Diabrotica v. virgifera Seems Not Affected by Entomotoxic Protease Inhibitors from Higher Fungi
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Recombinant Protease Inhibitors for Bioassays
2.2. Handling of Diabrotica v. virgifera
2.3. Assessing the Resistance of Fungal Protease Inhibitors to Proteolytic Digestion in Gut Extracts of D. v. virgifera Larvae and Adults
2.4. Assessing Inhibition of Proteolytic Activities in Guts of D. v. virgifera Larvae and Adults
- -
- Control, PIC, E-64, Mcp1, Mcp3, Mcp4, CCP1, and Clt (tests Z-Phe-Arg-MCA and pGlu-Phe-Leu-pNA at pH 6);
- -
- Control, pepstatin, and CCP1 (tests MOCAc-Ala-Pro-Ala-Lys-Phe-Phe-Arg-Leu-Lys-(Dnp)-NH2 at pH 5.4 or at pH 3.5);
- -
- Control, aprotinin, Mcp1, Mcp3, Mcp4, and PIC (tests Boc-Gly-Arg-Arg-MCA at pH 8).
2.5. Assessing Effects of Fungal Protease Inhibitors on D. v. virgifera in Bioassays
Treatment (Code) | Origin | Family | Molecular Weight, Size | Fold (PDB Code) | Protease Family Inhibited | Buffer | Known Entomotoxic Activity | Reference |
---|---|---|---|---|---|---|---|---|
Proteins | ||||||||
Macrocypin 1 (Mcp1) | Macrolepiota procera (Basidiomycota: Agaricaceae) | I85 | 19.1 kDa 169 aa | β-trefoil (3H6Q) | Cysteine proteases: C1/C13 | Tris-HCl or PBS | Leptinotarsa decemlineata larvae | [8,22,34] |
Macrocypin 3 (Mcp3) | 19.0 kDa 167 aa | β-trefoil (3H6Q) | Cysteine proteases: C1/C13 | Tris-HCl | ||||
Macrocypin 4 (Mcp4) | 18.7 kDa 167 aa | β-trefoil (3H6Q) | Cysteine and serine proteases: C1/S1 | Tris-HCl | ||||
Clitocypin (Clt) | Clitocybe nebularis (Basidiomycota: Agaricaceae) | I48 | 16.7 kDa 150 aa | β-trefoil (3H6R) | Cysteine proteases: C1/C13 | Tris-HCl or PBS | Leptinotarsa decemlineata larvae | [21,24,34,35,36] |
Cocaprin 1 (Ccp1) | Coprinopsis cinerea (Basidiomycota: Psathyrellaceae) | I106 | 16.1 kDa 138 aa | β-trefoil (7ZNX) | Cysteine and aspartic proteases: C1/A1 | PBS | No toxicity Aedes aegypti larvae | [11] |
Cospin (PIC) | I66 | 16.7 kDa 150 aa | β-trefoil (3N0K) | Serine proteases: S1 (trypsin) | Tris-HCl | Drosophila melanogaster larvae | [9,37] | |
Positive controls | ||||||||
E-64 | E-64 trans-epoxysuccinyl-l-leucylamido (4-guanidino) butane | 357 Da NA | epoxide (ChEMBL374508) | Cysteine proteases | DMSO | Diabrotica undecimpunctata howardi, D. v. virgifera larvae | [38,39,40,41] | |
AEBSF (Pefabloc SC) | 4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride) | 239 Da NA | ChEMBL1096339 | Serine protease | Water | Helicoverpa armigera gut, Drosophila haemocyte-like l(2)mbn cells | [23,38,42,43] | |
Imidacloprid | 1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine | 255.6 Da NA | ChEMBL406819 | NA | Water | Broad spectrum incl against D. v. virgifera | [32] | |
Negative controls | ||||||||
C4 H 11 NO 3·HCl (Tris-HCL) | Buffer (20 mM, ~7.5 pH) | NA | NA | NA | Water | NA | ||
Phosphate-buffered saline (PBS) | Buffer (~7.4 pH) | NA | NA | NA | Water | NA | ||
Water | Buffer | NA | NA | NA | Water | NA |
Treatment (Code) | Neonates | Adults | Eggs | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
µg/mL | µL/Arena | µg/cm2 * | µg/Arena | µg/Insect | µg/ 1 mg Insect | µg/mL | µL/Arena | µg/cm2 * | µg/Arena | µg/Insect | µg/ 1 mg Insect | µg/mL | µL/Tube | µg/Tube | µg/Insect | µg/ 1 mg Insect | |
Proteins | |||||||||||||||||
Macrocypin 1 (Mcp1) | 1630 | 20 | 100 | 32.6 | 32.6 | 81.5 | 1630 | 40 | 28 | 65 | 22 | 2.2 | 200 | 200 | 40 | 0.4 | 20 |
200 | 20 | 12 | 4 | 4 | 10 | 2400 | 40 | 41 | 96 | 32 | 3.2 | 800 | 200 | 160 | 1.6 | 80 | |
1630 | 200 | 326 | 3.3 | 163 | |||||||||||||
2400 | 200 | 480 | 4.8 | 240 | |||||||||||||
3200 | 200 | 640 | 6.4 | 320 | |||||||||||||
Macrocypin 3 (Mcp3) | 1630 | 20 | 100 | 32.6 | 32.6 | 81.5 | 1630 | 40 | 28 | 65 | 22 | 2.2 | 200 | 200 | 40 | 0.4 | 20 |
400 | 200 | 80 | 0.8 | 40 | |||||||||||||
1200 | 200 | 240 | 2.4 | 120 | |||||||||||||
1630 | 200 | 326 | 3.3 | 163 | |||||||||||||
1900 | 200 | 380 | 3.8 | 190 | |||||||||||||
Macrocypin 4 (Mcp4) | 1630 | 20 | 100 | 32.6 | 32.6 | 81.5 | 1630 | 40 | 28 | 65 | 22 | 2.2 | 200 | 200 | 40 | 0.4 | 20 |
800 | 200 | 160 | 1.6 | 80 | |||||||||||||
1630 | 200 | 326 | 3.3 | 163 | |||||||||||||
2400 | 200 | 480 | 4.8 | 240 | |||||||||||||
3200 | 200 | 640 | 6.4 | 320 | |||||||||||||
Clitocypin (Clt) | 1565 | 20 | 96 | 31.3 | 31.3 | 78.2 | 1565 | 40 | 27 | 63 | 21 | 2.1 | 200 | 200 | 40 | 0.4 | 20 |
1410 | 200 | 282 | 2.8 | 141 | |||||||||||||
Cocaprin 1 (Ccp1) | 1630 | 20 | 100 | 32.6 | 32.6 | 81.5 | 1630 | 40 | 28 | 65 | 22 | 2.2 | 200 | 200 | 40 | 0.4 | 20 |
200 | 20 | 12 | 4 | 4 | 10 | 800 | 200 | 160 | 1.6 | 80 | |||||||
1630 | 200 | 326 | 3.3 | 163 | |||||||||||||
2400 | 200 | 480 | 4.8 | 240 | |||||||||||||
3200 | 200 | 640 | 6.4 | 320 | |||||||||||||
Cospin (PIC) | 1630 | 20 | 100 | 32.6 | 32.6 | 81.5 | 1630 | 40 | 28 | 65 | 22 | 2.2 | 200 | 200 | 40 | 0.4 | 20 |
1630 | 200 | 326 | 3.3 | 163 | |||||||||||||
Mcp1 + PIC | 1630 +1360 | 20 | 100 + 100 | 32.6 + 32.6 | 32.6 + 32.6 | 81.5 + 81.5 | 1630 + 1360 | 40 | 28 + 28 | 65 + 65 | 22 + 22 | 2.2 + 2.2 | Not tested | ||||
Positive controls | |||||||||||||||||
E-64 | 163 | 20 | 10 | 3.3 | 3.3 | 8.2 | 163 | 40 | 2.8 | 6.5 | 2.2 | 0.2 | 163 | 200 | 33 | 0.3 | 16.3 |
AEBSF | 1630 | 20 | 100 | 32.6 | 32.6 | 81.5 | 1630 | 40 | 28 | 65 | 22 | 2.2 | 200 | 200 | 40 | 0.4 | 20 |
800 | 200 | 160 | 1.6 | 80 | |||||||||||||
1630 | 200 | 326 | 3.3 | 163 | |||||||||||||
2400 | 200 | 480 | 4.8 | 240 | |||||||||||||
3200 | 200 | 640 | 6.4 | 320 | |||||||||||||
E-64 + AEBSF | 163 +1630 | 20 | 10 + 100 | 3.3 + 32.6 | 3.3 + 32.6 | 8.2 + 81.5 | 163 + 1630 | 40 | 2.8 + 28 | 6.5 + 65 | 2.2 + 22 | 0.2 + 2.2 | Not tested | ||||
Imidacloprid | 2 | 20 | 0.12 | 0.04 | 0.04 | 0.1 | 34 | 40 | 0.6 | 1.36 | 0.45 | 0.05 | 200 | 200 | 40 | 0.4 | 20 |
3.4 | 20 | 0.2 | 0.07 | 0.07 | 0.17 | 75 | 40 | 1.3 | 3 | 1 | 0.1 | 1000 | 200 | 200 | 2 | 100 | |
2000 | 200 | 400 | 4 | 200 | |||||||||||||
Negative controls | |||||||||||||||||
Tris-HCl | 20 mM NaCl, (pH 7.5) | 20 | 40 | 200 | |||||||||||||
PBS | (pH 7.4) | 20 | 40 | 200 | |||||||||||||
Water | 20 | 40 | 200 |
2.5.1. Diabrotica v. virgifera Larvae
2.5.2. Diabrotica v. virgifera Adults
2.5.3. Diabrotic v. virgifera Eggs
2.5.4. Data Analysis
2.6. Imaging of the Midgut Structure of Larvae
3. Results
3.1. Inhibition of Proteolytic Activities in Guts of D. v. virgifera Larvae and Adults
3.2. Effects of Fungal Protease Inhibitors on D. v. virgifera Larvae, Adults and Eggs
3.3. Resistance of Fungal Protease Inhibitors to Proteolytic Digestion in Gut Extracts of D. v. virgifera Larvae and Adults
3.4. Structural Features of Midguts
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Habib, H.; Fazili, K.M. Plant protease inhibitors: A defense strategy in plants. Biotechnol. Mol. Biol. Rev. 2007, 2, 68–85. Available online: http://www.academicjournals.org/BMBR (accessed on 10 May 2022).
- Lawrence, P.K.; Koundal, K.R. Plant protease inhibitors in control of phytophagous insects. EJB Electron. J. Biotechnol. 2002, 5, 1–17. Available online: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-34582002000100014 (accessed on 10 May 2022). [CrossRef]
- Schlüter, U.; Benchabane, M.; Munger, A.; Kiggundu, A.; Vorster, J.; Goulet, M.C.; Cloutier, C.; Michaud, D. Recombinant protease inhibitors for herbivore pest control: A multitrophic perspective. J. Exp. Bot. 2010, 61, 4169–4183. [Google Scholar] [CrossRef] [PubMed]
- Dang, L.V.D.E. Toxic proteins in plants. Phytochemistry 2015, 117, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Macedo, L.M.; Oliveira, F.; Oliveira, C. Insecticidal activity of plant lectins and potential application in crop protection. Molecules 2015, 20, 2014–2033. [Google Scholar] [CrossRef] [PubMed]
- Sabotič, J.; Ohm, R.A.; Künzler, M. Entomotoxic and nematotoxic lectins and protease inhibitors from fungal fruiting bodies. Appl. Microbiol. Biotechnol. 2016, 100, 91–111. [Google Scholar] [CrossRef]
- Sabotič, J.; Renko, M.; Kos, J. Β-Trefoil protease inhibitors unique to higher fungi. Acta Chim. Slov. 2019, 66, 28–36. [Google Scholar] [CrossRef]
- Šmid, I.; Gruden, K.; Buh Gašparič, M.; Koruza, K.; Petek, M.; Pohleven, J.; Brzin, J.; Kos, J.; Zel, J.; Sabotič, J. Inhibition of the growth of Colorado potato beetle larvae by macrocypins, protease inhibitors from the parasol mushroom. J. Agric. Food Chem. 2013, 61, 12499–12509. [Google Scholar] [CrossRef]
- Sabotič, J.; Bleuler-Martinez, S.; Renko, M.; Caglič, P.A.; Kallert, S.; Štrukelj, B.; Turk, D.; Aebi, M.; Kos, J.; Künzler, M. Structural basis of trypsin inhibition and entomotoxicity of cospin, serine protease inhibitor involved in defense of Coprinopsis cinerea fruiting bodies. J. Biol. Chem. 2012, 287, 3898–3907. [Google Scholar] [CrossRef]
- Avanzo, P.; Sabotic, J.; Anzlovar, S.; Popovic, T.; Leonardi, A.; Pain, R.; Kos, J.; Brzin, J. Trypsin-specific inhibitors from the basidiomycete Clitocybe nebularis with regulatory and defensive functions. Microbiology 2009, 155, 3971–3981. [Google Scholar] [CrossRef]
- Renko, M.; Zupan, T.; Plaza, D.F.; Schmieder, S.S.; Nanut, M.P.; Kos, J.; Turk, D.; Künzler, M.; Sabotič, J. Cocaprins, beta;-trefoil fold inhibitors of cysteine and aspartic proteases from Coprinopsis cinerea. Int. J. Mol. Sci. 2022, 23, 4916. [Google Scholar] [CrossRef] [PubMed]
- Gillikin, J.W.; Bevilacqua, S.; Graham, J.S. Partial characterization of digestive tract proteinases from western corn rootworm larvae, Diabrotica virgifera. Arch. Insect Biochem. Physiol. 1992, 19, 285–298. [Google Scholar] [CrossRef]
- Kaiser-Alexnat, R. Protease activities in the midgut of Western corn rootworm (Diabrotica virgifera virgifera LeConte). J. Invertebr. Pathol. 2009, 100, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Siegfried, B.D.; Waterfield, N.; French-Constant, R.H. Expressed sequence tags from Diabrotica virgifera virgifera midgut identify a coleopteran cadherin and a diversity of cathepsins. Insect Mol. Biol. 2005, 14, 137–143. [Google Scholar] [CrossRef]
- Bažok, R.; Lemić, D.; Chiarini, F.; Furlan, L. Western corn rootworm (Diabrotica virgifera virgifera LeConte) in Europe: Current status and sustainable pest management. Insects 2021, 12, 195. [Google Scholar] [CrossRef]
- Kumar, G.; Singh, S.; Nagarajaiah, R.P.K.; Kumar, G.; Singh, S.; Nagarajaiah, R.P.K. Detailed review on pesticidal toxicity to honey bees and its management. In Modern Beekeeping—Bases for Sustainable Production; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Toepfer, S.; Toth, S.; Szalai, M. Can the botanical azadirachtin replace phased-out soil insecticides in suppressing the soil insect pest Diabrotica virgifera virgifera? CABI Agric. Biosci. 2021, 2, 1–14. [Google Scholar] [CrossRef]
- van der Steen, J.J. Three years of banning neonicotinoid insecticides based on sub-lethal effects: Can we expect to see effects on bees? Pest Manag Sci. 2017, 73, 1299–1304. [Google Scholar] [CrossRef]
- Trasande, L. When enough data are not enough to enact policy: The failure to ban chlorpyrifos. PLoS Biol. 2017, 15, e2003671. [Google Scholar] [CrossRef]
- Gray, G.M.; Hammitt, J.K. Risk/risk trade-offs in pesticide regulation: An exploratory analysis of the public health effects of a ban on organophosphate and carbamate pesticides. Risk Anal. 2000, 20, 665–680. [Google Scholar] [CrossRef]
- Sabotič, J.; Gaser, D.; Rogelj, B.; Gruden, K.; Štrukelj, B.; Brzin, J. Heterogeneity in the cysteine protease inhibitor clitocypin gene family. Biol. Chem. 2006, 387, 1559–1566. [Google Scholar] [CrossRef]
- Sabotič, J.; Popovič, T.; Puizdar, V.; Brzin, J. Macrocypins, a family of cysteine protease inhibitors from the basidiomycete Macrolepiota procera. FEBS J. 2009, 276, 4334–4345. [Google Scholar] [CrossRef] [PubMed]
- Sabotič, J.; Kos, J. Microbial and fungal protease inhibitors—Current and potential applications. Appl. Microbiol. Biotechnol. 2012, 93, 1351–1375. [Google Scholar] [CrossRef]
- Sabotič, J.; Galeša, K.; Popovič, T.; Leonardi, A.; Brzin, J. Comparison of natural and recombinant clitocypins, the fungal cysteine protease inhibitors. Protein Expr. Purif. 2007, 53, 104–111. [Google Scholar] [CrossRef] [PubMed]
- George, B.W.; Ortman, E.E. Rearing the western corn rootworm in the laboratory. J. Econ. Entomol. 1965, 58, 375–377. [Google Scholar] [CrossRef]
- Branson, T.F.; Johnson, R.D. Adult western corn rootworm: Oviposition, fecundity, and longevity in the laboratory. J. Econ. Entomol. 1973, 66, 417–418. [Google Scholar] [CrossRef]
- Branson, T.F.; Sutter, G.R.; Fisher, J.R. Non-diapause eggs of western corn rootworms in artificial field infestations. Environ. Entomol. 1981, 10, 94–96. [Google Scholar] [CrossRef]
- Branson, T.F.; Guss, P.L.; Krysan, J.L.; Sutter, G.R. Corn Rootworms: Laboratory Rearing and Manipulation; Vol. NC-28, Agricultural Research Service—U.S.D.A.; USDA ARS: Peoria, IL, USA, 1975; 18p.
- Singh, P.; Moore, R.F. Handbook of Insect Rearing; Elsevier: Amsterdam, The Netherlands, 1999; 185p. [Google Scholar]
- Magalhaes, L.C.; French, B.W.; Hunt, T.E.; Siegfried, B.D. Baseline susceptibility of western corn rootworm (Coleoptera: Chrysomelidae) to clothianidin. J. Appl. Entomol. 2007, 131, 251–255. [Google Scholar] [CrossRef]
- Wright, R.J.; Scharf, M.E.; Meinke, L.J.; Zhou, X.G.; Siegfried, B.D.; Chandler, L.D. Larval susceptibility of an insecticide-resistant western corn rootworm (Coleoptera: Chrysomelidae) population to soil insecticides: Laboratory bioassays, assays of detoxification enzymes, and field performance. J. Econ. Entomol. 2000, 93, 7–13. [Google Scholar] [CrossRef]
- Van Rozen, K.; Ester, A. Chemical control of Diabrotica virgifera virgifera LeConte. J. Appl. Entomol. 2010, 134, 376–384. [Google Scholar] [CrossRef]
- Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.; Bateman, A.; Finn, R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018, 43, D624–D632. [Google Scholar] [CrossRef]
- Renko, M.; Sabotič, J.; Mihelič, M.; Brzin, J.; Kos, J.; Turk, D. Versatile loops in mycocypins inhibit three protease families. J. Biol. Chem. 2010, 285, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Brzin, J.; Rogelj, B.; Popovič, T.; Štrukelj, B.; Ritonja, A. Clitocypin, a new type of cysteine proteinase inhibitor from fruit bodies of mushroom Clitocybe nebularis. J. Biol. Chem. 2000, 275, 20104–20109. [Google Scholar] [CrossRef]
- Šmid, I.; Rotter, A.; Gruden, K.; Brzin, J.; Gašparič, M.B.; Kos, J.; Žel, J.; Sabotič, J. Clitocypin, a fungal cysteine protease inhibitor, exerts its insecticidal effect on Colorado potato beetle larvae by inhibiting their digestive cysteine proteases. Pestic. Biochem. Physiol. 2015, 122, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Avanzo Caglič, P.; Renko, M.; Turk, D.; Kos, J.; Sabotič, J. Fungal β-trefoil trypsin inhibitors cnispin and cospin demonstrate the plasticity of the β-trefoil fold. Biochim. Biophys. Acta—Proteins Proteom. 2014, 1844, 1749–1756. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, H.; Gatehouse, L.; Hilder, V.; Gatehouse, J. The inhibitory effects of the cysteine protease inhibitor, oryzacystatin, on digestive proteases and on larval survival and development of the southern corn rootworm (Diabrotica undecimpunctata howardi). Entomol. Exp. Appl. 1996, 78, 83–94. [Google Scholar] [CrossRef]
- Orr, G.L.; Strickland, J.A.; Cabrera Walsh, T.A.; Walsh, T.A. Inhibition of Diabrotica larval growth by a multicystatin from potato tubers. J. Insect Physiol. 1994, 40, 893–900. [Google Scholar] [CrossRef]
- Bažok, R.; Barčić, J.I.; Edwards, C.R. Effects of proteinase inhibitors on western corn rootworm life parameters. J. Appl. Entomol. 2005, 129, 185–190. [Google Scholar] [CrossRef]
- Koiwa, H.; D’Urzo, M.P.; Zhu-Salzman, K.; Ibeas, J.I.; Shade, R.E.; Murdock, L.L.; Bressan, R.A.; Hasegawa, P.M. An in-gel assay of a recombinant western corn rootworm (Diabrotica virgifera virgifera) cysteine proteinase expressed in yeast. Anal. Biochem. 2000, 282, 153–155. [Google Scholar] [CrossRef]
- Parde, V.D.; Sharma, H.C.; Kachole, M.S. Inhibition of Helicoverpa armigera gut pro-proteinase activation in response to synthetic protease inhibitors. Entomol. Exp. Appl. 2012, 142, 104–113. [Google Scholar] [CrossRef]
- Johansson, K.C.; Söderhäll, K.; Lind, M.I. Pefabloc—A sulfonyl fluoride serine protease inhibitor blocks induction of Diptericin in Drosophila l(2)mbn cells. Insect Sci. 2012, 19, 472–476. [Google Scholar] [CrossRef]
- Jabeur, R.; Guyon, V.; Toth, S.; Pereira, A.E.; Huynh, M.P.; Selmani, Z.; Boland, E.; Bosio, M.; Beuf, L.; Clark, P.; et al. A novel binary pesticidal protein from Chryseobacterium arthrosphaerae controls western corn rootworm by a different mode of action to existing commercial pesticidal proteins. PLoS ONE 2023, 18, e0267220. [Google Scholar] [CrossRef] [PubMed]
- Sutter, G.R.; Krysan, J.L.; Guss, P.L. Rearing the southern corn rootworm on artificial diet. J. Econ. Entomol. 1971, 64, 65–67. [Google Scholar] [CrossRef]
- Pleau, M.J.; Huesing, J.E.; Head, G.P.; Feir, D.J. Development of an artificial diet for the western corn rootworm. Entomol. Exp. Appl. 2002, 105, 1–11. [Google Scholar] [CrossRef]
- Moar, W.; Khajuria, C.; Pleau, M.; Ilagan, O.; Chen, M.; Jiang, C.; Price, P.; McNulty, B.; Clark, T.; Head, G. Cry3Bb1-Resistant western corn rootworm, Diabrotica virgifera virgifera (LeConte) does not exhibit cross-resistance to DvSnf7 dsRNA. PloS ONE 2017, 12, e0169175. [Google Scholar] [CrossRef]
- Dulmage, T.; Yousten, A.A.; Singer, S.; Lacey, L.A. Guidelines for the Production of Bacillus thuringiensis H-14 and Bacillus sphaericus. UNDP/WHO/WHO Special Programme for Research and Training in Tropical Diseases. 1990. Available online: https://fctc.who.int/publications/i/item/guidelines-for-production-of-bacillus-thuringiensis-h-14-and-bacillus-sphaericus (accessed on 10 May 2022).
- Huynh, M.P.; Meihls, L.N.; Hibbard, B.E.; Lapointe, S.L.; Niedz, R.P.; Dalton, C. Ludwick. Diet improvement for western corn rootworm, Diabrotica virgifera virgifera, larvae without corn root powder. PLoS ONE 2017, 12, e0187997. [Google Scholar] [CrossRef]
- Branson, T.F.; Jackson, J.J. An improved diet for adult Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). J. Kansas Entomol. Soc. 1988, 61, 353–355. [Google Scholar]
- Campbell, L.A.; Clark, T.L.; Clark, P.L.; Meinke, L.J.; Foster, J.E. Field introgression of Diabrotica barberi and Diabrotica longicornis (Coleoptera: Chrysomelidae) based on genetic and morphological characters. Ann. Entomol. Soc. Am. 2011, 104, 1380–1391. [Google Scholar] [CrossRef]
- Kinnear, P.R.; Gray, C.D. SPSS for Windows Made Simple; Psychology Press Ltd.: East Sussex, UK, 2000; 380p. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows, Version 29.0; IBM Corp.: Armonk, NY, USA, 2022.
- Gruden, K.; Štrukelj, B.; Popovič, T.; Lenarčič, B.; Bevec, T.; Brzin, J.; Kregar, I.; Herzog-Velikonja, J.; Stiekema, W.J.; Bosch, D.; et al. The cysteine protease activity of Colorado potato beetle (Leptinotarsa decemlineata Say) guts, which is insensitive to potato protease inhibitors, is inhibited by thyroglobulin type-1 domain inhibitors. Insect Biochem. Mol. Biol. 1998, 28, 549–560. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Pathak, D.V.; Kumar, M. Microbial inoculants as biofertilizers and biopesticides. In Microbial Inoculants in Sustainable Agricultural Productivity; Springer: New Delhi, India, 2016. [Google Scholar]
- Sun, W.; Krystofiak, E.; Leo-Macias, A.; Cui, R.; Sesso, A.; Weigert, R.; Ebrahim, S.; Kachar, B. Nanoarchitecture and dynamics of the mouse enteric glycocalyx examined by freeze-etching electron tomography and intravital microscopy. Commun. Biol. 2020, 3, 5. [Google Scholar] [CrossRef]
- Plett, J.M.; Sabotič, J.; Vogt, E.; Snijders, F.; Kohler, A.; Nielsen, U.N.; Künzler, M.; Martin, F.; Veneault-Fourrey, C. Mycorrhiza-induced mycocypins of Laccaria bicolor are potent protease inhibitors with nematotoxic and collembola antifeedant activity. Environ. Microbiol. 2022, 24, 4607–4622. [Google Scholar] [CrossRef]
- Koiwa, H.; Shade, R.E.; Zhu-Salzman, K.; D’Urzo, M.P.; Murdock, L.L.; Bressan, R.A.; Hasegawa, P.M. A plant defensive cystatin (soyacystatin) targets cathepsin L-like digestive cysteine proteinases (DvCALs) in the larval midgut of western corn rootworm (Diabrotica virgifera virgifera). FEBS Lett. 2000, 471, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Fabrick, J.; Behnke, C.; Czapla, T.; Bala, K.; Rao, A.G.; Kramer, K.J.; Reeck, G.R. Effects of a potato cysteine proteinase inhibitor on midgut proteolytic enzyme activity and growth of the southern corn rootworm, Diabrotica undecimpunctata howardi (Coleoptera: Chrysomelidae). Insect Biochem. Mol. Biol. 2002, 32, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Guyon, V.; (Limagrin, Clermont-Ferrand, France). Personal Communication, 2020.
- Armstrong, J.S.; Camelo, L.A.; Zhu-Salzman, K.; Mitchell, F.L. Effects of cysteine proteinase inhibitors scN and E-64 on southern corn Rootworm larval development. Southwest. Entomol. 2016, 41, 337–346. [Google Scholar] [CrossRef]
- Wei, J.-Z.Z.; O’Rear, J.; Schellenberger, U.; Rosen, B.A.; Park, Y.-J.J.; McDonald, M.J.; Zhu, G.; Xie, W.; Kassa, A.; Procyk, L.; et al. A selective insecticidal protein from Pseudomonas mosselii for corn rootworm control. Plant Biotechnol. J. 2018, 16, 649–659. [Google Scholar] [CrossRef]
- Zhu-Salzman, K.; Zeng, R. Insect response to plant defensive protease inhibitors. Annu. Rev. Entomol. 2015, 60, 233–252. [Google Scholar] [CrossRef]
- Merzendorfer, H.; Kelkenberg, M.; Muthukrishnan, S. Peritrophic matrices. In Extracellular Composite Matrices in Arthropods; Cohen, E.M.B., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 255–324. [Google Scholar]
- Ryerse, J.; Purcell, J.; Sammons, R. Structure and formation of the peritrophic membrane in the larva of the southern corn rootworm, Diabrotica undecimpunctata. Tissue Cell 1994, 26, 431–437. [Google Scholar] [CrossRef]
- Hegedus, D.; Toprak, U.; Erlandson, M. Peritrophic matrix formation. J. Insect Physiol. 2019, 117, 103898. [Google Scholar] [CrossRef]
- Egberts, H.; Koninkx, J.; van Dijk, J.; Mouwen, J. Biological and pathobiological aspects of the glycocalyx of the small intestinal epithelium. A review. Vet. Q. 1984, 6, 186–199. [Google Scholar] [CrossRef]
- Johansson, M.; Ambort, D.; Pelaseyed, T.; Schütte, A.; Gustafsson, J.; Ermund, A.; Subramani, D.B.; Holmén-Larsson, J.M.; Thomsson, K.A.; Bergström, J.H.; et al. Composition and functional role of the mucus layers in the intestine. Cell Mol. Life Sci. 2011, 68, 3635–3641. [Google Scholar] [CrossRef]
- Zurga, S.; Pohleven, J.; Kos, J.; Sabotič, J. β-Trefoil structure enables interactions between lectins and protease inhibitors that regulate their biological functions. J. Biochem. 2015, 158, 83–90. [Google Scholar] [CrossRef]
Treatment Effects | Adjusted R2 | F | p | fdr-Corrected P | Significance |
---|---|---|---|---|---|
on neonates | |||||
Mortality within 3 days | 0.05 | 1.9 | 0.29 | 0.29 | n.s. |
Mortality within 5 days | 0.03 | 1.4 | 0.11 | 0.18 | n.s. |
Stunting within 3 days | 0.01 | 1.2 | 0.29 | 0.29 | n.s. |
Stunting within 5 days | 0.04 | 1.6 | 0.06 | 0.15 | n.s. |
Length within 5 days | 0.09 | 2.6 | 0.0003 | 0.002 | * |
on adults | |||||
Mortality within 1 day | 0.07 | 1.9 | 0.011 | 0.022 | * |
Mortality within 3 days | 0.08 | 1.9 | 0.007 | 0.022 | * |
Mortality within 5 days | 0.01 | 1.1 | 0.311 | 0.31 | n.s. |
Feeding within 3 days | 0.03 | 1.3 | 0.173 | 0.23 | n.s. |
on eggs | |||||
Egg hatching rate within 5 days 1 | −0.14 | 0.8 | 0.78 | 0.78 | n.s. |
Egg hatching rate within 7 days 1 | −0.01 | 0.9 | 0.52 | 0.78 | n.s. |
Mortality of neonates hatched around day 3 | −0.06 | 0.9 | 0.64 | 0.78 | n.s. |
Mortality of neonates hatched around day 5 | 0.24 | 1.6 | 0.08 | 0.2 | n.s. |
Delay in egg hatching | 0.43 | 2.5 | 0.005 | 0.025 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toepfer, S.; Toth, S.; Zupan, T.; Bogataj, U.; Žnidaršič, N.; Ladanyi, M.; Sabotič, J. Diabrotica v. virgifera Seems Not Affected by Entomotoxic Protease Inhibitors from Higher Fungi. Insects 2024, 15, 60. https://doi.org/10.3390/insects15010060
Toepfer S, Toth S, Zupan T, Bogataj U, Žnidaršič N, Ladanyi M, Sabotič J. Diabrotica v. virgifera Seems Not Affected by Entomotoxic Protease Inhibitors from Higher Fungi. Insects. 2024; 15(1):60. https://doi.org/10.3390/insects15010060
Chicago/Turabian StyleToepfer, Stefan, Szabolcs Toth, Tanja Zupan, Urban Bogataj, Nada Žnidaršič, Marta Ladanyi, and Jerica Sabotič. 2024. "Diabrotica v. virgifera Seems Not Affected by Entomotoxic Protease Inhibitors from Higher Fungi" Insects 15, no. 1: 60. https://doi.org/10.3390/insects15010060
APA StyleToepfer, S., Toth, S., Zupan, T., Bogataj, U., Žnidaršič, N., Ladanyi, M., & Sabotič, J. (2024). Diabrotica v. virgifera Seems Not Affected by Entomotoxic Protease Inhibitors from Higher Fungi. Insects, 15(1), 60. https://doi.org/10.3390/insects15010060