco, L. Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: Effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality. Ital. J. Anim. Sci. 2017, 16, 93–100. [Google Scholar] [CrossRef]
- Listya, P.; Himmatul, K. Black soldier fly (Hermetia illucens) as a potential agent of organic waste bioconversion. ASEAN J. Sci. Technol. Dev. 2022, 39, 69–83. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Potential and challenges of insects as an innovative source for food and feed production. Innov. Food Sci. Emerg. Technol. 2013, 17, 1–11. [Google Scholar] [CrossRef]
- Gasco, L.; Finke, M.; Van Huis, A. Can diets containing insects promote animal health? J. Insects Food Feed 2018, 4, 1–4. [Google Scholar] [CrossRef]
- Harlystiarini, H.; Mutia, R.; Wibawan, I.W.T.; Astuti, D.A. In vitro antibacterial activity of black soldier fly (Hermetia illucens) larva extracts against gram-negative bacteria. Bul. Peternak. 2019, 43, 125–129. [Google Scholar] [CrossRef]
- Barragan-Fonseca, K.B.; Dicke, M.; van Loon, J.J. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed—A review. J. Insects Food Feed 2017, 3, 105–120. [Google Scholar] [CrossRef]
- Newton, L.; Sheppard, C.; Watson, D.W.; Burtle, G.; Dove, R. Using the Black Soldier Fly, Hermetia illucens, as a Value-Added Tool for the Management of Swine Manure; Animal and Poultry Waste Management Center, North Carolina State University: Raleigh, NC, USA, 2005; Volume 17, p. 18. [Google Scholar]
- Cummins, V.C., Jr.; Rawles, S.D.; Thompson, K.R.; Velasquez, A.; Kobayashi, Y.; Hager, J.; Webster, C.D. Evaluation of black soldier fly (Hermetia illucens) larvae meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture 2017, 473, 337–344. [Google Scholar] [CrossRef]
- Wood, L. Black Soldier Fly Market by Product Type (Protein Meal, Biofertilizer, Whole Dried Larvae, Larvae Oil, and Other BSF Products), Application (Animal Feed, Agriculture, Pet Food, and Others), and Geography-Global Forecast to 2030-Executive Report; Meticulous Market Research Pvt. Ltd.: Redding, CA, USA, 2020. [Google Scholar]
- Marono, S.; Loponte, R.; Lombardi, P.; Vassalotti, G.; Pero, M.E.; Russo, F.; Gasco, L.; Parisi, G.; Piccolo, G.; Nizza, S. Productive performance and blood profiles of laying hens fed Hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 weeks of age. Poult. Sci. 2017, 96, 1783–1790. [Google Scholar] [CrossRef]
- Fowles, T.M.; Nansen, C. Insect-based bioconversion: Value from food waste. In Food Waste Management: Solving the Wicked Problem; Springer: Cham, Switzerland, 2020; pp. 321–346. [Google Scholar]
- Oteri, M.; Di Rosa, A.R.; Lo Presti, V.; Giarratana, F.; Toscano, G.; Chiofalo, B. Black soldier fly larvae meal as alternative to fish meal for aquaculture feed. Sustainability 2021, 13, 5447. [Google Scholar] [CrossRef]
- Schmitt, E.; Belghit, I.; Johansen, J.; Leushuis, R.; Lock, E.-J.; Melsen, D.; Kathirampatti Ramasamy Shanmugam, R.; Van Loon, J.; Paul, A. Growth and safety assessment of feed streams for black soldier fly larvae: A case study with aquaculture sludge. Animals 2019, 9, 189. [Google Scholar] [CrossRef]
- Radočaj, O.; Dimić, E.; Tsao, R. Effects of hemp (Cannabis sativa L.) seed oil press-cake and decaffeinated green tea leaves (Camellia sinensis) on functional characteristics of gluten-free crackers. J. Food Sci. 2014, 79, C318–C325. [Google Scholar] [CrossRef]
- Devi, V.; Khanam, S. Comparative study of different extraction processes for hemp (Cannabis sativa) seed oil considering physical, chemical and industrial-scale economic aspects. J. Clean. Prod. 2019, 207, 645–657. [Google Scholar] [CrossRef]
- Erasmus, U. Fats That Heal, Fats That Kill: The Complete Guide to Fats, Oils, Cholesterol, and Human Health; Book Publishing Company: Summertown, TN, USA, 1993. [Google Scholar]
- De Padua, L.S.; Bunyapraphatsara, N.; Lemmens, R. Plant Resources of South-East Asia; Backhuys Publ.: Oegstgeest, The Netherlands, 1999; Volume 12. [Google Scholar]
- Baron, E.P. Medicinal properties of cannabinoids, terpenes, and flavonoids in cannabis, and benefits in migraine, headache, and pain: An update on current evidence and cannabis science. Headache J. Head Face Pain 2018, 58, 1139–1186. [Google Scholar] [CrossRef]
- Anstey, A.; Quigley, M.; Wilkinson, J. Topical evening primrose oil as treatment for atopic eczema. J. Dermatol. Treat. 1990, 1, 199–201. [Google Scholar] [CrossRef]
- Fiocchi, A.; Sala, M.; Signoroni, P.; Banderali, G.; Agostoni, C.; Riva, E. The efficacy and safety of γ-linolenic acid in the treatment of infantile atopic dermatitis. J. Int. Med. Res. 1994, 22, 24–32. [Google Scholar] [CrossRef]
- Callaway, J. Hempseed as a nutritional resource: An overview. Euphytica 2004, 140, 65–72. [Google Scholar] [CrossRef]
- Future Market Insights Inc. Hemp Seed Oil Market. Available online: https://www.futuremarketinsights.com/reports/hemp-seed-oil-market (accessed on 19 September 2025).
- Bondari, K.; Sheppard, D. Soldier fly larvae as feed in commercial fish production. Aquaculture 1981, 24, 103–109. [Google Scholar] [CrossRef]
- Veldkamp, T.; Bosch, G. Insects: A protein-rich feed ingredient in pig and poultry diets. Anim. Front. 2015, 5, 45–50. [Google Scholar]
- Suwannayod, S.; Sukontason, K.L.; Pitasawat, B.; Junkum, A.; Limsopatham, K.; Jones, M.K.; Somboon, P.; Leksomboon, R.; Chareonviriyaphap, T.; Tawatsin, A. Synergistic toxicity of plant essential oils combined with pyrethroid insecticides against blow flies and the house fly. Insects 2019, 10, 178. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Method of Analysis, 18th ed.; AOAC: Washington, DC, USA, 2005. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists: Official Methods of Analysis of AOAC International, 21st ed.; AOAC: Washington, DC, USA, 2019. [Google Scholar]
- AOAC. Official Method of Analysis: Association of Analytical Chemists, 19th ed.; AOAC: Washington, DC, USA, 2012; pp. 121–130. [Google Scholar]
- Leizer, C.; Ribnicky, D.; Poulev, A.; Dushenkov, S.; Raskin, I. The composition of hemp seed oil and its potential as an important source of nutrition. J. Nutraceuticals Funct. Med. Foods 2000, 2, 35–53. [Google Scholar] [CrossRef]
- Jones, P.J.; MacDougall, D.E.; Ntanios, F.; Vanstone, C.A. Dietary phytosterols as cholesterol-lowering agents in humans. Can. J. Physiol. Pharmacol. 1997, 75, 217–227. [Google Scholar] [CrossRef]
- Pisanti, S.; Malfitano, A.M.; Ciaglia, E.; Lamberti, A.; Ranieri, R.; Cuomo, G.; Abate, M.; Faggiana, G.; Proto, M.C.; Fiore, D. Cannabidiol: State of the art and new challenges for therapeutic applications. Pharmacol. Ther. 2017, 175, 133–150. [Google Scholar] [CrossRef]
- Brigelius-Flohé, R.; Traber, M.G. Vitamin E: Function and metabolism. FASEB J. 1999, 13, 1145–1155. [Google Scholar] [CrossRef]
- Georgescu, B.; Struţi, D.; Papuc, T.; Cighi, V.; Boaru, A. Effect of the energy content of diets on the development and quality of the fat reserves of larvae and reproduction of adults of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). Eur. J. Entomol. 2021, 118, 297–306. [Google Scholar] [CrossRef]
- Liland, N.S.; Biancarosa, I.; Araujo, P.; Biemans, D.; Bruckner, C.G.; Waagbø, R.; Torstensen, B.E.; Lock, E.-J. Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PLoS ONE 2017, 12, e0183188. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, X.; Wang, H.; Yang, Q.; ur Rehman, K.; Li, W.; Cai, M.; Li, Q.; Mazza, L.; Zhang, J. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS ONE 2017, 12, e0182601. [Google Scholar] [CrossRef]
- Vonapartis, E.; Aubin, M.-P.; Seguin, P.; Mustafa, A.F.; Charron, J.-B. Seed composition of ten industrial hemp cultivars approved for production in Canada. J. Food Compos. Anal. 2015, 39, 8–12. [Google Scholar] [CrossRef]
- Spranghers, T.; Ottoboni, M.; Klootwijk, C.; Ovyn, A.; Deboosere, S.; De Meulenaer, B.; Michiels, J.; Eeckhout, M.; De Clercq, P.; De Smet, S. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 2017, 97, 2594–2600. [Google Scholar] [CrossRef]
- Diener, S.; Zurbrügg, C.; Tockner, K. Conversion of organic material by black soldier fly larvae: Establishing optimal feeding rates. Waste Manag. Res. 2009, 27, 603–610. [Google Scholar] [CrossRef]
- Gobbi, P.; Martinez-Sanchez, A.; Rojo, S. The effects of larval diet on adult life-history traits of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). Eur. J. Entomol. 2013, 110, 461. [Google Scholar] [CrossRef]
- Hoc, B.; Noël, G.; Carpentier, J.; Francis, F.; Caparros Megido, R. Optimization of black soldier fly (Hermetia illucens) artificial reproduction. PLoS ONE 2019, 14, e0216160. [Google Scholar] [CrossRef]
- Zandi-Sohani, N.; Tomberlin, J.K. Comparison of growth and composition of black soldier fly (Hermetia illucens L.) larvae reared on sugarcane by-products and other substrates. Insects 2024, 15, 771. [Google Scholar] [CrossRef]
- Eggink, K.M. Modification of the Nutritional Composition of Black Soldier Fly (Hermetia illucens) for Fish Feed Applications. Ph.D. Thesis, National Institute of Aquatic Resources, Lyngby, Denmark, 2023. [Google Scholar]
- Noyens, I.; Van Peer, M.; Goossens, S.; Ter Heide, C.; Van Miert, S. The nutritional quality of commercially bred yellow mealworm (Tenebrio molitor) compared to European union nutrition claims. Insects 2024, 15, 769. [Google Scholar] [CrossRef] [PubMed]
- Oonincx, D.G.; Laurent, S.; Veenenbos, M.E.; van Loon, J.J. Dietary enrichment of edible insects with omega 3 fatty acids. Insect Sci. 2020, 27, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Arena, R.; Manuguerra, S.; Curcuraci, E.; Cusimano, M.; Lo Monaco, D.; Di Bella, C.; Santulli, A.; Messina, C.M. Fisheries and aquaculture by-products modulate growth, body composition, and omega-3 polyunsaturated fatty acid content in black soldier fly (Hermetia illucens) larvae. Front. Anim. Sci. 2023, 4, 1204767. [Google Scholar] [CrossRef]
- Teh, S.-S.; Birch, J. Physicochemical and quality characteristics of cold-pressed hemp, flax and canola seed oils. J. Food Compos. Anal. 2013, 30, 26–31. [Google Scholar] [CrossRef]
- Georgescu, B.; Boaru, A.M.; Muntean, L.; Sima, N.; Struți, D.I.; Păpuc, T.A.; Georgescu, C. Modulating the fatty acid profiles of Hermetia illucens larvae fats by dietary enrichment with different oilseeds: A sustainable way for future use in feed and food. Insects 2022, 13, 801. [Google Scholar] [CrossRef] [PubMed]
- Danieli, P.P.; Lussiana, C.; Gasco, L.; Amici, A.; Ronchi, B. The effects of diet formulation on the yield, proximate composition, and fatty acid profile of the black soldier fly (Hermetia illucens L.) prepupae intended for animal feed. Animals 2019, 9, 178. [Google Scholar] [CrossRef]
- Ewald, N.; Vidakovic, A.; Langeland, M.; Kiessling, A.; Sampels, S.; Lalander, C. Fatty acid composition of black soldier fly larvae (Hermetia illucens)—Possibilities and limitations for modification through diet. Waste Manag. 2020, 102, 40–47. [Google Scholar] [CrossRef]
- Hoc, B.; Genva, M.; Fauconnier, M.-L.; Lognay, G.; Francis, F.; Caparros Megido, R. About lipid metabolism in Hermetia illucens (L. 1758): On the origin of fatty acids in prepupae. Sci. Rep. 2020, 10, 11916. [Google Scholar] [CrossRef] [PubMed]

| No. | Chemical Constituents | RT (min) | Percentage Composition (%) |
|---|---|---|---|
| 1 | 2-heptenal | 6.421 | 0.47 |
| 2 | 2,4-decadienal | 16.240 | 0.37 |
| 3 | linoleic acid | 34.110 | 0.20 |
| 4 | δ.1-tetrahydrocannabidivarol | 37.206 | 0.81 |
| 5 | cannabivarin | 38.178 | 0.46 |
| 6 | cannabidiol | 38.951 | 3.31 |
| 7 | 7-hexadecyne | 39.798 | 19.39 |
| 8 | linolenic acid | 39.895 | 17.34 |
| 9 | cyclododecyne | 40.055 | 1.38 |
| 10 | dronabinol | 40.547 | 1.88 |
| 11 | 9,12-Octadecadienoic acid | 41.056 | 0.29 |
| 12 | cannabinol | 41.514 | 2.06 |
| 13 | eicosane | 43.368 | 0.32 |
| 14 | skyvalen | 44.919 | 1.96 |
| 15 | oxirane | 45.285 | 0.48 |
| 16 | nonacosane | 46.166 | 1.13 |
| 17 | 3,5-bis (P-dimethylaminostryl) | 46.612 | 0.46 |
| 18 | γ-tocopherol | 48.014 | 9.92 |
| 19 | α-tocopherol | 49.016 | 0.60 |
| 20 | campesterol | 50.183 | 3.20 |
| 21 | β-stigmasterol | 50.526 | 1.02 |
| 22 | γ-sitosterol | 51.367 | 17.68 |
| 23 | 4-nitrophthalhydrazide | 52.065 | 0.80 |
| 24 | cycloartenol | 52.552 | 1.91 |
| Total | 87.44 | ||
| Specification | Treatments (Mean ± SE) | ||||||
|---|---|---|---|---|---|---|---|
| Control | HSO 0.5% | HSO 1% | HSO 2% | HSO 4% | HSO 6% | p-Value | |
| Larval developmental time (L1–L4 days) | 14.5 ± 0.55 | 14.33 ± 0.82 | 14.5 ± 1.22 | 15 ± 1.10 | 14.5 ± 1.05 | 14.5 ± 0.05 | 0.856 |
| Larval developmental time (L5 days) | 15.5 ± 0.55 | 15.67 ± 1.21 | 15.5 ± 1.22 | 16.17 ± 1.17 | 15.67 ± 1.21 | 16.10 ± 1.15 | 0.829 |
| Prepupal developmental time (L6 days) | 17.5 ± 0.55 | 17.5 ± 1.52 | 16.67 ± 1.03 | 17.17 ± 1.17 | 17.5 ± 1.52 | 17.55 ± 1.40 | 0.704 |
| Pupal developmental time (days) | 20.33 ± 1.51 | 20 ± 2.45 | 19.83 ± 1.17 | 19.67 ± 1.21 | 19.5 ± 1.22 | 19.80 ± 1.10 | 0.417 |
| Larval survival rate (%) | 98.8 ± 2.67 | 98.67 ± 2.44 | 98.67 ± 1.11 | 98.73 ± 1.55 | 99.47 ± 1.56 | 99.13 ± 2.22 | 0.594 |
| Pupal survival rate (%) | 91.67 ± 0.03 | 88.67 ± 2.03 | 84.00 ± 1.21 | 86.67 ± 1.55 | 86.33 ± 1.15 | 86.67 ± 1.40 | 0.864 |
| Larval weight (mg FM) | 0.141 ± 0.001 a * | 0.155 ± 0.001 c | 0.154 ± 0.002 c | 0.151 ± 0.0001 b | 0.151 ± 0.0006 b | 0.153 ± 0.0001 b | 0.001 |
| Larval Width (cm) | 0.259 ± 0.18 | 0.259 ± 0.17 | 0.280 ± 0.17 | 0.469 ± 0.03 | 0.509 ± 0.03 | 0.500 ± 0.03 | 0.085 |
| Larval Length (cm) | 1.449 ± 0.15 | 1.482 ± 0.15 | 1.502 ± 0.15 | 1.571 ± 0.12 | 1.731 ± 0.07 | 1.690 ± 0.04 | 0.955 |
| Pupal weight (mg FM) | 0.195 ± 0.04 | 0.194 ± 0.04 | 0.207 ± 0.03 | 0.197 ± 0.04 | 0.204 ± 0.04 | 0.204 ± 0.04 | 0.854 |
| Adult longevity male (days) | 36 ± 6.22 | 36.6 ± 9.61 | 23.5 ± 0.5 | 22.5 ± 2.51 | 34 ± 6.68 | 34 ± 3.25 | 0.594 |
| Adult longevity female (days) | 26.4 ± 8.47 | 19.8 ± 18.77 | 23.5 ± 0.71 | 28 ± 2.00 | 33.75 ± 7.76 | 32.50 ± 2.25 | 0.417 |
| Nutrients (g/100 g) | Control | HSO 0.5% | HSO 1% | HSO 2% | HSO 4% | HSO 6% | p-Value |
|---|---|---|---|---|---|---|---|
| Ash | 9.34 a | 9.24 a | 9.27 a | 8.71 b | 7.33 c | 6.34 d | 0.0003 |
| Fat | 11.24 e | 13.07 d | 14.39 c | 15.24 b | 22.42 a | 22.78 a | 0.0001 |
| Moisture | 13.24 a | 9.22 b | 8.53 b | 8.25 b | 8.31 b | 13.71 a | 0.0021 |
| Protein | 49.59 b | 52.72 a | 52.28 a | 49.92 b | 48.64 c | 44.02 d | 0.0005 |
| Energy (kcal/100 g) | 365.88 e | 391.51 d | 400.75 c | 408.36 b | 449.54 a | 433.70 a | 0.0001 |
| Fatty acid composition | |||||||
| Caproic acid (C6:0) | - | - | - | 0.06 | - | - | |
| Caprylic acid (C8:0) | - | - | - | 0.05 | 0.01 | - | |
| Capric acid (C10:0) | 0.30 a | 0.32 a | 0.29 a | 0.04 b | 0.27 a | 0.28 a | |
| Undecanoic acid (C11:0) | - | - | - | 0.02 | - | - | |
| Lauric acid (C12:0) | 8.85 b | 9.25 b | 7.94 c | 11.66 a | 7.26 c | 8.41 bc | |
| Tridecanoic acid (C13:0) | 0.01 | 0.01 | 0.01 | 0.02 | - | - | |
| Myristic acid (C14:0) | 1.41 a | 1.45 a | 1.25 b | 1.92 a | 1.16 b | 1.33 b | |
| Pentadecanoic acid (C15:0) | 0.07 a | 0.07 a | 0.06 ab | 0.09 a | 0.04 b | 0.04 b | |
| Palmitic acid (C16:0) | 3.88 c | 3.91 c | 4.10 b | 5.79 a | 3.93 c | 3.87 c | |
| Heptadecanoic acid (C17:0) | 0.88 a | 0.07 b | 0.06 b | 0.09 b | 0.05 b | 0.05 b | |
| Stearic acid (C18:0) | 0.66 c | 0.68 c | 0.69 c | 1.09 a | 0.79 b | 0.82 b | |
| Arachidic acid (C20:0) | 0.03 d | 0.03 d | 0.04 c | 0.07 a | 0.05 b | 0.06 a | |
| Heneicosanoic acid (C21:0) | 0.01 | - | - | 0.02 | - | - | |
| Behenic acid (C22:0) | 0.02 | 0.02 | 0.02 | 0.06 | 0.03 | - | |
| Tricosanoic acid (C23:0) | 0.01 b | 0.01 b | 0.01 b | 0.06 a | 0.01 b | 0.01 b | |
| Lignoceric acid (C24:0) | - | - | - | 0.01 | - | - | |
| Saturated fat (g/100 g) | 15.38 c | 15.86 b | 14.51 e | 21.42 a | 13.64 f | 14.92 d | |
| Myristoleic acid (C14:1) | 0.01 | - | - | - | - | - | |
| cis-10-Pentadecenoic acid (C15:1n10) | - | - | - | - | - | - | |
| Plamitoleic acid (C16:1n7) | 0.67 a | 0.63 b | 0.61 c | 0.56 d | 0.46 e | 0.30 f | |
| cis-10-Heptadecenoic acid (C17:1n10) | 0.03 a | 0.03 a | 0.03 a | 0.03 a | 0.02 a | 0.01 b | |
| Trans-9-Elaidic acid (C18:1n9t) | 0.07 a | 0.05 b | 0.05 b | 0.06 a | 0.02 c | 0.02 c | |
| cis-9-Oleic acid (C18:1n9c) | 5.24 d | 5.58 c | 5.99 a | 5.95 b | 4.51 e | 4.16 f | |
| cis-11-Eicosenoic acid (C20:1n11) | 0.01 b | 0.02 a | 0.02 a | 0.03 a | 0.03 a | 0.03 a | |
| Nervonic acid (C24:1n9) | 0.01 | 0.01 | - | 0.06 | 0.01 | 0.01 | |
| Monounsaturated fatty acid | 6.05 d | 6.33 c | 6.71 a | 6.69 b | 5.05 e | 4.54 f | |
| cis-9,12-Linoleic acid (C18:2n6) | 6.26 e | 8.65 d | 9.74 c | 2.69 f | 10.64 a | 10.43 b | |
| gamma-Linolenic acid (C18:3n6) | - | - | 0.01 | 0.02 | 0.01 | 0.01 | |
| alpha-Linolenic acid (C18:3n3) | 0.49 e | 1.08 d | 1.32 c | 0.22 f | 2.52 b | 2.68 a | |
| cis-11, 14-Eicosadienoic acid (C20:2) | 0.02 | 0.01 | 0.02 | 0.04 | 0.01 | - | |
| cis-8, 11, 14-Eicosatrienoic acid (C20:3n6) | - | - | - | 0.02 | - | - | |
| cis-5, 8, 11, 14, 17-Eicosapentaenoic acid (C20:5n3) | - | - | - | 0.01 | - | - | |
| Polyunsaturated Fatty acid | 6.80 e | 9.75 d | 11.09 c | 2.99 | 13.21 a | 13.13 b | |
| Unsaturated fat | 12.85 e | 16.09 d | 17.80 b | 9.68 f | 18.26 a | 17.67 c | |
| Tran fat | 0.07 a | 0.05 b | 0.05 b | 0.06 a | 0.02 c | 0.02 c | |
| Omega-3 | 0.497 f | 1.077 e | 1.315 d | 2.350 c | 2.533 b | 2.681 a | 0.0001 |
| Omega-6 | 6.279 e | 8.664 d | 9.758 c | 2.718 f | 10.665 a | 10.444 b | 0.0001 |
| Omega-9 | 5.257 d | 5.592 c | 5.995 b | 6.011 a | 4.522 e | 4.172 f | 0.0001 |
| Nutrients | Correlation Coefficient | p-Value |
|---|---|---|
| Protein | −0.98 | 0.0005 *** |
| Lauric | −0.308 | 0.326 |
| Omega-3 | 0.873 | 0.029 *** |
| Omega-6 | 0.357 | 0.299 |
| Omega-9 | −0.9 | 0.018 *** |
| Weight | −0.447 | 0.248 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suwannayod, S.; Setthaya, P.; Limsopatham, K.; Harnpornchai, N. The Effect of Growth and Nutrition in Black Soldier Fly Larvae Fed by Hemp Seed Oil Mixed Diets. Insects 2025, 16, 1081. https://doi.org/10.3390/insects16111081
Suwannayod S, Setthaya P, Limsopatham K, Harnpornchai N. The Effect of Growth and Nutrition in Black Soldier Fly Larvae Fed by Hemp Seed Oil Mixed Diets. Insects. 2025; 16(11):1081. https://doi.org/10.3390/insects16111081
Chicago/Turabian StyleSuwannayod, Suttida, Phattawin Setthaya, Kwankamol Limsopatham, and Napat Harnpornchai. 2025. "The Effect of Growth and Nutrition in Black Soldier Fly Larvae Fed by Hemp Seed Oil Mixed Diets" Insects 16, no. 11: 1081. https://doi.org/10.3390/insects16111081
APA StyleSuwannayod, S., Setthaya, P., Limsopatham, K., & Harnpornchai, N. (2025). The Effect of Growth and Nutrition in Black Soldier Fly Larvae Fed by Hemp Seed Oil Mixed Diets. Insects, 16(11), 1081. https://doi.org/10.3390/insects16111081
