Potential of an Attractive High-Rate Navel Orangeworm (Lepidoptera: Pyralidae) Pheromone Dispenser for Mating Disruption or for Monitoring
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mating Disruption Products
2.2. Effect of Dispenser Blend and Density on Trap Suppresion
2.3. Attraction of Males to Dispensers in Sticky Traps
2.4. Data Analysis
3. Results
3.1. Effect of Dispenser Blend and Density on Trap Suppresion
3.2. Attraction of Males to Dispensers in Sticky Traps
4. Discussion
4.1. Categories of Mating Disruption Dispensers
4.2. Mechanism of Trap Suppression as Informed by the Attraction Experiments
4.3. Practical Application of the 2-Compound High Rate Dispenser
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Witzgall, P.; Kirsch, P.; Cork, A. Sex Pheromones and Their Impact on Pest Management. J. Chem. Ecol. 2010, 36, 80–100. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.A.H.; George, J.; Reddy, G.V.P.; Zeng, X.; Guerrero, A. Latest Developments in Insect Sex Pheromone Research and Its Application in Agricultural Pest Management. Insects 2021, 12, 484. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Ghany, N.M. Semiochemicals for controlling insect pests. J. Plant Prot. Res. 2023, 59, 1–11. [Google Scholar] [CrossRef]
- Miller, J.R. Sharpening the Precision of Pest Management Decisions: Assessing Variability Inherent in Catch Number and Absolute Density Estimates Derived from Pheromone-Baited Traps Monitoring Insects Moving Randomly. J. Econ. Entomol. 2020, 113, 2052–2060. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.R.; Gut, L.J. Mating Disruption for the 21st Century: Matching Technology With Mechanism. Environ. Entomol. 2015, 44, 427–453. [Google Scholar] [CrossRef]
- Evenden, M.L.; Allison, J.D.; Carde, R.T. Mating Disruption of Moth Pests in Integrated Pest Management. In Pheromone Communication in Moths. Evolution, Behavior, and Application; University of California Press: Oakland, CA, USA, 2016; pp. 365–393. [Google Scholar]
- Benelli, G.; Lucchi, A.; Thomson, D.; Ioriatti, C. Sex Pheromone Aerosol Devices for Mating Disruption: Challenges for a Brighter Future. Insects 2019, 10, 308. [Google Scholar] [CrossRef]
- El-Sayed, A.M.; Suckling, D.M.; Wearing, C.H.; Byers, J.A. Potential of Mass Trapping for Long-Term Pest Management and Eradication of Invasive Species. J. Econ. Entomol. 2006, 99, 1550–1564. [Google Scholar] [CrossRef]
- Trematerra, P.; Gentile, P. Five Years of Mass Trapping of Ephestia Kuehniella Zeller: A Component of IPM in a Flour Mill. J. Appl. Entomol. 2010, 134, 149–156. [Google Scholar] [CrossRef]
- Lobos, E.; Occhionero, M.; Werenitzky, D.; Fernandez, J.; Gonzalez, L.M.; Rodriguez, C.; Calvo, C.; Lopez, G.; Oehlschlager, A.C. Optimization of a Trap for Tuta Absoluta Meyrick (Lepidoptera: Gelechiidae) and Trials to Determine the Effectiveness of Mass Trapping. Neotrop. Entomol. 2013, 42, 448–457. [Google Scholar] [CrossRef]
- Campos, M.; Phillips, T.W. Attract-and-Kill and Other Pheromone-Based Methods to Suppress Populations of the Indianmeal Moth (Lepidoptera: Pyralidae). J. Econ. Entomol. 2014, 107, 473–480. [Google Scholar] [CrossRef]
- Shahini, S.; Bërxolli, A.; Kokojka, F. Effectiveness of Bio-Insecticides and Mass Trapping Based on Population Fluctuations for Controlling Tuta Absoluta under Greenhouse Conditions in Albania. Heliyon 2021, 7, e05753. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, A.; Malo, E.A.; Coll, J.; Quero, C. Semiochemical and Natural Product-Based Approaches to Control Spodoptera spp. (Lepidoptera: Noctuidae). J. Pest Sci. 2014, 87, 231–247. [Google Scholar] [CrossRef]
- Sarles, L.; Verhaeghe, A.; Francis, F.; Verheggen, F.J. Semiochemicals of Rhagoletis Fruit Flies: Potential for Integrated Pest Management. Crop Prot. 2015, 78, 114–118. [Google Scholar] [CrossRef]
- Grové, T. Progress towards an Eco-Friendly Insect Pest Management Approach in Subtropical Agro-Ecosystems (South Africa). CABI Agric. Biosci. 2022, 3, 44. [Google Scholar] [CrossRef]
- El-Sayed, A.M.; Suckling, D.M.; Byers, J.A.; Jang, E.B.; Wearing, C.H. Potential of “Lure and Kill” in Long-Term Pest Management and Eradication of Invasive Species. J. Econ. Entomol. 2009, 102, 815–835. [Google Scholar] [CrossRef]
- Suckling, D.M.; Baker, G.; Salehi, L.; Woods, B. Is the Combination of Insecticide and Mating Disruption Synergistic or Additive in Lightbrown Apple Moth, Epiphyas Postvittana? PLoS ONE 2016, 11, e0160710. [Google Scholar] [CrossRef]
- Cook, S.M.; Khan, Z.R.; Pickett, J.A. The Use of Push-Pull Strategies in Integrated Pest Management. Annu. Rev. Entomol. 2007, 52, 375–400. [Google Scholar] [CrossRef]
- Alkema, J.T.; Dicke, M.; Wertheim, B. Context-Dependence and the Development of Push-Pull Approaches for Integrated Management of Drosophila Suzukii. Insects 2019, 10, 454. [Google Scholar] [CrossRef]
- McGhee, P.S.; Gut, L.J.; Miller, J.R. Aerosol Emitters Disrupt Codling Moth, Cydia pomonella, Competitively. Pest Manag. Sci. 2014, 70, 1859–1862. [Google Scholar] [CrossRef]
- McGhee, P.S. Impact of High Releasing Mating Disruption Formulations on (Male) Codling Moth, Cydia pomonella L., Behavior. Ph.D. Dissertation, Michigan State University, East Lansing, MI, USA, 2014. [Google Scholar]
- Reinke, M.D.; Siegert, P.Y.; McGhee, P.S.; Gut, L.J.; Miller, J.R. Pheromone Release Rate Determines Whether Sexual Communication of Oriental Fruit Moth Is Disrupted Competitively vs. Non-competitively. Entomol. Exp. Appl. 2014, 150, 1–6. [Google Scholar] [CrossRef]
- Suckling, D.M.; Stringer, L.D.; Jiménez-Pérez, A.; Walter, G.H.; Sullivan, N.; El-Sayed, A.M. With or without Pheromone Habituation: Possible Differences between Insect Orders? Pest Manag. Sci. 2018, 74, 1259–1264. [Google Scholar] [CrossRef] [PubMed]
- Mafra-Neto, A.; Baker, T.C. Elevation of Pheromone Response Threshold in Almond Moth Males Pre-exposed to Pheromone Spray. Physiol. Entomol. 1996, 21, 217–222. [Google Scholar] [CrossRef]
- Charmillot, P. Mating Disruption Technique to Control Codling Moth in Western Switzerland. In Behaviour-Modifying Chemicals for Pest Managment: Applications of Pheromones and Other Attractants; Ridgway, R.L., Silverstein, R.M., Inscoe, M.N., Eds.; Marcel Decker: New York, NY, USA, 1990; pp. 165–182. [Google Scholar]
- Light, D.M.; Knight, A.L.; Henrick, C.A.; Rajapaska, D.; Lingren, B.; Dickens, J.C.; Reynolds, K.M.; Buttery, R.G.; Merrill, G.; Roitman, J.; et al. A Pear-Derived Kairomone with Pheromonal Potency That Attracts Male and Female Codling Moth, Cydia pomonella (L.). Naturwissenschaften 2001, 88, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Landolt, P.J.; Ohler, B.; Lo, P.; Cha, D.; Davis, T.S.; Suckling, D.M.; Brunner, J. N-Butyl Sulfide as an Attractant and Coattractant for Male and Female Codling Moth (Lepidoptera: Tortricidae). Environ. Entomol. 2014, 43, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Knight, A.L.; El-Sayed, A.M.; Judd, G.J.R.; Basoalto, E. Development of 2-phenylethanol plus Acetic Acid Lures to Monitor Obliquebanded leafroller (Lepidoptera: Tortricidae) under Mating Disruption. J. Appl. Entomol. 2017, 141, 729–739. [Google Scholar] [CrossRef]
- Judd, G.J.R.; Knight, A.L.; El-Sayed, A.M. Trapping Pandemis limitata (Lepidoptera: Tortricidae) Moths with Mixtures of Acetic Acid, Caterpillar-Induced Apple-Leaf Volatiles, and Sex Pheromone. Can. Entomol. 2017, 149, 813–822. [Google Scholar] [CrossRef]
- Mujica, V.; Preti, M.; Basoalto, E.; Cichon, L.; Fuentes-Contreras, E.; Barros-Parada, W.; Krawczyk, G.; Nunes, M.Z.; Walgenbach, J.F.; Hansen, R.; et al. Improved Monitoring of Oriental Fruit Moth (Lepidoptera: Tortricidae) with Terpinyl Acetate plus Acetic Acid Membrane Lures. J. Appl. Entomol. 2018, 142, 731–744. [Google Scholar] [CrossRef]
- Tasin, M.; Larsson Herrera, S.; Knight, A.L.; Barros-Parada, W.; Fuentes Contreras, E.; Pertot, I. Volatiles of Grape Inoculated with Microorganisms: Modulation of Grapevine Moth Oviposition and Field Attraction. Microb. Ecol. 2018, 76, 751–761. [Google Scholar] [CrossRef]
- Knight, A.L.; Mujica, V.; Larsson Herrera, S.; Tasin, M. Monitoring Codling Moth (Lepidoptera: Tortricidae) with a Four-component Volatile Blend Compared to a Sex Pheromone-based Blend. J. Appl. Entomol. 2019, 143, 942–947. [Google Scholar] [CrossRef]
- Preti, M.; Favaro, R.; Knight, A.L.; Angeli, S. Remote Monitoring of Cydia pomonella Adults among an Assemblage of Nontargets in Sex Pheromone-kairomone-baited Smart Traps. Pest Manag. Sci. 2021, 77, 4084–4090. [Google Scholar] [CrossRef]
- Knight, A.L.; Preti, M.; Basoalto, E.; Fuentes-Contreras, E. Increasing Catches of Adult Moth Pests (Lepidoptera: Tortricidae) in Pome Fruit with Low-intensity LED Lights Added to Sex Pheromone/Kairomone Lure-baited Traps. J. Appl. Entomol. 2023, 147, 843–856. [Google Scholar] [CrossRef]
- Wilson, H.; Burks, C.S.; Reger, J.E.; Wenger, J.A. Biology and Management of Navel Orangeworm (Lepidoptera: Pyralidae) in California. J. Integr. Pest Manag. 2020, 11, 25. [Google Scholar] [CrossRef]
- Higbee, B.S.; Burks, C.S. Effects of Mating Disruption Treatments on Navel Orangeworm (Lepidoptera: Pyralidae) Sexual Communication and Damage in Almonds and Pistachios. J. Econ. Entomol. 2008, 101, 1633–1642. [Google Scholar] [CrossRef] [PubMed]
- Burks, C.S.; Thomson, D.R. Factors Affecting Disruption of Navel Orangeworm (Lepidoptera: Pyralidae) Using Aerosol Dispensers. J. Econ. Entomol. 2020, 113, 1290–1298. [Google Scholar] [CrossRef] [PubMed]
- Haviland, D.R.; Rijal, J.P.; Rill, S.M.; Higbee, B.S.; Burks, C.S.; Gordon, C.A. Management of Navel Orangeworm (Lepidoptera: Pyralidae) Using Four Commercial Mating Disruption Systems in California Almonds. J. Econ. Entomol. 2021, 114, 238–247. [Google Scholar] [CrossRef]
- Leal, W.S.; Parra-Pedrazzoli, A.L.; Kaissling, K.-E.; Morgan, T.I.; Zalom, F.G.; Pesak, D.J.; Dundulis, E.A.; Burks, C.S.; Higbee, B.S. Unusual Pheromone Chemistry in the Navel Orangeworm: Novel Sex Attractants and a Behavioral Antagonist. Naturwissenschaften 2005, 92, 139–146. [Google Scholar] [CrossRef]
- Kanno, H.; Kuenen, L.P.S.; Klingler, K.A.; Millar, J.G.; Cardé, R.T. Attractiveness of a Four-Component Pheromone Blend to Male Navel Orangeworm Moths. J. Chem. Ecol. 2010, 36, 584–591. [Google Scholar] [CrossRef]
- Higbee, B.; Burks, C.; Larsen, T. Demonstration and Characterization of a Persistent Pheromone Lure for the Navel Orangeworm, Amyelois transitella (Lepidoptera: Pyralidae). Insects 2014, 5, 596–608. [Google Scholar] [CrossRef]
- Burks, C.S.; Higbee, B.S. Impact of Trap Design and Density on Effectiveness of a Commercial Pheromone Lure for Monitoring Navel Orangeworm (Lepidoptera: Pyralidae). J. Econ. Entomol. 2015, 108, 600–610. [Google Scholar] [CrossRef]
- Burks, C.S. Combination Phenyl Propionate/Pheromone Traps for Monitoring Navel Orangeworm (Lepidoptera: Pyralidae) in Almonds in the Vicinity of Mating Disruption. J. Econ. Entomol. 2017, 110, 438–446. [Google Scholar] [CrossRef]
- Higbee, B.S.; Burks, C.S.; Cardé, R.T. Mating Disruption of the Navel Orangeworm (Lepidoptera: Pyralidae) Using Widely Spaced, Aerosol Dispensers: Is the Pheromone Blend the Most Efficacious Disruptant? J. Econ. Entomol. 2017, 110, 2056–2061. [Google Scholar] [CrossRef] [PubMed]
- Burks, C.S.; Higbee, B.S.; Siegel, J.P.; Brandl, D.G. Comparison of Trapping for Eggs, Females, and Males of the Naval Orangeworm (Lepidoptera: Pyralidae) in Almonds. Environ. Entomol. 2011, 40, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Nay, J.E.; Peterson, E.M.; Boyd, E.A. Evaluation of Monitoring Traps with Novel Bait for Navel Orangeworm (Lepidoptera: Pyralidae) in California Almond and Pistachio Orchards. J. Econ. Entomol. 2012, 105, 1335–1341. [Google Scholar] [CrossRef] [PubMed]
- Burks, C.S.; Higbee, B.S.; Beck, J.J. Traps and Attractants for Monitoring Navel Orangeworm (Lepidoptera: Pyralidae) in the Presence of Mating Disruption. J. Econ. Entomol. 2020, 113, 1270–1278. [Google Scholar] [CrossRef]
- Burks, C.S.; Brandl, D.G. Seasonal Abundance of the Navel Orangeworm, Amyelois transitella, in Figs and the Effect of Peripheral Aerosol Dispensers on Sexual Communication. J. Insect Sci. 2004, 4, 40. [Google Scholar] [CrossRef]
- Kuenen, L.P.S.; Brandl, D.; Rice, R.E. Modification of Assembly of Pherocon® IC Traps Speeds Trap Liner Changes and Reduces in-Field Preparation Time. Can. Entomol. 2005, 137, 117–119. [Google Scholar] [CrossRef]
- R Core Team. R a Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 48. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Lenth, R. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. R Package Version 1.10.3. 2024. Available online: https://cran.r-project.org/web/packages/emmeans/emmeans.pdf (accessed on 8 November 2024).
- Coffelt, J.A.; Vick, K.W.; Sonnet, P.E.; Doolittle, R.E. Isolation, Identification, and Synthesis of a Female Sex Pheromone of the Navel Orangeworm, Amyelois transitella (Lepidoptera: Pyralidae). J. Chem. Ecol. 1979, 5, 955–966. [Google Scholar] [CrossRef]
- Kuenen, L.P.S.; McElfresh, J.S.; Millar, J.G. Identification of Critical Secondary Components of the Sex Pheromone of the Navel Orangeworm (Lepidoptera: Pyralidae). J. Econ. Entomol. 2010, 103, 314–330. [Google Scholar] [CrossRef]
- Burks, C.S.; Kuenen, L.P.S.B.; Daane, K.M. Phenyl Propionate and Sex Pheromone for Monitoring Navel Orangeworm (Lepidoptera: Pyralidae) in the Presence of Mating Disruption. J. Econ. Entomol. 2016, 109, 958–961. [Google Scholar] [CrossRef]
- Burks, C.S.; Brandl, D.G.; Kuenen, L.P.S.; Reyes, C.C.; Fisher, J.M. Pheromone Traps for Monitoring Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) in the Presence of Mating Disruption. Julius-Kühn-Archiv 2010, 425, 79. [Google Scholar]
- Kuenen, L.P.S.; Siegel, J.P. Sticky Traps Saturate with Navel Orangeworm in a Nonlinear Fashion. Calif. Agric. 2016, 70, 32–38. [Google Scholar] [CrossRef]
- Holdcraft, R.; Rodriguez-Saona, C.; Stelinski, L. Pheromone Autodetection: Evidence and Implications. Insects 2016, 7, 17. [Google Scholar] [CrossRef] [PubMed]
Period | No Mating Disruption | Mating Disruption 1 |
---|---|---|
21 September to 28 | 260 ± 80 | 30 ± 6.5 ** |
28 September to 5 October | 63 ± 31 | 0.2 ± 0.13 *** |
5 October to 13 October | 248 ± 73 | 6 ± 1.3 ** |
Dispensers/ha | Single Compound Dispensers | Two Compound Dispensers 1 |
---|---|---|
17 | 57 ± 15.7 a | 63 ± 16 a |
30 | 37 ± 16.7 a | 15 ± 3.6 b |
69 | 7 ± 2.8 b | 3 ± 0.8 c |
Dispensers/ha | Single Compound Dispensers | Two Compound Dispensers 1 |
---|---|---|
17 | 8.8 ± 4.37 a | 12 ± 3.3 a |
30 | 5 ± 3.7 a | 3.8 ± 1.7 ab |
69 | 2 ± 2.3 a | 1 ± 0.71 b |
Attractant | Adults per Trap |
---|---|
Single compound dispenser, 2.5 cm segment | 0 |
Two compound dispenser, 2.5 cm segment | 2.9 (1.18, 4.57) |
Pheromone monitoring lure | 7.0 (2.58, 11.42) |
Attractant | Adults per Trap 1 |
---|---|
Blank trap | 0.03 ± 0.03 a |
Single compound dispenser, 2.5 cm segment | 0.8 ± 0.34 ab |
Single compound dispenser, 10.8 cm segment | 0.9 ± 0.19 b |
Single compound dispenser, entire | 0.7 ± 0.17 ab |
Two compound dispenser, 2.5 cm segment | 23 ± 6.6 c |
Two compound dispenser, 10.2 cm segment | 22 ± 3.9 c |
Two compound dispenser, entire | 32 ± 5.3 c |
Pheromone monitoring lure | 71 ± 7.9 d |
Attractant | Adults per Trap 1 |
---|---|
Pheromone monitoring lure | 0.06 ± 0.06 a |
Single compound dispenser, 2.5 cm segment | 0.25 ± 0.095 ab |
Single compound dispenser, 10.8 cm segment | 1.8 ± 0.62 c |
Single compound dispenser, entire | 1.5 ± 0.37 bc |
Two compound dispenser, 2.5 cm segment | 8 ± 3.0 d |
Two compound dispenser, 10.2 cm segment | 24 ± 5.0 d |
Two compound dispenser, entire | 14 ± 3.6 d |
Pheromone monitoring lure with PPO dispenser | 25 ± 3.5 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burks, C.S.; Higbee, B.S. Potential of an Attractive High-Rate Navel Orangeworm (Lepidoptera: Pyralidae) Pheromone Dispenser for Mating Disruption or for Monitoring. Insects 2024, 15, 884. https://doi.org/10.3390/insects15110884
Burks CS, Higbee BS. Potential of an Attractive High-Rate Navel Orangeworm (Lepidoptera: Pyralidae) Pheromone Dispenser for Mating Disruption or for Monitoring. Insects. 2024; 15(11):884. https://doi.org/10.3390/insects15110884
Chicago/Turabian StyleBurks, Charles S., and Bradley S. Higbee. 2024. "Potential of an Attractive High-Rate Navel Orangeworm (Lepidoptera: Pyralidae) Pheromone Dispenser for Mating Disruption or for Monitoring" Insects 15, no. 11: 884. https://doi.org/10.3390/insects15110884
APA StyleBurks, C. S., & Higbee, B. S. (2024). Potential of an Attractive High-Rate Navel Orangeworm (Lepidoptera: Pyralidae) Pheromone Dispenser for Mating Disruption or for Monitoring. Insects, 15(11), 884. https://doi.org/10.3390/insects15110884