Mosquito Egg Raft Distribution Is Affected by Semiochemicals: Indication of Interspecific Competition
Abstract
Simple Summary
Abstract
1. Introduction
Study Species
2. Methods
2.1. Field Experiments
2.2. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rockwood, L.L. Introduction to Population Ecology; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Begon, M.; Townsend, C.R.; Harper, J.L. Ecology: From Individuals to Ecosystems, 4th ed.; Blackwell Publishing: Oxford, UK, 2006; p. 738. [Google Scholar]
- Morin, P.J. Community Ecology, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2011; p. 407. [Google Scholar]
- Hutchinson, G.E. Homage to Santa Rosalia or why are there so many kinds of animals? Am. Nat. 1959, 93, 145–159. [Google Scholar] [CrossRef]
- Abrams, P.A. Implications of flexible foraging for interspecific interactions: Lessons from simple models. Funct. Ecol. 2010, 24, 7–17. [Google Scholar] [CrossRef]
- Dhondt, A.A. Interspecific Competition in Birds; Oxford Avian Biology: Oxford, UK, 2012. [Google Scholar]
- Grether, G.F.; Peiman, K.S.; Tobias, J.A.; Robinson, B.W. Causes and consequences of behavioral interference between species. Trends Ecol. Evol. 2017, 32, 760–772. [Google Scholar] [CrossRef] [PubMed]
- Abramsky, Z.; Rosenzweig, M.L.; Pinshow, B.; Brown, J.S.; Kotler, B.; Mitchell, W.A. Habitat Selection: An Experimental Field Test with Two Gerbil Species. Ecology 1990, 71, 2358–2369. [Google Scholar] [CrossRef]
- Rosenzweig, M.L. A theory of habitat selection. Ecology 1981, 62, 327–335. [Google Scholar] [CrossRef]
- Morris, D.W.; Fox, B.J.; Luo, J.; Monamy, V. Habitat-dependent competition and the coexistence of Australian heathland rodents. Oikos 2000, 91, 294–306. [Google Scholar] [CrossRef]
- Sandlin, E.A. Foraging information affects the nature of competitive interactions. Oikos 2000, 91, 18–28. [Google Scholar] [CrossRef]
- Brönmark, C.; Hansson, L. Chemical Ecology in Aquatic Systems, 1st ed.; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- von Elert, E. Information conveyed by chemical cues. In Chemical Ecology in Aquatic Systems; Brönmark, C., Hansson, L., Eds.; Oxford University Press: New York, NY, USA, 2012; pp. 19–38. [Google Scholar]
- Wu, C.X.; Liu, F.; Zhang, S.F.; Kong, X.B.; Zhang, Z. Semiochemical regulation of the intraspecific and interspecific behavior of Tomicus yunnanensis and Tomicus minor during the shoot-feeding phase. J. Chem. Ecol. 2019, 45, 227–240. [Google Scholar] [CrossRef]
- Takken, W. Chemical signals affecting mosquito behaviour. Invertebr. Reprod. Dev. 1999, 36, 67–71. [Google Scholar] [CrossRef]
- Bentley, M.D.; Day, J.F. Chemical ecology and behavioral aspects of mosquito oviposition. Annu. Rev. Entomol. 1989, 34, 401–421. [Google Scholar] [CrossRef]
- Angelon, K.A.; Petranka, J.W. Chemicals of predatory mosquitofish (Gambusia affinis) influence selection of oviposition site by Culex mosquitoes. J. Chem. Ecol. 2002, 28, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Silberbush, A.; Blaustein, L. Mosquito females quantify risk of predation to their progeny when selecting an oviposition site. Funct. Ecol. 2011, 25, 1091–1095. [Google Scholar] [CrossRef]
- Wasserberg, G.; Bailes, N.; Davis, C.; Yeoman, K. Hump-shaped density-dependent regulation of mosquito oviposition site-selection by conspecific immature stages: Theory, field test with Aedes albopictus, and a meta-analysis. PLoS ONE 2014, 9, e92658. [Google Scholar] [CrossRef] [PubMed]
- Becker, N.; Petric, D.; Zgomba, M.; Boase, C.; Madon, M.; Dahl, C.; Kaiser, A. Mosquitoes and Their Control, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Van Pletzen, R.; Van der Linde, T.K. Studies on the biology of Culiseta longiareolata (Macquart) (Diptera: Culicidae). Bull. Entomol. Res. 1981, 71, 71–79. [Google Scholar] [CrossRef]
- Blaustein, L.; Margalit, J. Priority effects in temporary pools: Nature and outcome of mosquito larva-toad tadpole interactions depend on order of entrance. J. Anim. Ecol. 1996, 65, 77–84. [Google Scholar] [CrossRef]
- Ward, D.; Blaustein, L. The overriding influence of flash floods on species-area curves in ephemeral Negev Desert pools: A consideration of the value of island biogeography theory. J. Biogeogr. 1994, 21, 595–603. [Google Scholar] [CrossRef]
- Margalit, J.; Tahori, A.S. An annotated list of mosquitoes in Israel. Isr. J. Entomol. 1974, 9, 77–91. [Google Scholar]
- Van Pletzen, R. Larval and pupil behaviour in Culiseta longiareolata (Macquart, 1838) (Culicidae, Diptera). J. Limnol. Soc. S. Afr. 1981, 7, 24–28. [Google Scholar]
- Blaustein, L.; Margalit, J. Mosquito larvae (Culiseta longiareolata) prey upon and compete with toad tadpoles (Bufo viridis). J. Anim. Ecol. 1994, 63, 841–850. [Google Scholar] [CrossRef]
- Tsurim, I.; Silberbush, A.; Ovadia, O.; Blaustein, L.; Margalith, Y. Inter-and Intra-Specific Density-Dependent Effects on Life History and Development Strategies of Larval Mosquitoes. PLoS ONE 2013, 8, e57875. [Google Scholar] [CrossRef]
- Al-Saadi, M.; Mohsen, Z.H. Predatory and cannibalistic behavior of Culiseta longiareolata (Macquart) (Diptera: Culicidae) in Iraq. J. Biol. Sci. Res. 1988, 19, 339–351. [Google Scholar]
- Shaalan, E.A. Predation capacity of Culiseta longiareolata mosquito larvae against some mosquitoes species larvae. J. Entomol. 2012, 9, 183–186. [Google Scholar] [CrossRef]
- Fretwell, S.D.; Lucas, H.L. On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheor. 1969, 19, 16–36. [Google Scholar] [CrossRef]
- Al-Jaran, T.K.; Katbeh-Bader, A.M. Laboratory studies on the biology of Culiseta longiareolata (Macquart) (Diptera: Culicidae). Aquat. Insects 2001, 23, 11–22. [Google Scholar] [CrossRef]
- Yamamura, K. Transformation using (x + 0.5) to stabilize the variance of populations. Res. Popul. Ecol. 1999, 41, 229–234. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows, Version 24; IBM Corp: Armonk, NY, USA, 2016. [Google Scholar]
- Suh, E.; Choe, D.; Saveer, A.M.; Zwiebel, L.J. Suboptimal larval habitats modulate oviposition of the malaria vector mosquito Anopheles coluzzii. PLoS ONE 2016, 11, e0149800. [Google Scholar] [CrossRef] [PubMed]
- Silberbush, A.; Markman, S.; Lewinsohn, E.; Bar, E.; Cohen, J.E.; Blaustein, L. Predator-released hydrocarbons repel oviposition by a mosquito. Ecol. Lett. 2010, 13, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Shteindel, N.; Gerchman, Y.; Silberbush, A. Fish microbiota repel ovipositing mosquitoes. J. Anim. Ecol. 2024, 93, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.R.; Leach, K.J.; Wilson, N.J.; Swart, V.R. The Allee effect in site choice behaviour of egg-laying dengue vector mosquitoes. Trop. Biomed. 2008, 25, 140–144. [Google Scholar]
- Forsman, J.T.; Hjernquist, M.B.; Taipale, J.; Gustafsson, L. Competitor density cues for habitat quality facilitating habitat selection and investment decisions. Behav. Ecol. 2008, 19, 539–545. [Google Scholar] [CrossRef]
- Eccard, J.A.; Ylönen, H. Direct interference or indirect exploitation? An experimental study of fitness costs of interspecific competition in voles. Oikos 2002, 99, 580–590. [Google Scholar] [CrossRef]
- Livdahl, T.P.; Willey, M.S. Prospects for an invasion: Competition between Aedes albopictus and native Aedes triseriatus. Science 1991, 253, 189–191. [Google Scholar] [CrossRef] [PubMed]
- Silberbush, A.; Tsurim, I.; Margalith, Y.; Blaustein, L. Interactive effects of salinity and a predator on mosquito oviposition and larval performance. Oecologia 2014, 175, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Kiflawi, M.; Blaustein, L.; Mangel, M. Oviposition habitat selection by the mosquito Culiseta longiareolata in response to risk of predation and conspecific larval density. Ecol. Entomol. 2003, 28, 168–173. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shteindel, N.; Gerchman, Y.; Silberbush, A. Mosquito Egg Raft Distribution Is Affected by Semiochemicals: Indication of Interspecific Competition. Insects 2024, 15, 364. https://doi.org/10.3390/insects15050364
Shteindel N, Gerchman Y, Silberbush A. Mosquito Egg Raft Distribution Is Affected by Semiochemicals: Indication of Interspecific Competition. Insects. 2024; 15(5):364. https://doi.org/10.3390/insects15050364
Chicago/Turabian StyleShteindel, Nimrod, Yoram Gerchman, and Alon Silberbush. 2024. "Mosquito Egg Raft Distribution Is Affected by Semiochemicals: Indication of Interspecific Competition" Insects 15, no. 5: 364. https://doi.org/10.3390/insects15050364
APA StyleShteindel, N., Gerchman, Y., & Silberbush, A. (2024). Mosquito Egg Raft Distribution Is Affected by Semiochemicals: Indication of Interspecific Competition. Insects, 15(5), 364. https://doi.org/10.3390/insects15050364