Identification of Terpenoid Compounds and Toxicity Assays of Essential Oil Microcapsules from Artemisia stechmanniana
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plants and Insects
2.2. Preparation of the Essential Oil
2.3. Analysis of Essential Oils from A. stechmanniana Using GC/MS
2.4. Indoor Toxicity Assays
2.5. Preparation of A. stechmanniana Essential Oil Microcapsule
2.6. Release (R%) of the Essential Oil Microcapsule
2.7. Field Efficacy Assay
2.8. Data Analysis
3. Results
3.1. Identification of Terpenoid Compounds in A. stechmanniana Essential Oils
3.2. Insecticidal Activity of A. stechmanniana Essential Oil on Three Different Insect Species
3.3. A. stechmanniana Essential Oil Microcapsule
3.4. Release (R%)
3.5. Control Efficacy (CE%) with A. stechmanniana Essential Oil Microcapsule
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Blowman, K.; Magalhaes, M.; Lemos, M.F.L.; Cabral, C.; Pires, I.M. Anticancer properties of essential oils and other natural products. Evid. Based Complement. Altern. Med. 2018, 2018, 3149362. [Google Scholar] [CrossRef] [PubMed]
- Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential oils as Natural Sources of Fragrance Compounds for Cosmetics and Cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef] [PubMed]
- Scheringer, M.; Johansson, J.H.; Salter, M.E.; Sha, B.; Cousins, I.T. Stories of Global Chemical Pollution: Will We Ever Understand Environmental Persistence? Environ. Sci. Technol. 2022, 56, 17498–17501. [Google Scholar] [CrossRef]
- Chu, S.S.; Hu, J.F.; Liu, Z.L. Composition of essential oils of Chinese Chenopodium ambrosioides and insecticidal activities to maize weevil, Sitophilus zeamais. Pest Manag. Sci. 2011, 67, 714–718. [Google Scholar] [CrossRef]
- Donald, A.; Ukeh, A.B.; Sylvia, B.A.; Umoetok, A. Repellent effects of Þve monoterpenoid odours against Tribolium castaneum (Herbst) and Rhyzopertha dominica (F.) in Calabar, Nigeria. Crop Prot. 2011, 30, 1351–1355. [Google Scholar]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Qin, J.Q.; Wang, Y.; Zhou, T.N.; Feng, N.C.; Ma, C.H.; Zhu, M.L. Levels and health risk assessment of pesticides and metals in Lycium barbarum L. from different sources in Ningxia, China. Sci. Rep. 2022, 12, 561. [Google Scholar] [CrossRef]
- Cao, Y.L.; Li, Y.L.; Fan, Y.F.; Li, Z.; Yoshida, K.; Wang, J.Y.; Ma, X.K.; Wang, N.; Mitsuda, N.; Kotake, T.; et al. Wolfberry genomes and the evolution of Lycium (Solanaceae). Commun. Biol. 2021, 4, 671. [Google Scholar] [CrossRef]
- Xu, C.Q.; Liu, S.; Xu, R.; Chen, J.; Cheng, H.Z. Investigation of production status in major wolfberry producingareas of China and some suggestions. China J. Chin. Mater. Med. 2014, 39, 1979–1984. (In Chinese) [Google Scholar]
- Zhao, W.H.; Zheng, Q.; Qin, D.Q.; Luo, P.R.; Ye, C.Y.; Shen, S.G.; Cheng, D.M.; Huang, S.Q.; Liu, L.H.; Zhang, Z.; et al. Azadirachtin inhibits the development and metabolism of the silk glands of Spodoptera frugiperda and affects spinning behavior. Pest Manag. Sci. 2022, 78, 5293–5301. [Google Scholar] [CrossRef]
- Aniwanou, C.T.; Sinzogan, A.A.; Deguenon, J.M.; Sikirou, R.; Stewart, D.A.; Ahanchede, A. Bio-efficacy of diatomaceous earth, household soaps, and neem oil against Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae in Benin. Insects 2020, 12, 18. [Google Scholar] [CrossRef]
- David, K.; Dean, T.; Susana, G.; Derek, C.; Kevin, G.; Taylor, S. Environmental safety to decomposer invertebrates of azadirachtin (neem) as a systemic insecticide in trees to control emerald ash borer. Ecotoxicol. Environ. Saf. 2011, 74, 1734–1741. [Google Scholar]
- Liu, C.; Liu, Z.L.; Zhang, R.; Huang, W.G.; Wang, F.; Quan, M.R. Control effect of the essential oils of Artemisia mongolica against three main pests of Wolfberry (Lycium barbarum). Chin. J. Biol. Control 2022, 38, 1400–1409. (In Chinese) [Google Scholar]
- Ahmed, M.; Peiwen, Q.; Gu, Z.; Liu, Y.; Sikandar, A.; Hussain, D.; Javeed, A.; Shafi, J.; Iqbal, M.F.; An, R.; et al. Insecticidal activity and biochemical composition of Citrullus colocynthis, Cannabis indica and Artemisia argyi extracts against cabbage aphid (Brevicoryne brassicae L.). Sci. Rep. 2020, 10, 522. [Google Scholar] [CrossRef]
- Zhang, J.W.; Wang, D.; Zhang, Z.; Lu, X.X.; Du, Y.S.; Zheng, Y.U.; Du, S.S. Chemical composition and insecticidal properties of essential oil obtained from Artemesia songarica Schrenk. J. Food Prot. 2022, 85, 686–692. [Google Scholar] [CrossRef]
- Umpiérrez, M.L.; Paullier, J.; Porrini, M.; Garrido, M.; Santos, E.; Rossini, C. Potential botanical pesticides from Asteraceae essential oils for tomato production: Activity against whiteflies, plants and bees. Ind. Crops Prod. 2017, 109, 686–692. [Google Scholar] [CrossRef]
- Ivănescu, B.; Burlec, A.F.; Crivoi, F.; Roșu, C.; Corciovă, A. Secondary metabolites from Artemisia Genus as biopesticides and innovative nano-based application strategies. Molecules 2021, 26, 3061. [Google Scholar] [CrossRef]
- Ekiert, H.; Klimek-Szczykutowicz, M.; Rzepiela, A.; Klin, P.; Szopa, A. Artemisia species with high biological values as a potential source of medicinal and cosmetic raw materials. Molecules 2022, 27, 6427. [Google Scholar] [CrossRef]
- Chang, H.T.; Lin, C.Y.; Hsu, L.S.; Chang, S.T. Thermal degradation of linalool-chemotype Cinnamomum osmophloeum leaf essential oils and its stabilization by microencapsulation with β-Cyclodextrin. Molecules 2021, 26, 409. [Google Scholar] [CrossRef]
- Liang, Y.; Li, J.L.; Xu, S.; Zhao, N.N.; Zhou, L.; Cheng, J.; Liu, Z.L. Evaluation of repellency of some Chinese medicinal herbs essential oilss against Liposcelis bostrychophila (Psocoptera: Liposcelidae) and Tribolium castaneum (Coleoptera: Tenebrionidae). J. Econ. Entomol. 2013, 106, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.S.; Hu, J.F.; Liu, Z.L. Insecticidal compounds from the essential oils of Chinese medicinal herb Atractylodes chinensis. Pest Manag. Sci. 2011, 67, 1253–1257. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.J.; Xiao, H.; Hu, X.P.; Liu, Z.L. Insecticidal activities of the essential oils of Rhynchanthus beesianus rhizomes and its constituents against two species of grain storage insects. Z. Naturforsch. C 2022, 78, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Qin, Y.G.; Zhang, Y.H.; Zhou, Y.B.; Li, Z.X. Farnesyl/geranylgeranyl diphosphate synthases regulate the biosynthesis of alarm pheromone in a unique manner in the vetch aphid Megoura viciae. Insect Mol. Biol. 2022, 32, 229–239. [Google Scholar] [CrossRef]
- Li, Z.H.; Wang, Y.; Sun, J.S.; Li, J.G.; Zou, K.X.; Liu, H.; Li, G.X.; Hu, Z.Z.; Nong, L.Z.; Ning, Z.X.; et al. Repellent activities of essential oilss rich in sesquiterpenoids from Saussurea amara (L.) DC. and Sigesbeckia pubescens Makino against two stored-product insects. Environ. Sci. Pollut. Res. Int. 2019, 26, 36048–36054. [Google Scholar] [CrossRef]
- Cantó-Tejero, M.; Guirao, P.; Pascual-Villalobos, M.J. Aphicidal activity of farnesol against the green peach aphid Myzus persicae. Pest Manag. Sci. 2022, 78, 2714–2721. [Google Scholar] [CrossRef]
- Gharbi, K.; Jia-Wei, T. Fumigant toxicity of essential oilss against Frankliniella occidentalis and F. insularis (Thysanoptera: Thripidae) as affected by polymer release and adjuvants. Insects 2022, 13, 493. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Hafeez, M.; Huang, J.; Zhang, J.; Wang, L.; Lu, Y. Rosmarinus officinialis L. (Lamiales: Lamiaceae), a Promising Repellent Plant for Thrips Management. J. Econ. Entomol. 2021, 114, 131–141. [Google Scholar] [CrossRef]
- Rizvi, S.A.H.; Ling, S.; Tian, F.; Xie, F.; Zeng, X. Toxicity and enzyme inhibition activities of the essential oils and dominant constituents derived from Artemisia absinthium L. against adult Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Ind. Crops Prod. 2018, 121, 468–475. [Google Scholar] [CrossRef]
- Hogenbom, J.; Jones, A.; Wang, H.V.; Pickett, L.J.; Faraone, N. Synthesis and characterization of β-cyclodextrin-essential oils inclusion complexes for tick repellent development. Polymers 2021, 13, 1892. [Google Scholar] [CrossRef]
- Sittipummongkol, K.; Chuysinuan, P.; Techasakul, S.; Pisitsak, P.; Pechyen, C. Core shell microcapsules of neem seed oil extract containing azadirachtin and biodegradable polymers and their release characteristics. Polym. Bull. 2019, 76, 3803–3817. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Zandi, M.; Rezaei, M.; Farahmandghavi, F. Two step method for encapsulation of oregano essential oils in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydr. Polym. 2013, 95, 50–56. [Google Scholar] [CrossRef]
- Li, J.; Tian, B.; Isman, M. Peppermint essential oils toxicity to the pear psylla (Hemiptera: Psyllidae) and potential applications in the field. J. Econ. Entomol. 2020, 113, 1307–1314. [Google Scholar] [CrossRef]
- Pascual-Villalobos, M.J.; Díaz, I.; Martín, F.; Cantó-Tejero, M.; Villora, G.; Guirao, P. Plant bioactive volatile products and their efficiency in aphid control. Ind. Crops Prod. 2022, 183, 114975. [Google Scholar] [CrossRef]
- Wu, Y.J.; Wang, B.J.; Wang, M.R.; Peng, Y.C.; Cao, H.Q.; Sheng, C.W. Control efficacy and joint toxicity of metaflumizone mixed with chlorantraniliprole or indoxacarb against the fall armyworm, Spodoptera frugiperda. Pest Manag. Sci. 2022, 79, 1094–1101. [Google Scholar] [CrossRef]
- Piao, X.X.; Zhang, L.R.; Zhang, S.X. Nematicidal action of microencapsulated essential oils of flesh fingered citron. J. Chem. 2020, 1, 7934605. [Google Scholar] [CrossRef]
- Sakuma, M. Probit analysisof preference data. Appl. Entomol. Zool. 1998, 33, 339–347. [Google Scholar] [CrossRef]
- Oosten, A.; Gut, J.; Harrewijn, P.; Piron, P. Role of farnesene isomers and other terpenoids in the development of different morphs and forms of the aphids Aphis fabae and Myzus persicae. Acta. Phytopathol. Entomol. 1990, 25, 331–342. [Google Scholar]
- Gupta, G.; Agarwal, U.; Kaur, H.; Kumar, N.R.; Gupta, P. Aphicidal effects of terpenoids present in Citrus limon on Macrosiphum roseiformis and two generalist insect predators. J. Asia Pac. Entomol. 2017, 20, 1087–1095. [Google Scholar] [CrossRef]
No. | Retention Time (min) | Name of Terpenoid | % Peak Area | Molecular Formula |
---|---|---|---|---|
1 | 4.238 | (1R)-2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene | 0.07 | C10H16 |
2 | 5.896 | Eucalyptol | 4.38 | C10H18O |
3 | 6.932 | Linalool | 0.46 | C10H18O |
4 | 7.28 | Thujone | 0.09 | C10H16O |
5 | 7.54 | (+)-trans-Chrysanthenyl acetate | 0.11 | C10H16O |
6 | 7.66 | (1R,4R)-4-Isopropyl-1-methylcyclohex-2-enol | 0.80 | C10H18O |
7 | 7.78 | (+)-2-Bornanone | 4.68 | C10H16O |
8 | 8.0 | Pinocarvone | 0.67 | C10H14O |
9 | 8.48 | α-Terpineol | 1.10 | C10H18O |
10 | 8.96 | 4-methyl-1-(1-methylethyl)-bicyclo[3.1.0]hexan-3-ol | 0.21 | C10H18O |
11 | 10.96 | β-Bisabolene | 0.06 | C15H24O |
12 | 11.42 | 1-(1,2,3-Trimethyl-cyclopent-2-enyl)-ethanone | 7.09 | C10H16O |
13 | 11.63 | Caryophyllene | 0.41 | C15H24 |
14 | 11.93 | Kessane | 0.48 | C15H24 |
15 | 13.61 | (-)-Spathulenol | 4.53 | C15H24O |
16 | 13.69 | Caryophyllene oxide | 1.36 | C15H24O |
17 | 14.80 | α-Bisabolol | 1.16 | C15H24O |
Insects | Treatments | LC50/LD50 | 95% Confidence Interval | Slope ± SE | χ2 |
---|---|---|---|---|---|
A. gossypii | A. stechmanniana | 5.39 mg/mL | 4.32–6.87 | 1.63 ± 0.20 | 8.20 |
Azadirachtin | 14.47 mg/mL | 11.64–18.69 | 1.66 ± 0.21 | 8.20 | |
F. occidentalis | A. stechmanniana | 0.34 mg/L air * | 0.27–0.45 | 1.37 ± 0.19 | 7.25 |
Azadirachtin | 0.59 mg/L air * | 0.47–0.76 | 1.62 ± 0.20 | 8.20 | |
B. gobica | A. stechmanniana | 1.40 μg/insect # | 1.06–1.94 | 1.29 ± 0.15 | 8.32 |
Azadirachtin | 2.27 μg/insect # | 1.75–3.12 | 1.36 ± 0.18 | 7.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Liu, Z.; Zhang, Y.; Song, X.; Huang, W.; Zhang, R. Identification of Terpenoid Compounds and Toxicity Assays of Essential Oil Microcapsules from Artemisia stechmanniana. Insects 2023, 14, 470. https://doi.org/10.3390/insects14050470
Liu C, Liu Z, Zhang Y, Song X, Huang W, Zhang R. Identification of Terpenoid Compounds and Toxicity Assays of Essential Oil Microcapsules from Artemisia stechmanniana. Insects. 2023; 14(5):470. https://doi.org/10.3390/insects14050470
Chicago/Turabian StyleLiu, Chang, Zhilong Liu, Yihan Zhang, Xuan Song, Wenguang Huang, and Rong Zhang. 2023. "Identification of Terpenoid Compounds and Toxicity Assays of Essential Oil Microcapsules from Artemisia stechmanniana" Insects 14, no. 5: 470. https://doi.org/10.3390/insects14050470
APA StyleLiu, C., Liu, Z., Zhang, Y., Song, X., Huang, W., & Zhang, R. (2023). Identification of Terpenoid Compounds and Toxicity Assays of Essential Oil Microcapsules from Artemisia stechmanniana. Insects, 14(5), 470. https://doi.org/10.3390/insects14050470