Screening and Identification of Protease-Producing Microorganisms in the Gut of Gryllotalpa orientalis (Orthoptera: Gryllotalpidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects’ Collection and Dissection
2.2. Screening of Proteolytic Bacteria
2.3. Morphological, Physiological, Biochemical, and Molecular Identification of Bacteria
2.4. Whole-Genome Analysis of Proteolytic Bacteria
3. Results
3.1. Screening and Identification of Proteolytic Bacteria
3.2. Analysis of Proteolytic Bacteria through Whole-Genome Sequencing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Douglas, A.E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 2015, 60, 17–34. [Google Scholar] [CrossRef]
- Hatefi, A.; Makhdoumi, A.; Asoodeh, A.; Mirshamsi, O. Characterization of a bi-functional cellulase produced by a gut bacterial resident of rosaceae branch borer beetle, Osphranteria coerulescens (Coleoptera: Cerambycidae). Int. J. Biol. Macromol. 2017, 103, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Ding, S.-Y.; Yuan, J.S. Comparison of insect gut cellulase and xylanase activity across different insect species with distinct food sources. Bioenergy Res. 2010, 4, 1–10. [Google Scholar] [CrossRef]
- Ankrah, N.Y.D.; Douglas, A.E. Nutrient factories: Metabolic function of beneficial microorganisms associated with insects. Environ. Microbiol. 2018, 20, 2002–2011. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, M.; Bharathiraja, C.; Pandiarajan, J.; Prasanna, V.A.; Rajendhran, J.; Gunasekaran, P. Insect gut microbiome—An unexploited reserve for biotechnological application. Asian Pac. J. Trop. Biomed. 2014, 4, S16–S21. [Google Scholar] [CrossRef] [PubMed]
- Solanki, P.; Putatunda, C.; Kumar, A.; Bhatia, R.; Walia, A. Microbial proteases: Ubiquitous enzymes with innumerable uses. 3 Biotech. 2021, 11, 428. [Google Scholar] [CrossRef]
- Banerjee, S.; Maiti, T.K.; Roy, R.N. Enzyme producing insect gut microbes: An unexplored biotechnological aspect. Crit. Rev. Biotechnol. 2022, 42, 384–402. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Gao, P.; Geng, L.; Liu, C.; Zhang, J.; Shu, C. Lignocellulose degradation in Protaetia brevitarsis larvae digestive tract: Refining on a tightly designed microbial fermentation production line. Microbiome 2022, 10, 90. [Google Scholar] [CrossRef]
- Hori, C.; Song, R.; Matsumoto, K.; Matsumoto, R.; Minkoff, B.B.; Oita, S.; Hara, H.; Takasuka, T.E. Proteomic characterization of lignocellulolytic enzymes secreted by the insect-associated fungus Daldinia decipiens oita, isolated from a forest in northern japan. Appl. Environ. Microbiol. 2020, 86, e02350-19. [Google Scholar] [CrossRef]
- Przemieniecki, S.W.; Kosewska, A.; Ciesielski, S.; Kosewska, O. Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste. Environ. Pollut. 2020, 256, 113265. [Google Scholar] [CrossRef]
- Zhang, Z.; Peng, H.; Yang, D.; Zhang, G.; Zhang, J.; Ju, F. Polyvinyl chloride degradation by a bacterium isolated from the gut of insect larvae. Nat. Commun. 2022, 13, 5360. [Google Scholar] [CrossRef] [PubMed]
- Hivrale, V.K.; Chougule, N.P.; Chhabda, P.J.; Giri, A.P.; Kachole, M.S. Unraveling biochemical properties of cockroach (Periplaneta americana) proteinases with a gel X-ray film contact print method. Comp. Biochem. Physiol. B 2005, 141, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Hivrale, V.K.; Lomate, P.R.; Kalve, N.D.; Kachole, M.S. Periplaneta americana midgut proteases differentially expressed against dietary components from different plant seeds. Physiol. Entomol. 2011, 36, 180–186. [Google Scholar] [CrossRef]
- Ng, S.H.; Stat, M.; Bunce, M.; Simmons, L.W. The influence of diet and environment on the gut microbial community of field crickets. Ecol. Evol. 2018, 8, 4704–4720. [Google Scholar] [CrossRef] [PubMed]
- Lavy, O.; Gophna, U.; Gefen, E.; Ayali, A. Dynamics of bacterial composition in the locust reproductive tract are affected by the density-dependent phase. FEMS Microbiol. Ecol. 2020, 96, fiaa044. [Google Scholar] [CrossRef]
- Kannan, M.; Ramya, T.; Anbalagan, S.; Suriya, J.; Krishnan, M. Proteomic analysis of pupal gut serine protease of silkworm, Bombyx mori: Partial purification and biochemical characterization. Biocatal. Agric. Biotechnol. 2017, 12, 159–165. [Google Scholar] [CrossRef]
- Foroughi, F.; Keshavarz, T.; Evans, C.S. Specificities of proteases for use in leather manufacture. J. Chem. Technol. Biotechnol. 2006, 81, 257–261. [Google Scholar] [CrossRef]
- Banerjee, S.; Maiti, T.K.; Roy, R.N. Protease production by thermo-alkaliphilic novel gut isolate Kitasatospora cheerisanensis gap 12.4 from Gryllotalpa africana. Biocatal. Bioransform. 2017, 35, 168–176. [Google Scholar] [CrossRef]
- Vilcinskas, A.; Schwabe, M.; Brinkrolf, K.; Plarre, R.; Wielsch, N.; Vogel, H. Larvae of the clothing moth Tineola bisselliella maintain gut bacteria that secrete enzyme cocktails to facilitate the digestion of keratin. Microorganisms 2020, 8, 1415. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, T.; Song, N.; Li, Q.; Wang, Z.; Zhang, X.; Lu, X.; Fang, J.; Chen, J. Purification and characterization of four key enzymes from a feather-degrading Bacillus subtilis from the gut of tarantula Chilobrachys guangxiensis. Int. Biodeterior. Biodegrad. 2014, 96, 26–32. [Google Scholar] [CrossRef]
- Jiang, S.; Su, T.; Zhao, J.; Wang, Z. Isolation, identification, and characterization of polystyrene-degrading bacteria from the gut of Galleria mellonella (Lepidoptera: Pyralidae) larvae. Front. Bioeng. Biotechnol. 2021, 9, 736062. [Google Scholar] [CrossRef] [PubMed]
- Suman, S.K.; Dhawaria, M.; Tripathi, D.; Raturi, V.; Adhikari, D.K.; Kanaujia, P.K. Investigation of lignin biodegradation by Trabulsiella sp. Isolated from termite gut. Int. Biodeterior. Biodegrad. 2016, 112, 12–17. [Google Scholar] [CrossRef]
- Rehman, R.; Ahmed, M.; Siddique, A.; Hasan, F.; Hameed, A.; Jamal, A. Catalytic role of thermostable metalloproteases from Bacillus subtilis kt004404 as dehairing and destaining agent. Appl. Biochem. Biotechnol. 2017, 181, 434–450. [Google Scholar] [CrossRef]
- Gao, S.; Pan, L.; Zhang, M.; Huang, F.; Zhang, M.; He, Z. Screening of bacterial strains from the gut of pacific white shrimp (Litopenaeus vannamei) and their efficiencies in improving the fermentation of soybean meal. FEMS Microbiol. Lett. 2020, 367, fnaa017. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.L.; Peng, S.; Chen, L.L.; Liu, Y.; Yan, C.; Zhu, F. Identification and characterization of a serine protease from Bacillus licheniformis w10: A potential antifungal agent. Int. J. Biol. Macromol. 2020, 145, 594–603. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Huang, Q.Q.; Li, Y.; Liu, L.H.; Tango, X.F.; Tang, B. Maturation process and characterization of a novel thermostable and halotolerant subtilisin-like protease with high collagenolytic activity but low gelatinolytic activity. Appl. Environ. Microb. 2022, 88, e02184-21. [Google Scholar] [CrossRef]
- Chauhan, J.V.; Mathukiya, R.P.; Singh, S.P.; Gohel, S.D. Two steps purification, biochemical characterization, thermodynamics and structure elucidation of thermostable alkaline serine protease from Nocardiopsis alba strain om-5. Int. J. Biol. Macromol. 2021, 169, 39–50. [Google Scholar] [CrossRef]
- Holger, H.; Martin, K.; Paul, B.; Kornelia, S.; Elizabeth, M.H.W. Analysis of actinomycete communities by specific amplification of genes encoding 16s rrna and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microb. 1997, 63, 3233–3241. [Google Scholar]
- Li, F.; Xie, Y.; Gao, X.; Shan, M.; Sun, C.; Niu, Y.D.; Shan, A. Screening of cellulose degradation bacteria from min pigs and optimization of its cellulase production. Electron. J. Biotechnol. 2020, 48, 29–35. [Google Scholar] [CrossRef]
- Marynowska, M.; Goux, X.; Sillam-Dusses, D.; Rouland-Lefevre, C.; Halder, R.; Wilmes, P.; Gawron, P.; Roisin, Y.; Delfosse, P.; Calusinska, M. Compositional and functional characterisation of biomass-degrading microbial communities in guts of plant fibre- and soil-feeding higher termites. Microbiome 2020, 8, 96. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one fastq preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. Spades: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Boetzer, M.; Pirovano, W. Toward almost closed genomes with gapfiller. Genome Biol. 2012, 13, R56. [Google Scholar] [CrossRef] [PubMed]
- Volpiano, C.G.; Sant’Anna, F.H.; Ambrosini, A.; de São José, J.F.B.; Beneduzi, A.; Whitman, W.B.; de Souza, E.M.; Lisboa, B.B.; Vargas, L.K.; Passaglia, L.M.P. Genomic metrics applied to Rhizobiales (Hyphomicrobiales): Species reclassification, identification of unauthentic genomes and false type strains. Front. Microbiol. 2021, 12, 614957. [Google Scholar] [CrossRef]
- Velez, L.S.; Aburjaile, F.F.; Farias, A.R.G.; Baia, A.D.B.; Oliveira, W.J.; Silva, A.M.F.; Benko-Iseppon, A.M.; Azevedo, V.; Brenig, B.; Ham, J.H.; et al. Burkholderia semiarida sp. Nov. and burkholderia sola sp. Nov., two novel B. cepacia complex species causing onion sour skin. Syst. Appl. Microbiol. 2023, 46, 126415. [Google Scholar] [CrossRef]
- Lindsey, R.L.; Gladney, L.M.; Huang, A.D.; Griswold, T.; Katz, L.S.; Dinsmore, B.A.; Im, M.S.; Kucerova, Z.; Smith, P.A.; Lane, C.; et al. Rapid identification of enteric bacteria from whole genome sequences using average nucleotide identity metrics. Front. Microbiol. 2023, 14, 1225207. [Google Scholar] [CrossRef] [PubMed]
- Kannan, M.; Mubarakali, D.; Thiyonila, B.; Krishnan, M.; Padmanaban, B.; Shantkriti, S. Insect gut as a bioresource for potential enzymes—An unexploited area for industrial biotechnology. Biocatal. Agric. Biotechnol. 2019, 18, 101010. [Google Scholar] [CrossRef]
- Alam, K.; Zhao, Y.; Lu, X.; Gong, K.; Zhong, L.; Hao, J.; Islam, M.M.; Islam, S.; Li, G.; Zhang, Y.; et al. Isolation, complete genome sequencing and in silico genome mining of Burkholderia for secondary metabolites. BMC Microbiol. 2022, 22, 323. [Google Scholar] [CrossRef]
- Willis, J.D.; Klingeman, W.E.; Oppert, C.; Oppert, B.; Jurat-Fuentes, J.L. Characterization of cellulolytic activity from digestive fluids of Dissosteira carolina (Orthoptera: Acrididae). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2010, 157, 267–272. [Google Scholar] [CrossRef]
- Finlayson-Trick, E.C.L.; Getz, L.J.; Slaine, P.D.; Thornbury, M.; Lamoureux, E.; Cook, J.; Langille, M.G.I.; Murray, L.E.; McCormick, C.; Rohde, J.R.; et al. Taxonomic differences of gut microbiomes drive cellulolytic enzymatic potential within hind-gut fermenting mammals. PLoS ONE 2017, 12, e0189404. [Google Scholar] [CrossRef]
- Thanh Ha, D.T.; Kim Thoa, L.T.; Phuong Thao, T.T.; Dung, T.T.; Minh Ha, T.T.; Phuong Lan, T.T.; Khoo, K.S.; Show, P.L.; Huy, N.D. Production of extracellular agarase from Priestia megaterium at7 and evaluation on marine algae hydrolysis. Enzym. Microb. Technol. 2024, 172, 110339. [Google Scholar] [CrossRef] [PubMed]
- Simon, A.; Colom, J.; Mazhar, S.; Khokhlova, E.; Deaton, J.; Rea, K. Bacillus megaterium renuspore® as a potential probiotic for gut health and detoxification of unwanted dietary contaminants. Front. Microbiol. 2023, 14, 1125616. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yang, L.-R.; Xu, G.; Wu, J.-P. Identification of organic solvent-tolerant lipases from organic solvent-sensitive microorganisms. J. Mol. Catal. B Enzym. 2014, 99, 96–101. [Google Scholar] [CrossRef]
- Santos, R.G.d.; Hurtado, R.; Rodrigues, D.L.N.; Lima, A.; dos Anjos, W.F.; Rifici, C.; Attili, A.R.; Tiwari, S.; Jaiswal, A.K.; Spier, S.J.; et al. Comparative genomic analysis of the Dietzia genus: An insight into genomic diversity, and adaptation. Res. Microbiol. 2023, 174, 103998. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, L.H.; Dargis, R.; Højholt, K.; Christensen, J.J.; Skovgaard, O.; Justesen, U.S.; Rosenvinge, F.S.; Moser, C.; Lukjancenko, O.; Rasmussen, S.; et al. Whole genome sequencing as a tool for phylogenetic analysis of clinical strains of mitis group streptococci. Eur. J. Clin. Microbiol. 2016, 35, 1615–1625. [Google Scholar] [CrossRef]
- Legein, M.; Wittouck, S.; Lebeer, S. Latilactobacillus fragifolii sp. Nov., isolated from leaves of a strawberry plant (Fragaria x ananassa). Int. J. Syst. Evol. Microbiol. 2022, 72, 005193. [Google Scholar] [CrossRef]
- Morimoto, Y.; Tohya, M.; Aibibula, Z.; Baba, T.; Daida, H.; Kirikae, T. Re-identification of strains deposited as Pseudomonas aeruginosa, Pseudomonas fluorescens and Pseudomonas putida in genbank based on whole genome sequences. Int. J. Syst. Evol. Microbiol. 2020, 70, 5958–5963. [Google Scholar] [CrossRef]
Strains | Priestia aryabhattai B8W22 | Priestia aryabhattai UASWS 1812-B29 | Priestia megaterium ATCC 14581 | Priestia megaterium P-NA14 |
---|---|---|---|---|
DBM-1 | 64.1 | 91.9 | 72.8 | 72.6 |
DX-3 | 64.2 | 73.4 | 74.7 | 90.2 |
DX-4 | 63.9 | 91.4 | 72.9 | 72.4 |
Strain | Serratia surfactantfaciens YD25 | Serratia ureilytica T6 | Serratia marcescens ATCC13880 | Serratia nematodiphila DZ0503SBS1 |
DBM-5 | 96.3 | 25.5 | 56.5 | 56.9 |
Genome Information | DBM-1 | DX-3 | DX-4 | DBM-5 |
---|---|---|---|---|
Genome size/bp | 4,894,934 | 5,042,448 | 5,135,523 | 5,036,594 |
GC/% | 37.79 | 38.04 | 37.66 | 59.72 |
CDS/ratio (%) | 4963/83.2 | 5130/83.67 | 5222/82.17 | 4667/88.54 |
rRNA | 12 | 23 | 7 | 12 |
tRNA | 45 | 107 | 35 | 80 |
ncRNA | 7 | 7 | 7 | 19 |
Secondary Metabolite Gene Clusters | Strains/Similarity | |||||
---|---|---|---|---|---|---|
Metabolite Type | Nucleotide Length/bp | Similar Gene Clusters/Type | DBM-1 | DX-3 | DX-4 | DBM-5 |
terpene | 20,819 | surfactin/NRP:lipopeptide | +/13% | +/13% | +/13% | — |
terpene | 20,849 | carotenoid/terpene | +/50% | +/50% | +/50% | — |
NI-siderophore | 16,576 | schizokinen/other | +/100% | +/50% | +/62% | — |
lassopeptide | 23,919 | paeninodin/RiPP | +/60% | +/60% | +/80% | — |
T3PKS | 41,086 | — | + | + | + | — |
terpene | 21,869 | — | + | + | + | — |
phosphonate | 17,423 | — | + | — | + | — |
lanthipeptide-class-i | 16,669 | paenicidin A/RiPP:lanthipeptide | +/28% | — | — | — |
lanthipeptide-class-i | 23,288 | — | — | — | + | — |
prodigiosin | 35,021 | prodigiosin/polyketide | — | — | — | +/100% |
thiopeptide | 26,440 | o-antigen/saccharide | — | — | — | +/14% |
opine-like-metallophore | 22,098 | yersinopine/other | — | — | — | +/100% |
RRE-containing | 20,279 | synechobactin C9/C11/13/14/16/A/B/C (other) | — | — | — | +/9% |
NRPS | 47,380 | viobactin/NPR | — | — | — | +/46% |
NRPS | 45,787 | — | — | — | — | — |
betalactone | 25,668 | — | — | — | — | — |
NRP-metallophore | 51,398 | trichrysobactin/cyclic trichrysobactin/chrysobactin/dichrysobactin (NRP) | — | — | — | +/46% |
NRPS butyrolactone | 59,588 | rhizomide A/B/C (NRP) | — | — | — | +/100% |
Proteases | DBM-1 | DX-3 | DX-4 | DBM-5 | |
---|---|---|---|---|---|
Serine protease EC 3.4.21.53 | ctg00001_001478 | ctg00002_001384 | ctg00001_002979 | ctg00001_000175 | |
Pepsin EC 3.4.23.3 | ctg00001_001049 | ctg00002_001814 | ctg00001_002548 | ctg00002_002628 | |
Trypsin | EC 3.4.21.1 | ctg00004_004107 | ctg00006_003884 | ctg00003_004439 | ctg00002_00254 |
EC 3.4.21.2 | ctg00001_001383 | ||||
Cysteine protease | |||||
Metalloprotease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Zhao, L.; Wu, F.; Zhou, H.; Shi, F. Screening and Identification of Protease-Producing Microorganisms in the Gut of Gryllotalpa orientalis (Orthoptera: Gryllotalpidae). Insects 2024, 15, 629. https://doi.org/10.3390/insects15080629
Zheng X, Zhao L, Wu F, Zhou H, Shi F. Screening and Identification of Protease-Producing Microorganisms in the Gut of Gryllotalpa orientalis (Orthoptera: Gryllotalpidae). Insects. 2024; 15(8):629. https://doi.org/10.3390/insects15080629
Chicago/Turabian StyleZheng, Xiang, Lu Zhao, Fangtong Wu, He Zhou, and Fuming Shi. 2024. "Screening and Identification of Protease-Producing Microorganisms in the Gut of Gryllotalpa orientalis (Orthoptera: Gryllotalpidae)" Insects 15, no. 8: 629. https://doi.org/10.3390/insects15080629
APA StyleZheng, X., Zhao, L., Wu, F., Zhou, H., & Shi, F. (2024). Screening and Identification of Protease-Producing Microorganisms in the Gut of Gryllotalpa orientalis (Orthoptera: Gryllotalpidae). Insects, 15(8), 629. https://doi.org/10.3390/insects15080629