Navigating Agricultural Expansion in Harsh Conditions in Russia: Balancing Development with Insect Protection in the Era of Pesticides
Abstract
:Simple Summary
Abstract
1. Introduction
2. Are Pesticides Always the Best Way to Guard the Well-Being of Mankind?
3. Problems in Research on the Effects of Insecticides on Insects
4. Vulnerability of Non-Target Insects to Pesticides in the Context of the Development of Regions with Harsh Conditions as a Model of Agricultural Expansion
5. Successful Methods of Sustainable Agriculture
6. Legal Regulation of the Use of Pesticides
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bei-Bienko, G.Y. General Entomology: A Textbook for Universities and Agricultural Universities, 3rd ed.; Higher School: Moscow, Russia, 1980; p. 416. (In Russian) [Google Scholar]
- Zhang, Z.-Q. Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness. Zootaxa 2013, 3703, 1–82. [Google Scholar] [CrossRef] [PubMed]
- Zakhvatkin, Y.A. Course of General Entomology; Kolos: Moscow, Russia, 2001; p. 376. (In Russian) [Google Scholar]
- Schowalter, T.D. Insect Ecology, 4th ed.; Academic Press: Cambridge, MA, USA, 2016; p. 4. ISBN 9780128030332. [Google Scholar]
- Ollerton, J.; Winfree, R.; Tarrant, S. How many flowering plants are pollinated by animals? Oikos 2011, 120, 321–326. [Google Scholar] [CrossRef]
- Biesmeijer, J.C.; Roberts, S.P.M.; Reemer, M.; Ohlemüller, R.; Edwards, M.; Peeters, T.; Schaffers, A.P.; Potts, S.G.; Kleukers, R.; Thomas, C.D.; et al. Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands. Science 2006, 313, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Hallmann, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörren, T.; et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, e0185809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habel, J.C.; Trusch, R.; Schmitt, T.; Ochse, M.; Ulrich, W. Long-term large-scale decline in relative abundances of butterfly and burnet moth species across south-western Germany. Sci. Rep. 2019, 9, 14921. [Google Scholar] [CrossRef] [Green Version]
- Powney, G.D.; Carvell, C.; Edwards, M.; Morris, R.K.A.; Roy, H.E.; Woodcock, B.A.; Isaac, N.J.B. Widespread losses of pollinating insects in Britain. Nat. Commun. 2019, 10, 1018. [Google Scholar] [CrossRef] [Green Version]
- Wepprich, T.; Adrion, J.R.; Ries, L.; Wiedmann, J.; Haddad, N.M. Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. PLoS ONE 2019, 14, e0216270. [Google Scholar] [CrossRef] [Green Version]
- van Klink, R.; Bowler, D.E.; Gongalsky, K.B.; Swengel, A.B.; Gentile, A.; Chase, J.M. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 2020, 368, 417–420. [Google Scholar] [CrossRef]
- Barnosky, A.D.; Matzke, N.; Tomiya, S.; Wogan, G.O.U.; Swartz, B.; Quental, T.B.; Marshall, C.; McGuire, J.L.; Lindsey, E.L.; Maguire, K.C.; et al. Has the Earth’s sixth mass extinction already arrived? Nature 2011, 471, 51–57. [Google Scholar] [CrossRef]
- Janzen, D.H.; Hallwachs, W. Perspective: Where might be many tropical insects? Biol. Conserv. 2019, 233, 102–108. [Google Scholar] [CrossRef]
- Didham, R.K.; Barbero, F.; Collins, C.M.; Forister, M.L.; Hassall, C.; Leather, S.R.; Packer, L.; Saunders, M.E.; Stewart, A.J.A. Spotlight on insects: Trends, threats and conservation challenges. Insect Conserv. Divers. 2020, 13, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Hart, A.G.; Sumner, S. Marketing insects: Can exploiting a commercial framework help promote undervalued insect species? Insect Conserv. Divers. 2020, 13, 214–218. [Google Scholar] [CrossRef] [Green Version]
- Zattara, E.E.; Aizen, M.A. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 2021, 4, 114–123. [Google Scholar] [CrossRef]
- Basset, Y.; Cizek, L.; Cuénoud, P.; Didham, R.K.; Guilhaumon, F.; Missa, O.; Novotny, V.; Ødegaard, F.; Roslin, T.; Schmidl, J.; et al. Data from: Arthropod diversity in a tropical forest. Science 2012, 338, 1481–1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Rosenberg, A.G. The Origins of the Modern History of Ecosystem Services. Samara Luka: Problems of Regional and Global Ecology. No. 1. 2017. Available online: https://cyberleninka.ru/article/n/istoki-sovremennoy-istorii-ekosistemnyh-uslug (accessed on 16 February 2023).
- Schowalter, T.D. Insects and Sustainability of Ecosystem Services; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar] [CrossRef]
- Vanbergen, A.J.; the Insect Pollinators Initiative. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 2013, 11, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Schowalter, T.D.; Noriega, J.A.; Tscharntke, T. Insect effects on ecosystem services—Introduction. Basic Appl. Ecol. 2018, 26, 1–7. [Google Scholar] [CrossRef]
- Ramos-Elorduy, J. Anthropo-Entomophagy: Cultures, Evolution and Sustainability. Entomol. Res. 2009, 39, 271–288. [Google Scholar] [CrossRef]
- DeAngelis, D.L.; Mulholland, P.J.; Palumbo, A.V.; Steinman, A.D.; Huston, M.A.; Elwood, J.W. Nutrient Dynamics and Food-Web Stability. Annu. Rev. Ecol. Syst. 1989, 20, 71–95. [Google Scholar] [CrossRef]
- Romzaykina, O.V. Analysis of the Spatial Diversity of Ecosystem Services of Urban Soils in the Conditions of the Moscow Megalopolis Abstract. Master’s Thesis, Lomonosov Moscow State University, Moscow, Russia, 2021; p. 133. [Google Scholar]
- Gottdenker, N.L.; Streicker, D.; Faust, C.L.; Carroll, C.R. Anthropogenic Land Use Change and Infectious Diseases: A Review of the Evidence. EcoHealth 2014, 11, 619–632. [Google Scholar] [CrossRef]
- Burkett-Cadena, N.D.; Vittor, A.Y. Deforestation and vector-borne disease: Forest conversion favors important mosquito vectors of human pathogens. Basic Appl. Ecol. 2018, 26, 101–110. [Google Scholar] [CrossRef]
- Dolzhenko, V.I. Plant Protection: Present and Future Fertility. Plodorodie 2018, 1, 24–26. [Google Scholar] [CrossRef]
- Wilson, E.O. The Little Things That Run the world (The Importance and Conservation of Invertebrates). Conserv. Biol. 1987, 1, 344–346. [Google Scholar] [CrossRef]
- Unc, A.; Altdorff, D.; Abakumov, E.; Adl, S.; Baldursson, S.; Bechtold, M.; Cattani, D.J.; Firbank, L.G.; Grand, S.; Guðjónsdóttir, M.; et al. Expansion of Agriculture in Northern Cold-Climate Regions: A Cross-Sectoral Perspective on Opportunities and Challenges. Front. Sustain. Food Syst. 2021, 5, 663448. [Google Scholar] [CrossRef]
- Bölter, M.; Müller, F. Resilience in polar ecosystems: From drivers to impacts and changes. Polar Sci. 2016, 10, 52–59. [Google Scholar] [CrossRef]
- Ignatieva, I.A. Legal Protection of Arctic Nature and Introduction of the Best Available Technologies. Bus. Manag. Law. 2020, 1, 46–50. [Google Scholar]
- Raven, P.H.; Wagner, D.L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc. Natl. Acad. Sci. USA 2021, 118, e2002548117. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [Green Version]
- Pretty, J.; Bharucha, Z.P. Integrated Pest Management for Sustainable Intensification of Agriculture in Asia and Africa. Insects 2015, 6, 152–182. [Google Scholar] [CrossRef] [Green Version]
- BusinesStat. Analysis of the Pesticide Market in Russia in 2017–2021. 2022. Available online: https://businesstat.ru/ (accessed on 28 December 2022).
- Ross, G. Risks and benefits of DDT. Lancet 2005, 366, 1771–1772. [Google Scholar] [CrossRef]
- Winfree, R.; Fox, J.W.; Williams, N.M.; Reilly, J.R.; Cariveau, D.P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 2015, 18, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Dee, L.E.; Cowles, J.; Isbell, F.; Pau, S.; Gaines, S.D.; Reich, P.B. When Do Ecosystem Services Depend on Rare Species? Trends Ecol. Evol. 2019, 34, 746–758. [Google Scholar] [CrossRef] [PubMed]
- Sukhoruchenko, G.I.; Vasilyeva, T.I.; Ivanova, G.P.; Volgarev, S.A. The situation with the resistance of the Colorado potato beetle Leptinotarsa decemlineata. Say to insecticides in the North-Western region of the Russian Federation. Bull. Plant Prot. 2018, 3, 49–55. [Google Scholar]
- Haynes, K.F. Sublethal effects of neurotoxic insecticides on insect behavior. Annu. Rev. Entomol. 1988, 33, 149–168. [Google Scholar] [CrossRef] [PubMed]
- Croft, B.A. Arthropod Biological Control Agents and Pesticides; Wiley: New York, NY, USA, 1990; p. 723. [Google Scholar]
- El-Wakeil, N.; Gaafar, N.; Sallam, A.; Volkmar, C. Side effects of insecticides on natural enemies and possibility of their integration in plant protection strategies. In Insecticides-Development of Safer and More Effective Technologies; Trdan, S., Ed.; IntechOpen: London, UK, 2013. [Google Scholar]
- Nawrocka, B. The Influence of Spinosad and Azadirachtin on Beneficial Fauna Naturally Occurring on Cabbage Crops. J. Fruit Ornam. Plant Res. 2008, 69, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Klimova, E.V. The influence of insecticides on the number of beneficial insects in the agrocenoses of spring grain crops. Environ. Saf. Agric. 2002, 1, 108. (In Russian) [Google Scholar]
- Kamenek, L.K. The effect of insecticides on beneficial entomofauna. Mod. High-Tech Technol. 2005, 10, 106. (In Russian) [Google Scholar]
- Sukhoruchenko, G.I.; Dolzhenko, V.I.; Novozhilov, K.V. Methods for evaluating the effect of insecticides on arthropods. Bull. Plant Prot. 2006, 3, 3–12. (In Russian) [Google Scholar]
- Gurikova, E.I.; Agapkin, N.D.; Zheryakov, E.V. The effect of pesticides on beneficial entomofauna in spring rape crops. Volga Reg. Farml. 2008, 3, 59–63. (In Russian) [Google Scholar]
- Dolzhenko, T.V.; Belousova, M.E.; Shokhina, M.V. Evaluation of insecticides action on beneficial arthropods of garden. Hortic. Vitic. 2016, 6, 29–35. (In Russian) [Google Scholar] [CrossRef]
- Balykina, E.B. The Influence of Insecticidal Load on the Beneficial Entomophauna of the Orchard. Successes Mod. Sci. 2017, 1, 92–96. (In Russian) [Google Scholar]
- Mallyabayeva, M.I. Studying the effect of the insecticide “STOZHAR” on geobionts and aquatic organisms. Notes Sci. 2020, 5, 23–27. (In Russian) [Google Scholar]
- Bonsignore, C.; Vacante, V. Influences of Botanical Pesticides and Biological Agents on Orius laevigatus—Frankliniella occidentalis Dynamics under Greenhouse Conditions. J. Plant Prot. Res. 2012, 52, 15–23. [Google Scholar] [CrossRef]
- Firake, D.; Thubru, D.; Behere, G. Eco-toxicological risk and impact of pesticides on important parasitoids of cabbage butterflies in cruciferous ecosystem. Chemosphere 2017, 168, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Krespi, L.; Rabasse, J.M.; Dedryver, C.A.; Nenon, J.P. Effect of three insecticides on the life cycle of Aphidius uzbekistanicus Luz. (Hym., Aphidiidae). J. Appl. Entomol. 1991, 111, 113–119. [Google Scholar] [CrossRef]
- Stapel, J.; Cortesero, A.; Lewis, W. Disruptive Sublethal Effects of Insecticides on Biological Control: Altered Foraging Ability and Life Span of a Parasitoid after Feeding on Extrafloral Nectar of Cotton Treated with Systemic Insecticides. Biol. Control. 2000, 17, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Alix, A.; Cortesero, A.M.; Nenon, J.P.; Anger, J.P. Selectivity assessment of chlorfenvinphos reevaluated by including physiological and behavioral effects on an important beneficial insect. Environ. Toxicol. Chem. 2001, 20, 2530–2536. [Google Scholar] [CrossRef]
- Schneider, M.; Smagghe, G.; Pineda, S.; Viñuela, E. Action of insect growth regulator insecticides and spinosad on life history parameters and absorption in third-instar larvae of the endoparasitoid Hyposoter didymator. Biol. Control. 2004, 31, 189–198. [Google Scholar] [CrossRef]
- Desneux, N.; Denoyelle, R.; Kaiser, L. A multi-step bioassay to assess the effect of the deltamethrin on the parasitic wasp Aphidius ervi. Chemosphere 2006, 65, 1697–1706. [Google Scholar] [CrossRef]
- Isaac, N.J.B.; Pocock, M.J.O. Bias and information in biological records. Biol. J. Linn. Soc. 2015, 115, 522–531. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, T.; Didham, R.K. Glowing, glowing, gone? Monitoring long-term trends in glow-worm numbers in south-east England. Insect Conserv. Divers. 2020, 13, 162–174. [Google Scholar] [CrossRef] [Green Version]
- Enfjäll, K.; Leimar, O. Density-dependent dispersal in the Glanville fritillary, Melitaea cinxia. Oikos 2005, 108, 465–472. [Google Scholar] [CrossRef]
- Régnière, J.; Nealis, V.G. Density Dependence of Egg Recruitment and Moth Dispersal in Spruce Budworms. Forests 2019, 10, 706. [Google Scholar] [CrossRef] [Green Version]
- FAO. FAOSTAT: Land Use. 2022. Available online: http://www.fao.org/faostat/en/#data/RL (accessed on 30 December 2022).
- Alekseeva, L.V. The Formation of Polar Agriculture in the USSR (Based on the Materials of Yamal). Bull. Nizhnevartovsk State Univ. 2017, 2, 3–10. (In Russian) [Google Scholar]
- Mikhailov, N.N. Above the Map of the Motherland, 1917–1947; Military Publishing House: Moscow, Russia, 1947; p. 264. (In Russian) [Google Scholar]
- Morgun, E.N.; Abakumov, E.V.; Nizamutdinov, T.I.; Ilyasov, R.M. Polar Agriculture in the Yamalo-Nenets Autonomous Okrug; Asterion: St. Petersburg, Russia, 2022; p. 250. ISBN 9785001882718. [Google Scholar]
- Vavilov, N.I. The problem of northern agriculture. In Materials of the Leningrad Extraordinary Session of the USSR Academy of Sciences on November 25–30; Publishing House of the USSR Academy of Sciences: Moscow, Russia, 1931; p. 15. (In Russian) [Google Scholar]
- Eichfeld, I.G. The Struggle for the Far North: Brief Results of the Work of the Polar Department of the All-Union Institute of Plant Growing 1923–1933; V. I. Lenin All-Union Academy of Agricultural Sciences, Institute of Plant Growing, All—Union Institute of Plant Growing: Leningrad, Russia, 1933; p. 46. (In Russian) [Google Scholar]
- Vasiliev, V.L.; Turkovskaya, K.A.; Khrennikova, M.M. Promotion of Vegetables to the Far North/All-Union Academy of Agricultural Sciences Named after V. I. Lenin; All-Union Institute of Plant Breeding of the USSR National Research Institute, Sector of State Variety Testing: Moscow, Russia; State Publishing House of Collective Farm and State Farm Literature: Leningrad, Russia, 1934; p. 68. (In Russian) [Google Scholar]
- Panyukov, A.N. From the Experience of Agricultural Development of Tundra Lands; Bulletin of the Institute of Biology of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences; Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences: Syktyvkar, Russia, 2009; pp. 16–20. (In Russian) [Google Scholar]
- Richens, R.H. Crop production in the Soviet Arctic. Polar Rec. 1951, 6, 227–236. [Google Scholar] [CrossRef]
- The State Program “Effective Involvement in the Turnover of Agricultural Lands and the Development of the Reclamation Complex”. 2023. Available online: http://government.ru/rugovclassifier/895/events/ (accessed on 16 February 2023).
- Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Chang. Biol. 2007, 13, 1860–1872. [Google Scholar] [CrossRef]
- Post, E.; Steinman, B.A.; Mann, M.E. Acceleration of phenological advance and warming with latitude over the past century. Sci. Rep. 2018, 8, 11584. [Google Scholar] [CrossRef] [Green Version]
- Kholoptsev, A.V.; Shubkin, R.G.; Baturo, A.N.; Babenyshev, S.V. Climatic Changes in the Arctic Zone of Russia and Climate Warming in Siberia. In Processes in GeoMedia—Volume VI; Chaplina, T., Ed.; Springer Geology; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Tikhanovsky, A.N. Potatoes on Yamal/Novosibirsk; Limited Liability Company “Akademizdat”: Novosibirsk, Russia, 2021; p. 160. ISBN 9785604580424. (In Russian) [Google Scholar]
- Nizamutdinov, T.; Suleymanov, A.; Morgun, E.; Yakkonen, K.; Abakumov, E. Soils and olericultural practices in circumpolar region of Russia at present and in the past. Front. Sustain. Food Syst. 2022, 6, 1032058. [Google Scholar] [CrossRef]
- Suleymanov, A.; Nizamutdinov, T.; Morgun, E.; Abakumov, E. Evaluation and Spatial Variability of Cryogenic Soil Properties (Yamal-Nenets Autonomous District, Russia). Soil Syst. 2022, 6, 65. [Google Scholar] [CrossRef]
- Abakumov, E.V.; Morgun, E.N. Problems of Actualization of Agricultural Practices in the Yamalo-Nenets Autonomous Okrug. Biosphere 2021, 13, 160–169. (In Russian) [Google Scholar]
- Olschwang, V.N.; Ryzhanovskii, V.N. Arthropods and birds in the forest–tundra of Western Siberia and the edge effect. Russ. J. Ecol. 2016, 47, 179–185. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Polar Regions. In Climate Change 2014—Impacts, Adaptation and Vulnerability: Part B: Regional Aspects: Working Group II Contribution to the IPCC Fifth Assessment Report; Cambridge University Press: Cambridge, UK, 2014; pp. 1567–1612. [Google Scholar] [CrossRef]
- Rising, J.; Tedesco, M.; Piontek, F.; Stainforth, D.A. The missing risks of climate change. Nature 2022, 610, 643–651. [Google Scholar] [CrossRef]
- Chernov, Y.I. Directions, state and prospects of domestic research of biological diversity of the Arctic. Bull. Russ. Found. Fundam. Res. 2004, 1, 5–35. (In Russian) [Google Scholar]
- Morimoto, J. Addressing global challenges with unconventional insect ecosystem services: Why should humanity care about insect larvae? People Nat. 2020, 2, 582–595. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Ranson, K.J.; Dvinskaya, M.L. Wildfires dynamic in the larch dominance zone. Geophys. Res. Lett. 2008, 35, L01402. [Google Scholar] [CrossRef]
- Chebykina, E.; Polyakov, V.; Abakumov, E.; Petrov, A. Wildfire Effects on Cryosols in Central Yakutia Region, Russia. Atmosphere 2022, 13, 1889. [Google Scholar] [CrossRef]
- Orlova-Benkovskaya, M.Y. Expansio Range of Lilium Crepitant Lilioceris lilii (Scopoli, 1763) (Coleoptera, Chrysomelidae, Criocerinae) ad Aquilonem et Mutare in Leo Imago Actio Debitum ad Caelum Tepidus in Europa. Acta Herba Praesidio 2014, 6, 18–20. [Google Scholar]
- Khumala, A.E. Records of rare and noteworthy insect species (Insecta) in the Republic of Karelia. Tr. Karel. Nauchnogo Tsentra RAN 2015, 6, 19–46. [Google Scholar] [CrossRef] [Green Version]
- Zakharova, E.Y.; Shkurikhin, A.O.; Oslina, T.S. Morphological variation of Melanargia russiae (Esper, 1783) (Lepidoptera, Satyridae) from the main part of the range and in case of its expansion to the north under climate change conditions. Contemp. Probl. Ecol. 2017, 10, 488–501. [Google Scholar] [CrossRef]
- Potapov, G.S. Population structure of Bumblebees (Hymenoptera: Apidae, Bombus latr.) of the European North of Russia. Ph.D. Thesis, The National Research Tomsk State University, Tomsk, Russia, 2015; p. 147. [Google Scholar]
- Golosova, M.A. The Role of Ants in the Biological Protection of Forests//Protection and Quarantine of Plants. No. 2. 2008. Available online: https://cyberleninka.ru/article/n/rol-muraviev-v-biologicheskoy-zaschite-lesa (accessed on 28 May 2023).
- Belokobylskij, S.A.; Lelej, A.S. (Eds.) Annotated catalogue of the Hymenoptera of Russia, Volume I, Symphyta and Apocrita: Aculeata. Proc. Zool. Inst. Russ. Acad. Sci. 2017, 6, 475. [Google Scholar]
- Żyła, D.; Homan, A.; Wegierek, P. Polyphyly of the extinct family Oviparosiphidae and its implications for inferring aphid evolution (Hemiptera, Sternorrhyncha). PLoS ONE 2017, 12, e0174791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parfenova, E.; Tchebakova, N.; Soja, A. Assessing landscape potential for human sustainability and ‘attractiveness’ across Asian Russia in a warmer 21st century. Environ. Res. Lett. 2019, 14, 065004. [Google Scholar] [CrossRef]
- King, M.; Altdorff, D.; Li, P.; Galagedara, L.; Holden, J.; Unc, A. Northward shift of the agricultural climate zone under 21st-century global climate change. Sci. Rep. 2018, 8, 7904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, H.; Stein, S. Climate opportunism and values of change on the Arctic agricultural frontier. Econ. Anthr. 2022, 9, 207–222. [Google Scholar] [CrossRef]
- Wiréhn, L. Nordic agriculture under climate change: A systematic review of challenges, opportunities and adaptation strategies for crop production. Land Use Policy 2018, 77, 63–74. [Google Scholar] [CrossRef]
- Poeplau, C.; Schroeder, J.; Gregorich, E.; Kurganova, I. Farmers’ Perspective on Agriculture and Environmental Change in the Circumpolar North of Europe and America. Land 2019, 8, 190. [Google Scholar] [CrossRef] [Green Version]
- Ryumkina, I.; Ryumkin, S.; Malykhina, A.; Ursu, D.; Khanturgaev, A. The Impact of Global Warming and Climate Change on the Development of Agriculture in the Northern Latitudes of the Eurasian Continent. In The Nature, Causes, Effects and Mitigation of Climate Change on the Environment; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Meyfroidt, P. Emerging agricultural expansion in northern regions: Insights from land-use research. One Earth 2021, 4, 1661–1664. [Google Scholar] [CrossRef]
- Raheem, D.; Holopainen, A.; Koegst, J.; Tulimaa, M.; Benkherouf, M. Promoting Sustainability within the Nordic-Arctic Region’s Food System: Challenges and Trends. Sustainability 2022, 14, 9716. [Google Scholar] [CrossRef]
- Rubtsov, V.; Utkina, I. Phyllophages of Forest Ecosystems in a Changing Climate//Bulletin of PSTU. Series: Forest. Ecology. Environmental Management. No. 3. 2010. Available online: https://cyberleninka.ru/article/n/fillofagi-lesnyh-ekosistem-v-usloviyah-izmenyayuschegosya-klimata (accessed on 23 May 2023).
- Bokina, I.G. The Influence of Precursors on the Number of Grass Aphids and Their Entomophages in the Northern Forest-Steppe of the ob Region//Bulletin of Plant Protection. No. 2. 2007. Available online: https://cyberleninka.ru/article/n/vliyanie-predshestvennikov-na-chislennost-zlakovyh-tley-i-ih-entomofagov-v-severnoy-lesostepi-priobya (accessed on 28 May 2023).
- Musolin, D.L.; Saulich, A.X. Insect reactions to modern climate change: From physiology and behavior to shifting habitats. Entomol. Rev. 2012, 91, 3–35. [Google Scholar]
- Altdorff, D.; Borchard, N.; Young, E.H.; Galagedara, L.; Sorvali, J.; Quideau, S.; Unc, A. Agriculture in boreal and Arctic regions requires an integrated global approach for research and policy. Agron. Sustain. Dev. 2021, 41, 23. [Google Scholar] [CrossRef]
- European Commission. Farm to Fork Strategy. 2022. Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed on 30 December 2022).
- Belitskaya, M.N. Ecological-adaptive methods of pest population control in forest-reclaimed ecosystems. Sci. Thought Electron. Period. J. 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Sokolov, M.S. Soil improvement and biologization of agriculture—the most important factors in optimizing the ecological status of the agro-region (Belgorod experience). Agrochemistry 2019, 2019, 3–16. [Google Scholar] [CrossRef]
- Komarova, O.; Zemlyanitsina, S. Reducing The Pesticide Load As A Basis For Environmental Safety In Rural Areas. Fundam. Res. 2020, 3, 54–59. [Google Scholar] [CrossRef]
- Komarova, O.P. Basic Principles of Ecological Protection of Plants in Irrigated Agrolandscapes. Izv. Nizhnevolzhsky Agro-Univ. Complex Sci. High. Prof. Educ. 2021, 1, 144–152. [Google Scholar] [CrossRef]
- Glosny, M.A. Heading toward a Win–Win Future? Recent Developments in China’s Policy toward Southeast Asia. Asian Secur. 2006, 2, 24–57. [Google Scholar] [CrossRef]
- Khan, Z.R.; Pickett, J.A. The Use of Push-Pull Strategies in Integrated Pest Management. Annu. Rev. Èntomol. 2007, 52, 375–400. [Google Scholar] [CrossRef] [Green Version]
- Parolin, P.; Bresch, C.; Poncet, C.; Desneux, N. Functional characteristics of secondary plants for increased pest management. Int. J. Pest Manag. 2012, 58, 369–377. [Google Scholar] [CrossRef]
- Khan, Z.R.; Midega, C.A.O.; Pittchar, J.O.; Murage, A.W.; Birkett, M.; Bruce, T.; Pickett, J.A. Achieving food security for one million sub-Saharan African poor through push–pull innovation by 2020. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20120284. [Google Scholar] [CrossRef] [Green Version]
- Khan, Z.R.; Midega, C.A.; Njuguna, E.M.; Amudavi, D.M.; Wanyama, J.M.; Pickett, J.A. Economic performance of the ‘push–pull’ technology for stemborer and Striga control in smallholder farming systems in western Kenya. Crop. Prot. 2008, 27, 1084–1097. [Google Scholar] [CrossRef]
- Hogg, B.N.; Nelson, E.H.; Mills, N.J.; Daane, K.M. Floral resources enhance aphid suppression by a hoverfly. Èntomol. Exp. Appl. 2011, 141, 138–144. [Google Scholar] [CrossRef]
- Damien, M.; Le Lann, C.; Desneux, N.; Alford, L.; Al Hassan, D.; Georges, R.; Van Baaren, J. Flowering cover crops in winter increase pest control but not trophic link diversity. Agric. Ecosyst. Environ. 2017, 247, 418–425. [Google Scholar] [CrossRef] [Green Version]
- Damien, M.; Llopis, S.; Desneux, N.; Van Baaren, J.; Le Lann, C. How does floral nectar quality affect life history strategies in parasitic wasps? Èntomol. Gen. 2020, 40, 147–156. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, F.; Soares, M.A.; Basiri, S.E.; Amiens-Desneux, E.; Campos, M.R.; Lavoir, A.-V.; Desneux, N. Effects of four non-crop plants on life history traits of the lady beetle Harmonia axyridis. Èntomol. Gen. 2020, 40, 243–252. [Google Scholar] [CrossRef]
- Blaauw, B.R.; Isaacs, R. Wildflower plantings enhance the abundance of natural enemies and their services in adjacent blueberry fields. Biol. Control. 2015, 91, 94–103. [Google Scholar] [CrossRef] [Green Version]
- MacLeod, A.; Wratten, S.D.; Sotherton, N.W.; Thomas, M.B. ‘Beetle banks’ as refuges for beneficial arthropods in farmland: Long-term changes in predator communities and habitat. Agric. For. Èntomol. 2004, 6, 147–154. [Google Scholar] [CrossRef]
- Li, S.; Jaworski, C.C.; Hatt, S.; Zhang, F.; Desneux, N.; Wang, S. Flower strips adjacent to greenhouses help reduce pest populations and insecticide applications inside organic commercial greenhouses. J. Pest Sci. 2020, 94, 679–689. [Google Scholar] [CrossRef]
- Albrecht, M.; Kleijn, D.; Williams, N.M.; Tschumi, M.; Blaauw, B.R.; Bommarco, R.; Campbell, A.J.; Dainese, M.; Drummond, F.A.; Entling, M.H.; et al. The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: A quantitative synthesis. Ecol. Lett. 2020, 23, 1488–1498. [Google Scholar] [CrossRef] [PubMed]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity—Ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Martin, E.A.; Reineking, B.; Seo, B.; Steffan-Dewenter, I. Pest control of aphids depends on landscape complexity and natural enemy interactions. PeerJ 2015, 3, e1095. [Google Scholar] [CrossRef] [Green Version]
- Tamburini, G.; De Simone, S.; Sigura, M.; Boscutti, F.; Marini, L. Soil management shapes ecosystem service provision and trade-offs in agricultural landscapes. Proc. R. Soc. B Boil. Sci. 2016, 283, 20161369. [Google Scholar] [CrossRef] [Green Version]
- Pearsons, K.A.; Tooker, J.F. In-Field Habitat Management to Optimize Pest Control of Novel Soil Communities in Agroecosystems. Insects 2017, 8, 82. [Google Scholar] [CrossRef] [Green Version]
- Tooker, J.F.; O’Neal, M.E.; Rodriguez-Saona, C. Balancing Disturbance and Conservation in Agroecosystems to Improve Biological Control. Annu. Rev. Entomol. 2020, 65, 81–100. [Google Scholar] [CrossRef] [Green Version]
- Tamburini, G.; De Simone, S.; Sigura, M.; Boscutti, F.; Marini, L. Conservation tillage mitigates the negative effect of landscape simplification on biological control. J. Appl. Ecol. 2016, 53, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Gurr, G.M.; Wratten, S.D.; Landis, D.A.; You, M. Habitat Management to Suppress Pest Populations: Progress and Prospects. Annu. Rev. Èntomol. 2017, 62, 91–109. [Google Scholar] [CrossRef] [PubMed]
- Redlich, S.; Martin, E.A.; Steffan-Dewenter, I. Landscape-level crop diversity benefits biological pest control. J. Appl. Ecol. 2018, 55, 2419–2428. [Google Scholar] [CrossRef]
- Kubiak-Hardiman, P.; Haughey, S.A.; Meneely, J.; Miller, S.; Banerjee, K.; Elliott, C.T. Identifying Gaps and Challenges in Global Pesticide Legislation that Impact the Protection of Consumer Health: Rice as a Case Study. Expo. Health 2022, 64, 1–22. [Google Scholar] [CrossRef]
- Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and Federal Facilities. 2022. Available online: https://www.epa.gov/enforcement/federal-insecticide-fungicide-and-rodenticide-act-fifra-and-federal-facilities (accessed on 30 December 2022).
- Pesticides the European Food Safety Authority. 2023. Available online: https://www.efsa.europa.eu/en/topics/topic/pesticides (accessed on 15 February 2023).
- Lu, B.-R. Challenges of transgenic crop commercialization in China. Nat. Plants 2016, 2, 16077. [Google Scholar] [CrossRef] [PubMed]
- CIRS. Overview of Pesticide Regulations in China. 2022. Available online: https://www.cirs-group.com/en/agrochemicals/overview-of-pesticide-regulations-in-china (accessed on 30 December 2022).
- Agência Nacional de Vigilância Sanitária—Anvisa. Pesticides. 2023. Available online: https://www.gov.br/anvisa/pt-br/english/regulation-of-products/pesticides (accessed on 15 February 2023).
- Regulations on Federal State Control (Supervision) in the Field of Safe Handling of Pesticides and Agrochemicals. 2023. Available online: https://docs.cntd.ru/document/607132666 (accessed on 15 February 2023).
- Federal Law on Organic Products and on Amendments to Certain Legislative Acts of the Russian Federation. 2022. Available online: http://www.consultant.ru/document/cons_doc_LAW_304017/ (accessed on 30 December 2022).
- Federal Law “On Technical Regulation” in Russian Federation. Available online: http://www.consultant.ru/document/cons_doc_LAW_40241/ (accessed on 31 December 2022).
- Pretty, J. Agricultural sustainability: Concepts, principles and evidence. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 447–465. [Google Scholar] [CrossRef] [Green Version]
- Godfray, H.C.J.; Garnett, T. Food security and sustainable intensification. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20120273. [Google Scholar] [CrossRef]
- Török, Á.; Schleicher, K.; Scholten, L. The Role of Legal Frameworks in Advancing Sustainable Agriculture in Europe. Sustainability 2019, 11, 2269. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zharkov, D.; Nizamutdinov, T.; Dubovikoff, D.; Abakumov, E.; Pospelova, A. Navigating Agricultural Expansion in Harsh Conditions in Russia: Balancing Development with Insect Protection in the Era of Pesticides. Insects 2023, 14, 557. https://doi.org/10.3390/insects14060557
Zharkov D, Nizamutdinov T, Dubovikoff D, Abakumov E, Pospelova A. Navigating Agricultural Expansion in Harsh Conditions in Russia: Balancing Development with Insect Protection in the Era of Pesticides. Insects. 2023; 14(6):557. https://doi.org/10.3390/insects14060557
Chicago/Turabian StyleZharkov, Dmitry, Timur Nizamutdinov, Dmitry Dubovikoff, Evgeny Abakumov, and Alena Pospelova. 2023. "Navigating Agricultural Expansion in Harsh Conditions in Russia: Balancing Development with Insect Protection in the Era of Pesticides" Insects 14, no. 6: 557. https://doi.org/10.3390/insects14060557
APA StyleZharkov, D., Nizamutdinov, T., Dubovikoff, D., Abakumov, E., & Pospelova, A. (2023). Navigating Agricultural Expansion in Harsh Conditions in Russia: Balancing Development with Insect Protection in the Era of Pesticides. Insects, 14(6), 557. https://doi.org/10.3390/insects14060557