The Survival and Physiological Response of Calliptamus abbreviatus Ikonn (Orthoptera: Acrididae) to Flavonoids Rutin and Quercetin
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Grasshopper Collection
2.2. Indoor Feeding Trial
2.3. Gene Expression
2.4. Analysis of Rutin and Quercetin Content in Grasshopper
2.5. ELISA Analysis of ROS Level and Enzyme Activities
2.6. Field Cage Trial
2.7. Data Analyses
3. Results
3.1. Grasshopper Survival, Body Mass and Developmental Time
3.2. Gene Expressions in Grasshopper
3.3. Grasshopper Rutin and Quercetin Content
3.4. Grasshopper ROS Level
3.5. Grasshopper Enzyme Activity
3.6. Grasshopper Survival Rate in Field Cage
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, S.H.; Huang, W.G.; Zhang, R.; Gao, L.Y.; Yu, Z.; Zhu, M.M. Biological and ecological characteristics of Calliptamus abbreviatus Ikonnikov (Orthoptera: Catantopidae). Chin. J. Appl. Entomol. 2015, 52, 998–1005. [Google Scholar]
- Zhao, F.J.; Wang, Z.H.; Wang, H.P.; Wu, H.H.; Liu, H.W.; Wang, G.J.; Zhang, Z.H. The efects of hyper spectral change on grassland biomass after damage by Clliptamus abbreviates populations of diferent densities. Acta Prataculturae Sin. 2015, 24, 195–203. [Google Scholar]
- Huang, X.B.; Hidayat, U.; Wang, Y.Y. Growth performance and transcriptomic response of Calliptamus abbreviatus Ikonn (Orthoptera: Acrididae) to suitable and unsuitable host plant species. Arthropod-Plant Interact. 2020, 14, 605–612. [Google Scholar] [CrossRef]
- Atreya, K.; Sitaula, B.K.; Overgaard, H.; Bajracharya, R.M.; Sharma, S. Knowledge, attitude and practices of pesticide use and acetylcholinesterase depression among farm workers in Nepal. Int. J. Environ. Health Res. 2012, 22, 401–415. [Google Scholar] [CrossRef] [PubMed]
- Cevizci, S.; Babaoglu, U.T.; Bakar, C. Evaluating pesticide use and safety practices among farmworkers in gallipoli peninsula, Turkey. Southeast Asian J. Trop. Med. Public. Health 2015, 46, 143–154. [Google Scholar] [PubMed]
- Jallow, M.F.; Awadh, D.G.; Albaho, M.S.; Devi, V.Y.; Thomas, B.M. Pesticide knowledge and safety practices among farm workers in Kuwait: Results of a survey. Int. J. Environ. Res. Public Health 2017, 14, 340. [Google Scholar] [CrossRef] [PubMed]
- Senthil-Nathan, S. Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Front. Physiol. 2013, 4, 359. [Google Scholar] [CrossRef]
- De Oliveira, J.L.; Campos, E.V.R.; Bakshi, M.; Abhilash, P.C.; Fraceto, L.F. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: Prospects and promises. Biotechnol. Adv. 2014, 32, 1550–1561. [Google Scholar] [CrossRef]
- Campos, E.V.R.; Proença, P.L.F.; Oliveira, J.L.; Bakshi, M.; Abhilash, P.C.; Fraceto, L.F. Use of botanical insecticides for sustainable agriculture: Future perspectives. Ecol. Indic. 2018, 105, 483–495. [Google Scholar]
- Monsreal-Ceballos, R.J.; Ruiz-Sánchez, E.; Ballina-Gómez, H.S.; Reyes-Ramírez, A.; González-Moreno, A. Effects of botanical insecticides on hymenopteran parasitoids: A meta-analysis approach. Neotrop. Entomol. 2018, 47, 681–688. [Google Scholar] [CrossRef]
- Mouden, S.; Klinkhamer, P.G.L.; Choi, Y.H.; Leiss, K.A. Towards eco-friendly crop protection: Natural deep eutectic solvents and defensive secondary metabolites. Phytochem. Rev. 2017, 16, 935–951. [Google Scholar] [CrossRef]
- Michael, W. Plant secondary metabolites modulate insect behavior-steps toward addiction? Front. Physiol. 2018, 9, 364. [Google Scholar]
- Rosa, E.; Woestmann, L.; Biere, A.; Saastamoinen, M. A plant pathogen modulates the effects of secondary metabolites on the performance and immune function of an insect herbivore. Oikos 2018, 127, 1539–1549. [Google Scholar] [CrossRef]
- Wang, Y.L.; Guan, Z.G.; Jia, X.S.; Wu, S.Y.; Wei, H.G. Study progress of matrine application in farming pest control. J. Shanxi Agric. Sci. 2012, 36, 27–32. [Google Scholar]
- Zanardi, O.Z.; Ribeiro, L.; Ansante, T.F.; Santos, M.S.; Bordini, G.P.; Yamamoto, P.T.; Vendramim, J.D. Bioactivity of a matrinebased biopesticide against four pest species of agricultural importance. Crop Prot. 2015, 67, 160–167. [Google Scholar] [CrossRef]
- Roy, A.; Walker, W.B.; Vogel, H.; Chattington, S.; Larsson, M.C.; Anderson, P.; Heckel, D.G.; Schlyter, F. Diet dependent metabolic responses in three generalist insect herbivores Spodoptera spp. Insect Biochem. Mol. 2016, 71, 91–105. [Google Scholar] [CrossRef]
- Poreddy, S.; Mitra, S.; Schöttner, M.; Chandran, J.; Schneider, B.; Baldwin, I.T.; Kumar, P.; Pandit, S.S. Detoxification of hostplant’s chemical defence rather than its anti-predator co-option drives β-glucosidase-mediated lepidopteran counter adaptation. Nat. Commun. 2015, 6, 8525. [Google Scholar] [CrossRef]
- Züst, T.; Agrawal, A.A. Trade-offs between plant growth and defense against insect herbivory: An emerging mechanistic synthesis. Annu. Rev. Plant Biol. 2017, 68, 513–534. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.F.; Sang, X.Q.; Zhou, L.J. Insecticidal mechanisms of plant secondary metabolites. World Pestic. 2011, 33, 17–21. [Google Scholar]
- Aucoin, R.R.; Phiogène, B.J.R.; Arnason, J.T. Antioxidant enzymes as biochemical defenses against phototoxin-induced oxidative stress in three species of herbivorous Lepidoptera. Arch. Insect Biochem. Physiol. 1991, 16, 139–152. [Google Scholar] [CrossRef]
- Huang, J.; Lü, C.; Hu, M.; Zhong, G. The mitochondria-mediate apoptosis of lepidopteran cells induced by azadirachtin. PLoS ONE 2013, 8, e58499. [Google Scholar] [CrossRef]
- Richards, L.A.; Glassmire, A.E.; Ochsenrider, K.M.; Smilanich, A.M.; Dyer, L.A. Phytochemical diversity and synergistic effects on herbivores. Phytochem. Rev. 2016, 15, 1153–1166. [Google Scholar] [CrossRef]
- Després, L.; David, J.P.; Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 2007, 22, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.K.; Mukhopadhyay, A. Growth, nutritional indices and digestive enzymes of Hyposidra infixaria Walker (Lepidoptera: Geometridae) on artificial and natural (tea) diets. J. Asia-Pac. Entomol. 2016, 19, 167–172. [Google Scholar] [CrossRef]
- Birnbaum, S.S.L.; Rinker, D.C.; Gerardo, N.M.; Abbot, P. Transcriptional profile and differential fitness in a specialist milkweed insect across host plants varying in toxicity. Mol. Ecol. 2017, 26, 6742–6761. [Google Scholar] [CrossRef] [PubMed]
- Schuler, M.A.; Berenbaum, M.R. Structure and function of cytochrome P450S in insect adaptation to natural and synthetic toxins: Insights gained from molecular modeling. J. Chem. Ecol. 2013, 39, 1232–1245. [Google Scholar] [CrossRef]
- Wang, R.L.; Liu, S.W.; Baerson, S.R.; Qin, Z.; Ma, Z.H.; Su, Y.J.; Zhang, J.E. Identification and functional analysis of a novel cytochrome P450 gene CYP9A105 associated with pyrethroid detoxification in Spodoptera exigua Hübner. Int. J. Mol. Sci. 2018, 19, 737. [Google Scholar] [CrossRef]
- Abou-Zaid, M.M.; Beninger, C.W.; Arnason, J.T. The effect of one flavone, two catechins and four flavonols on mortality and growth of the European corn borer (Ostrinia nubilalis Hubner). Biochem. Syst. Ecol. 1993, 21, 415–420. [Google Scholar] [CrossRef]
- Silva, T.R.F.B.; Almeida, A.C.D.S.; Moura, T.D.L.; Silvaet, A.R.D.; Freitas, S.D.S.; Jesus, F.G.D. Effect of the flavonoid rutin on the biology of Spodoptera frugiperda (Lepidoptera: Noctuidae). Acta Sci. Agron. 2016, 38, 165–170. [Google Scholar] [CrossRef]
- Chen, C.; Han, P.; Yan, W.; Wang, S.; Shi, X.; Zhou, X.; Desneux, N.; Gao, X. Uptake of quercetin reduces larval sensitivity to lambda-cyhalothrin in Helicoverpa armigera. J. Pest Sci. 2017, 91, 919–926. [Google Scholar] [CrossRef]
- Bentivenha1, J.P.F.; Canassa, V.F.; Baldin, E.L.L.; Borguini, M.G.; Lima, G.P.P.; Lourenção, A.L. Role of the rutin and genistein flavonoids in soybean resistance to Piezodorus guildinii (Hemiptera: Pentatomidae). Arthropod-Plant Interact. 2018, 12, 311–320. [Google Scholar] [CrossRef]
- Li, S.; Huang, X.; McNeill, M.R.; Liu, W.; Tu, X.; Ma, J.; Lv, S.; Zhang, Z. Dietary stress from plant secondary metabolites contributes to grasshopper (Oedaleus asiaticus) migration or plague by regulating insect insulin-like signaling pathway. Front. Physiol. 2019, 10, 531. [Google Scholar] [CrossRef]
- Chen, H.; Liu, W. Determination of rutin and quercetin content in Yantai Bupleurum by HPLC. Med. Plant 2014, 5, 57–64. [Google Scholar]
- Herde, M.; Howe, G.A. Host plant-specific remodeling of midgut physiology in the generalist insect herbivore Trichoplusia ni. Insect Biochem. Mol. Biol. 2014, 50, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Erb, M.; Robert, C.A. Sequestration of plant secondary metabolites by insect herbivores: Molecular mechanisms and ecological consequences. Curr. Opin. Insect Sci. 2016, 14, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Luque, T.; Okano, K.; Reilly, D.R.O. Characterization of a novel silkworm (Bombyx mori) phenol UDP-glucosyltransferase. Eur. J. Biochem. 2002, 269, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.J.; Gao, X.W.; Lei, M.Q.; Zheng, B.Z. Effects of tannic acid on glutathione S-transferases in Helicoverpa armigera (Hübner). Acta Entomol. Sin. 2003, 46, 684–690. [Google Scholar]
- Li, X.C.; Baudry, J.; Berenbaum, M.R.; Schuler, M.A. Structural and functional divergence of insect CYP6B proteins: From specialist to generalist cytochrome P450. Proc. Natl. Acad. Sci. USA 2004, 101, 2939–2944. [Google Scholar] [CrossRef]
- Celorio-Mancera, M.L.; Ahn, S.J.; Vogel, H.; Heckel, D.G. Transcriptional responses underlying the hormetic and detrimental effects of the plant secondary metabolite gossypol on the generalist herbivore Helicoverpa armigera. BMC Genom. 2011, 12, 575. [Google Scholar] [CrossRef]
- Wang, R.L.; Sun, Y.L.; Liang, X.T.; Song, Y.Y.; Su, Y.J.; Zhu, K.Y.; Zeng, R.S. Effects of six plant secondary metabolites on activities of detoxification enzymes in Spodoptera litura. Acta Ecol. Sin. 2012, 32, 5191–5198. [Google Scholar] [CrossRef]
- Whitman, D.W.; Ananthrakrishnan, T.N. Phenotypic Plasticity of Insects: Mechanisms and Consequences; Science Publishers: Enfield, NH, USA, 2009. [Google Scholar]
- Castañeda, L.E.; Figueroa, C.C.; Nespolo, R.F. Do insect pests perform better on highly defended plants? Costs and benefits of induced detoxification defences in the aphid Sitobion avenae. J. Evol. Biol. 2010, 23, 2474–2483. [Google Scholar] [CrossRef]
- Rivero, A.; Magaud, A.; Nicot, A.; Vezilier, J. Energetic cost of insecticide resistance in Culex pipiens mosquitoes. J. Med. Entomol. 2011, 48, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J.R.; Potter, M.F.; Haynes, K.F. Insecticide resistance in the bed bug comes with a cost. Sci. Rep. 2015, 5, 10807. [Google Scholar] [CrossRef] [PubMed]
- Schwenke, R.A.; Lazzaro, B.P.; Wolfner, M.F. Reproductionimmunity trade-offs in insects. Annu. Rev. Entomol. 2016, 61, 239–256. [Google Scholar] [CrossRef] [PubMed]
- Rane, R.V.; Walsh, T.K.; Pearce, S.L.; Jermiin, L.S.; Gordon, K.H.; Richards, S.; Oakeshott, J.G. Are feeding preferences and insecticide resistance associated with the size of detoxifying enzyme families in insect herbivores? Curr. Opin. Insect Sci. 2016, 13, 70–76. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef]
- Matsumura, T.; Matsumoto, H.; Hayakawa, Y. Heat stress hardening of oriental armyworms is induced by a transient elevation of reactive oxygen species during sublethal stress. Arch. Insect Biochem. Physiol. 2017, 96, e21421. [Google Scholar] [CrossRef]
- Krishnan, N.; Kodrík, D. Antioxidant enzymes in Spodoptera littoralis (Boisduval): Are they enhanced to protect gut tissues during oxidative stress? J. Insect Physiol. 2006, 52, 11–20. [Google Scholar] [CrossRef]
- Kohl, K.D.; Samuni-Blank, M.; Lymberakis, P.; Kurnath, P.; Izhaki, I.; Arad, Z.; Karasov, W.H.; Dearing, M.D. Effects of fruit toxins on intestinal and microbial β-glucosidase activities of seed-predating and seed-dispersing rodents (Acomys spp.). Physiol. Biochem. Zool. 2016, 89, 198–205. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Zheng, L.; Wang, Y. The Survival and Physiological Response of Calliptamus abbreviatus Ikonn (Orthoptera: Acrididae) to Flavonoids Rutin and Quercetin. Insects 2024, 15, 95. https://doi.org/10.3390/insects15020095
Huang X, Zheng L, Wang Y. The Survival and Physiological Response of Calliptamus abbreviatus Ikonn (Orthoptera: Acrididae) to Flavonoids Rutin and Quercetin. Insects. 2024; 15(2):95. https://doi.org/10.3390/insects15020095
Chicago/Turabian StyleHuang, Xunbing, Li Zheng, and Yueyue Wang. 2024. "The Survival and Physiological Response of Calliptamus abbreviatus Ikonn (Orthoptera: Acrididae) to Flavonoids Rutin and Quercetin" Insects 15, no. 2: 95. https://doi.org/10.3390/insects15020095