Resistance Allele Frequency of Helicoverpa zea to Vip3Aa Bacillus thuringiensis Protein in the Southeastern U.S.
Abstract
Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Insect Source and Establishment of H. zea F2 Families
2.2. Discriminating Concentration of F2 Screens
2.3. Dose-Response Bioassays for Resistance Confirmation
2.4. Data Analysis
3. Results
3.1. Establishment of F2 Families and Survival in the Discriminating Concentration of Vip3Aa39
3.2. Dose-Response Bioassays for Resistance Confirmation
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banerjee, R.; Hasler, J.; Meagher, R.; Nagoshi, R.; Hietala, L.; Huang, F.; Narva, K.; Jurat-Fuentes, J.L. Mechanism and DNA-based detection of field-evolved resistance to transgenic Bt corn in fall armyworm (Spodoptera frugiperda). Sci. Rep. 2017, 7, 10877. [Google Scholar] [CrossRef]
- Ferré, J.; Van Rie, J. Biochemistry and Genetics of Insect Resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 2002, 47, 501–533. [Google Scholar] [CrossRef] [PubMed]
- Chakroun, M.; Banyuls, N.; Bel, Y.; Escriche, B.; Ferré, J. Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria. MMBR 2016, 80, 329–350. [Google Scholar] [CrossRef]
- Jurat-Fuentes, J.L.; Heckel, D.G.; Ferré, J. Mechanisms of Resistance to Insecticidal Proteins from Bacillus thuringiensis. Annu. Rev. Entomol. 2021, 66, 121–140. [Google Scholar] [CrossRef]
- Bravo, A.; Pacheco, S.; Gómez, I.; Garcia-Gómez, B.; Onofre, J.; Soberón, M. Insecticidal proteins from Bacillus thuringiensis and their mechanism of action. In Bacillus thuringiensis and Lysinibacillus sphaericus; Fiuza, L., Polanczyk, R., Crickmore, N., Eds.; Springer: Cham, Switzerland, 2017; pp. 53–66. [Google Scholar]
- Fernandez-Cornejo, J.; Wechsler, S.; Livingston, M.; Mitchell, L. Genetically Engineered Crops in the United States; ERR-162; United States Department of Agriculture: Washington, DC, USA, 2014; p. 54. [Google Scholar]
- Fleming, D.; Musser, F.; Reisig, D.; Greene, J.; Taylor, S.; Parajulee, M.; Lorenz, G.; Catchot, A.; Gore, J.; Kerns, D.; et al. Effects of transgenic Bacillus thuringiensis cotton on insecticide use, heliothine counts, plant damage, and cotton yield: A meta-analysis, 1996–2015. PLoS ONE 2018, 13, 27. [Google Scholar] [CrossRef] [PubMed]
- US-EPA. EPA Needs Better Data, Plans and Tools to Manage Insect Resistance to Genetically Engineered Corn; 16-P-0194; US Environmental Protection Agency, Office of the Inspector General: Washington, DC, USA, 2016; p. 22. [Google Scholar]
- Tabashnik, B.E.; Carrière, Y. Surge in insect resistance to transgenic crops and prospects for sustainability. Nat. Biotechnol. 2017, 35, 926–935. [Google Scholar] [CrossRef]
- Dively, G.P.; Venugopal, P.D.; Finkenbinder, C. Field-evolved resistance in corn earworm to Cry proteins expressed by transgenic sweet corn. PLoS ONE 2016, 11, e0169115. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Guo, J.G.; Brown, S.; Head, G.P.; Price, P.A.; Paula-Moraes, S.; Ni, X.Z.; Dimase, M.; Huang, F. Field-evolved resistance of Helicoverpa zea (Boddie) to transgenic maize expressing pyramided Cry1A.105/Cry2Ab2 proteins in northeast Louisiana, the United States. J. Invertebr. Pathol. 2019, 163, 11–20. [Google Scholar] [CrossRef]
- Reisig, D.D.; Huseth, A.S.; Bacheler, J.S.; Aghaee, M.-A.; Braswell, L.; Burrack, H.J.; Flanders, K.; Greene, J.K.; Herbert, D.A.; Jacobson, A.; et al. Long-Term Empirical and Observational Evidence of Practical Helicoverpa zea Resistance to Cotton with Pyramided Bt Toxins. J. Econ. Entomol. 2018, 111, 1824–1833. [Google Scholar] [CrossRef]
- Yang, F.; Santiago González, J.C.; Williams, J.; Cook, D.C.; Gilreath, R.T.; Kerns, D.L. Occurrence and Ear Damage of Helicoverpa zea on Transgenic Bacillus thuringiensis Maize in the Field in Texas, U.S. and Its Susceptibility to Vip3A Protein. Toxins 2019, 11, 102. [Google Scholar] [CrossRef]
- Yang, F.; Kerns, D.L.; Little, N.; Brown, S.A.; Stewart, S.D.; Catchot, A.L.; Cook, D.R.; Gore, J.; Crow, W.D.; Lorenz, G.M.; et al. Practical resistance to Cry toxins and efficacy of Vip3Aa in Bt cotton against Helicoverpa zea. Pest Manag. Sci. 2022, 78, 5234–5242. [Google Scholar] [CrossRef]
- Yang, F.; Kerns, D.L.; Little, N.S.; Santiago González, J.C.; Tabashnik, B.E. Early Warning of Resistance to Bt Toxin Vip3Aa in Helicoverpa zea. Toxins 2021, 13, 618. [Google Scholar] [CrossRef]
- Brown, S.A.; Walker, W.; Cole, C.L.; Kerns, D.L. Efficacy and Field Performance of Bt Cotton in Louisiana. In Proceedings of the Beltwide Cotton Conferences, New Orleans, LA, USA, 8–10 January 2019; pp. 477–480. [Google Scholar]
- Yang, F.; Santiago González, J.C.; Little, N.; Reisig, D.; Payne, G.; Dos Santos, R.F.; Jurat-Fuentes, J.L.; Kurtz, R.; Kerns, D.L. First documentation of major Vip3Aa resistance alleles in field populations of Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in Texas, USA. Sci. Rep. 2020, 10, 5867. [Google Scholar] [CrossRef]
- USDA-AMS-CTP. Cotton Varieties Planted, United States 2020 Crop; mp_cn833; U.S. Department of Agriculture, Agricultural Marketing Service—Cotton and Tobacco Program: Memphis, TN, USA, 2020; p. 11. [Google Scholar]
- Carpenter, J.; Sparks, A.; Pair, S.; Cromroy, H. Heliothis zea (Lepidoptera: Noctuidae): Effects of radiation and inherited sterility on mating competitiveness. J. Econ. Entomol. 1989, 82, 109–113. [Google Scholar] [CrossRef]
- Jones, R.L.; Perkins, W.; Sparks, A. Effect of sex ratios on reproduction by the corn earworm in the laboratory. Ann. Entomol. Soc. Am. 1979, 72, 35–37. [Google Scholar] [CrossRef]
- Blanco, C.A.; Sumerford, D.V.; López, J.D., Jr.; Hernández, G.; Abel, C.A. Mating Behavior of Wild Helicoverpa zea (Lepidoptera: Noctuidae) Males with Laboratory Females. J. Cotton Sci. 2010, 14, 191–198. [Google Scholar]
- Santiago-González, J.C.; Kerns, D.L.; Head, G.P.; Yang, F. A modified F2 screen for estimating Cry1Ac and Cry2Ab resistance allele frequencies in Helicoverpa zea (Lepidoptera: Noctuidae). J. Econ. Entomol. 2023, XX, toac181. [Google Scholar] [CrossRef]
- Kerns, D.L.; Yang, F.; Cook, D.R.; Gore, J.; Stewart, S.D.; Jurat-Fuentes, J.L.; Lorenz, G.M.; Catchot, A.L.; Brown, S.A. Bt resistance and Bt technology performance for Texas and the Mid-South in 2019. In Proceedings of the Beltwide Cotton Conferences, Austin, TX, USA, 8–10 January 2020; pp. 479–489. [Google Scholar]
- Yang, F.; Santiago González, J.C.; Head, G.P.; Price, P.A.; Kerns, D.L. Multiple and non-recessive resistance to Bt proteins in a Cry2Ab2-resistant population of Helicoverpa zea. Crop Prot. 2021, 145, 105650. [Google Scholar] [CrossRef]
- Yang, F.; Santiago González, J.C.; Sword, G.A.; Kerns, D.L. Genetic basis of resistance to the Vip3Aa Bt protein in Helicoverpa zea. Pest Manag. Sci. 2021, 77, 1530–1535. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Andow, D.; Alstad, D. F2 screen for rare resistance alleles. J. Econ. Entomol. 1998, 91, 572–578. [Google Scholar] [CrossRef]
- SAS Institute. SAS 9.4®: Statistical Procedures; SAS Institute: Cary, NC, USA, 2017. [Google Scholar]
- Andow, D.; Olson, D.; Hellmich, R.L.; Alstad, D.; Hutchison, W. Frequency of resistance to Bacillus thuringiensis toxin Cry1Ab in an Iowa population of European corn borer (Lepidoptera: Crambidae). J. Econ. Entomol. 2000, 93, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Oyediran, I.; Yu, W.; Lin, S.; Dimase, M.; Brown, S.; Reay-Jones, F.P.F.; Cook, D.; Reisig, D.; Thrash, B.; et al. Populations of Helicoverpa zea (Boddie) in the Southeastern United States are Commonly Resistant to Cry1Ab, but Still Susceptible to Vip3Aa20 Expressed in MIR 162 Corn. Toxins 2021, 13, 63. [Google Scholar] [CrossRef] [PubMed]
- Andow, D.; Alstad, D. Credibility Interval for Rare Resistance Allele Frequencies. J. Econ. Entomol. 1999, 92, 755–758. [Google Scholar] [CrossRef]
- Stodola, T.; Andow, D. F2 screen variations and associated statistics. J. Econ. Entomol. 2004, 97, 1756–1764. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Oyediran, I.; Niu, Y.; Brown, S.; Cook, D.; Ni, X.; Zhang, Y.; Reay-Jones, F.P.F.; Chen, J.S.; Wen, Z.; et al. Resistance Allele Frequency to Cry1Ab and Vip3Aa20 in Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in Louisiana and Three Other Southeastern U.S. States. Toxins 2022, 14, 270. [Google Scholar] [CrossRef]
- Hardwick, D.F. The Corn Earworm Complex. Mem. Entomol. Soc. Can. 1965, 97 (Suppl. S40), 5–247. [Google Scholar] [CrossRef]
- Yang, F.; Kerns, D.; Gore, J.; Catchot, A.; Lorenz, G.; Stewart, S. Susceptibility of field populations of the cotton bollworm in the southern U.S. to four individual Bt proteins. In Proceedings of the Beltwide Cotton Conferences, Dallas, TX, USA, 4–6 January 2017; pp. 786–797. [Google Scholar]
- Kerns, D.L.; Yang, F.; Lorenz, G.M.; Gore, J.; Catchot, A.L.; Stewart, S.D.; Brown, S.A.; Cook, D.R.; Seiter, N. Value of Bt technology for bollworm management. In Proceedings of the Beltwide Cotton Conferences, San Antonio, TX, USA, 3–5 January 2018; pp. 805–809. [Google Scholar]
- Welch, K.L.; Unnithan, G.C.; Degain, B.A.; Wei, J.; Zhang, J.; Li, X.; Tabashnik, B.E.; Carrière, Y. Cross-resistance to toxins used in pyramided Bt crops and resistance to Bt sprays in Helicoverpa zea. J. Invertebr. Pathol. 2015, 132, 149–156. [Google Scholar] [CrossRef]
- Gilreath, R.T.; Kerns, D.L.; Huang, F.; Yang, F. No positive cross-resistance to Cry1 and Cry2 proteins favors pyramiding strategy for management of Vip3Aa resistance in Spodoptera frugiperda. Pest Manag. Sci. 2021, 77, 1963–1970. [Google Scholar] [CrossRef] [PubMed]
- Tabashnik, B.E.; Carrière, Y. Evaluating Cross-resistance between Vip and Cry Toxins of Bacillus thuringiensis. J. Econ. Entomol. 2020, 113, 553–561. [Google Scholar] [CrossRef]
- Bergamasco, V.B.; Mendes, D.R.P.; Fernandes, O.A.; Desidério, J.A.; Lemos, M.V.F. Bacillus thuringiensis Cry1Ia10 and Vip3Aa protein interactions and their toxicity in Spodoptera spp. (Lepidoptera). J. Invertebr. Pathol. 2013, 112, 152–158. [Google Scholar] [CrossRef]
- Soares Figueiredo, C.; Nunes Lemes, A.R.; Sebastião, I.; Desidério, J.A. Synergism of the Bacillus thuringiensis Cry1, Cry2, and Vip3 Proteins in Spodoptera frugiperda Control. Appl. Biochem. Biotechnol. 2019, 188, 798–809. [Google Scholar] [CrossRef] [PubMed]
- Baranek, J.; Banaszak, M.; Lorent, D.; Kaznowski, A.; Konecka, E. Insecticidal activity of Bacillus thuringiensis Cry1, Cry2 and Vip3 toxin combinations in Spodoptera exigua control: Highlights on synergism and data scoring. Entomol. Gen. 2021, 41, 71–82. [Google Scholar] [CrossRef]
- Dively, G.; Kuhar, T.; Taylor, S.; Doughty, H.; Holmstrom, K.; Gilrein, D.; Nault, B.; Ingerson-Mahar, J.; Whalen, J.; Reisig, D.; et al. Sweet Corn Sentinel Monitoring for Lepidopteran Field-Evolved Resistance to Bt Toxins. J. Econ. Entomol. 2021, 114, 307–319. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, F.; Chen, J.; Huang, F.; Andow, D.A.; Wang, Y.; Zhu, Y.C.; Shen, J. Using an F2 screen to monitor frequency of resistance alleles to Bt cotton in field populations of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Pest Manag. Sci. 2009, 65, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Gould, F. Sustainability of transgenic insecticidal cultivars: Integrating pest genetics and ecology. Annu. Rev. Entomol. 1998, 43, 701–726. [Google Scholar] [CrossRef] [PubMed]
Year | Collection Site | Host | Feral H. zea Males (♂) Collected for the Parental Cross | Number of Established F2 Families |
---|---|---|---|---|
2019 | Alexandria, LA | Cry1A.105 + Cry2Ab2 corn | 28 | 7 |
Cry1Ac + Cry2Ab2 cotton | 33 | 14 | ||
Stoneville, MS | Cry1A.105 + Cry2Ab2 corn | 30 | 5 | |
Leland, MS | Non-Bt host: soybean | 32 | 10 | |
Jackson, TN | Non-Bt host: soybean | 31 | 6 | |
Non-Bt host: sorghum | 23 | 6 | ||
Cry1Ab + Cry1F corn | 35 | 4 | ||
Sub-total | 212 | 52 | ||
2020 | Stoneville, MS | Non-Bt host: corn | 41 | 17 |
Cry1Ab sweet corn | 35 | 16 | ||
Cry1A.105 + Cry2Ab2 corn | 11 | 1 | ||
Winnsboro, LA | Cry1A.105 + Cry2Ab2 corn | 43 | 17 | |
Non-Bt host: corn | 33 | 2 | ||
Avoyelles, LA | Non-Bt host: soybean | 37 | 8 | |
Alexandria, LA | Cry1A.105 + Cry2Ab2 corn | 32 | 6 | |
Jackson, TN | Cry1A.105 + Cry2Ab2 corn | 31 | 13 | |
Mississippi, AR | Cry1A.105 + Cry2Ab2 corn | 63 | 28 | |
Non-Bt host: corn | 42 | 16 | ||
Pine Bluff, AR | Cry1A.105 + Cry2Ab2 corn | 18 | 1 | |
Marianna, AR | Cry1A.105 + Cry2Ab2 corn | 25 | 15 | |
Sub-total | 411 | 140 | ||
Total | 623 | 192 |
Year | Collection Site of the Feral Parental | No. Tested F2 Families | No. Surviving Families | No. 2nd Instar | No. 3rd Instar | No. 4th Instar |
---|---|---|---|---|---|---|
2019 | Alexandria, LA | 7 | 0 | 0 | 0 | 0 |
14 | 1 | 0 | 4 | 17 | ||
Stoneville, MS | 5 | 0 | 0 | 0 | 0 | |
Leland, MS | 10 | 2 | 2 | 0 | 0 | |
Jackson, TN | 6 | 0 | 0 | 0 | 0 | |
6 | 0 | 0 | 0 | 0 | ||
4 | 0 | 0 | 0 | 0 | ||
Sub-total | 52 | 3 | 2 | 4 | 17 | |
2020 | Stoneville, MS | 17 | 0 | 0 | 0 | 0 |
16 | 3 | 4 | 19 | 2 | ||
1 | 1 | 1 | 0 | 0 | ||
Winnsboro, LA | 17 | 1 | 1 | 0 | 0 | |
2 | 1 | 0 | 6 | 14 | ||
Avoyelles, LA | 8 | 1 | 1 | 0 | 0 | |
Alexandria, LA | 6 | 1 | 1 | 0 | 0 | |
Jackson, TN | 13 | 0 | 0 | 0 | 0 | |
Mississippi, AR | 28 | 1 | 1 | 0 | 0 | |
16 | 1 | 1 | 0 | 0 | ||
Pine Bluff, AR | 1 | 0 | 0 | 0 | 0 | |
Marianna, AR | 15 | 0 | 0 | 0 | 0 | |
Sub-total | 140 | 10 | 10 | 25 | 16 | |
Total | 192 | 13 | 12 | 29 | 33 |
Family No. | No. Insects Screened | No. Survivors | No. Insect within Instar | ||
---|---|---|---|---|---|
2nd | 3rd | 4th | |||
LA-M1 | 128 | 21 | 0 | 4 | 17 |
LA-AC4 | 128 | 20 | 0 | 6 | 14 |
MS-R2 | 128 | 2 | 1 | 0 | 1 |
MS-R15 | 128 | 22 | 3 | 19 | 0 |
MS-R21 | 128 | 1 | 0 | 0 | 1 |
Insect Strain | N a | LC50 (95% CL) (µg/cm2) b | Slope ± SE | χ2 | df | Resistance Ratio c |
---|---|---|---|---|---|---|
SS | 512 | 0.11 (0.09, 0.13) | 3.23 ± 0.35 | 12.9 | 26 | - |
LA-M1 | 512 | >100 | / | / | / | >909.1 * |
LA-AC4 | 512 | >100 | / | / | / | >909.1 * |
MS-R2 | 512 | >100 | / | / | / | >909.1 * |
MS-R15 | 512 | >100 | / | / | / | >909.1 * |
Insect Family | N # | Observed Survival | Expected Survival * | χ2 | p-Value |
---|---|---|---|---|---|
LA-M1 | 128 | 22.9 | 32 | 3.441 | 0.064 |
LA-AC4 | 128 | 22.5 | 32 | 3.738 | 0.054 |
MS-R15 | 128 | 24.8 | 32 | 2.141 | 0.143 |
Year | Collection Site of the Feral Parental | No. F2 Families Screened | No. Surviving Families | No. Resistance Alleles | Expected Resistance Allele Frequency | Credibility Interval (95%) |
---|---|---|---|---|---|---|
2019 | Louisiana | 21 | 1 | 2 | 0.0435 | (0.0056–0.1142) |
Mississippi | 15 | 0 | 0 | 0.0294 | (0.0000–0.0854) | |
Tennessee | 16 | 0 | 0 | 0.0278 | (0.0000–0.0808) | |
Sub-total | 52 | 1 | 2 | 0.0185 | (0.0023–0.0504) | |
2020 | Louisiana | 33 | 1 | 2 | 0.0286 | (0.0036–0.0766) |
Mississippi | 34 | 3 | 4 | 0.0556 | (0.0160–0.1153) | |
Tennessee | 13 | 0 | 0 | 0.0333 | (0.0000–0.0963) | |
Arkansas | 60 | 0 | 0 | 0.0081 | (0.0000–0.0240) | |
Sub-total | 140 | 4 | 6 | 0.0176 | (0.0058–0.0355) | |
Total in two consecutive years | 192 | 5 | 8 | 0.0155 | (0.0057–0.0297) |
Insect Family | Cry1Ac Protein | Cry2Ab2 Protein | ||||||
---|---|---|---|---|---|---|---|---|
No. Insects Screened | No. Survivors | No. Insects Screened | No. Survivors | |||||
2nd | 3rd | 4th | 2nd | 3rd | 4th | |||
LA-M1 | 128 | 18 | 3 | 0 | 128 | 0 | 0 | 0 |
LA-AC4 | 128 | 7 | 10 | 0 | 128 | 0 | 0 | 0 |
MS-R2 | 128 | 30 | 11 | 0 | 128 | 8 | 0 | 0 |
MS-R15 | 128 | 18 | 13 | 0 | 128 | 2 | 0 | 0 |
MS-R21 | 128 | 21 | 2 | 0 | 128 | 1 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santiago-González, J.C.; Kerns, D.L.; Yang, F. Resistance Allele Frequency of Helicoverpa zea to Vip3Aa Bacillus thuringiensis Protein in the Southeastern U.S. Insects 2023, 14, 161. https://doi.org/10.3390/insects14020161
Santiago-González JC, Kerns DL, Yang F. Resistance Allele Frequency of Helicoverpa zea to Vip3Aa Bacillus thuringiensis Protein in the Southeastern U.S. Insects. 2023; 14(2):161. https://doi.org/10.3390/insects14020161
Chicago/Turabian StyleSantiago-González, José C., David L. Kerns, and Fei Yang. 2023. "Resistance Allele Frequency of Helicoverpa zea to Vip3Aa Bacillus thuringiensis Protein in the Southeastern U.S." Insects 14, no. 2: 161. https://doi.org/10.3390/insects14020161
APA StyleSantiago-González, J. C., Kerns, D. L., & Yang, F. (2023). Resistance Allele Frequency of Helicoverpa zea to Vip3Aa Bacillus thuringiensis Protein in the Southeastern U.S. Insects, 14(2), 161. https://doi.org/10.3390/insects14020161