Breeding Cultivars for Resistance to the African Sweetpotato Weevils, Cylas puncticollis and Cylas brunneus, in Uganda: A Review of the Current Progress
Abstract
:Simple Summary
Abstract
1. Introduction
2. Taxonomy and Geographical Distribution of Cylas Species
3. Description and Life Cycle of Cylas Species
4. Host Range and Dispersal of Cylas Species
5. Damage Caused by Cylas Species
6. Management and Control Strategies
7. Mechanisms of Resistance of Sweetpotato to Cylas spp.
8. Progress in Breeding for Resistance to Cylas spp.
9. The Genetic and Biochemical Basis for Sweetpotato Weevil Resistance
10. Marker-Assisted Selection and Genomic Selection for SPW Resistance
11. Genomic Resources for Sweetpotato Improvement
12. Genetic Transformation for Weevil Resistance
13. Future Prospects
14. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT Food and Agricultural Organization of the United Nations. Statistical Database; FAO: Rome, Italy, 2023. [Google Scholar]
- Woolfe, J.A. Sweet Potato-Past and Present. In Sweet Potato: An Untapped Food Resource; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Sorensen, K.A. Sweetpotato Insects: Identification, Biology and Management. In The Sweetpotato; Springer Inc.: New York, NY, USA, 2009. [Google Scholar]
- Fuglie, K.O. Priorities for Sweetpotato Research in Developing Countries: Results of a Survey. HortScience 2007, 42, 1200–1206. [Google Scholar] [CrossRef]
- Capinera, J. Sweetpotato Weevil; Department of Entomology and Nematology, University of Florida: Gainesville, FL, USA, 2006. [Google Scholar]
- Stathers, T.E.; Rees, D.; Nyango, A.; Kiozya, H.; Mbilinyi, L.; Jeremiah, S.; Kabi, S.; Smit, N. Sweetpotato Infestation by Cylas Spp. in East Africa: II. Investigating the Role of Root Characteristics. Int. J. Pest Manag. 2003, 49, 141–146. [Google Scholar] [CrossRef]
- Musana, P.; Okonya, J.S.; Mujica, N.; Carhuapoma, P.; Kroschel, J. Sweetpotato Weevil, Cylas brunneus (Fabricius). In Pest Distribution and Risk Atlas for Africa. Potential Global and Regional Distribution and Abundance of Agricultural and Horticultural Pests and Associated Biocontrol Agents Under Current and Future Climates; Kroschel, J., Mujica, N., Carhuapoma, P., Sporleder, M., Eds.; International Potato Center (CIP): Lima, Peru, 2016; pp. 63–73. [Google Scholar]
- Okonya, J.S.; Mujica, N.; Carhuapoma, P.; Kroschel, J. Sweetpotato Weevil, Cylas puncticollis (Boheman 1883). In Pest Distribution and Risk Atlas for Africa. Potential Global and Regional Distribution and Abundance of Agricultural and Horticultural Pests and Associated Biocontrol Agents under Current and Future Climates; Kroschel, J., Mujica, N., Carhuapoma, P., Sporleder, M., Eds.; International Potato Center (CIP): Lima, Peru, 2016; pp. 54–63. [Google Scholar]
- Uritani, I.; Saito, T.; Honda, H.; Kim, W.K. Induction of Furano Terpenoids in Sweetpotato Roots by the Larval Components of the Sweetpotato Weevils. Agric. Biol. Chem. 1975, 1857–1862. [Google Scholar]
- Ssali, R.T.; Sseruwu, G.; Yada, B.; Ssemakula, G.; Wasonga, C.; Grüneberg, W.J.; Eyzaguirre, R.; Low, J.W.; Mwanga, R.O.M. Efficiency of the Polycross and Controlled Hybridization Methods in Sweetpotato Breeding in Uganda. J. Agric. Sci. 2019, 11, 123. [Google Scholar] [CrossRef]
- Anyanga, M.O.; Yada, B.; Yencho, G.C.; Ssemakula, G.N.; Alajo, A.; Farman, D.I.; Mwanga, R.O.M.; Stevenson, P.C. Segregation of Hydroxycinnamic Acid Esters Mediating Sweetpotato Weevil Resistance in Storage Roots of Sweetpotato. Front. Plant Sci. 2017, 8, 1011. [Google Scholar] [CrossRef]
- Stevenson, P.C.; Muyinza, H.; Hall, D.R.; Porter, E.A.; Farman, D.I.; Talwana, H.; Mwanga, R.O.M. Chemical Basis for Resistance in Sweetpotato Ipomoea Batatas to the Sweetpotato Weevil Cylas puncticollis. Pure Appl. Chem. 2009, 81, 141–151. [Google Scholar] [CrossRef]
- Anyanga, M.O.; Muyinza, H.; Talwana, H.; Hall, D.R.; Farman, D.I.; Ssemakula, G.N.; Mwanga, R.O.M.; Stevenson, P.C. Resistance to the Weevils Cylas puncticollis and Cylas brunneus Conferred by Sweetpotato Root Surface Compounds. J. Agric. Food Chem. 2013, 61, 8141–8147. [Google Scholar] [CrossRef] [PubMed]
- Yada, B.; Alajo, A.; Ssemakula, G.N.; Brown-Guedira, G.; Otema, M.A.; Stevenson, P.C.; Mwanga, R.O.M.; Craig Yencho, G. Identification of Simple Sequence Repeat Markers for Sweetpotato Weevil Resistance. Euphytica 2017, 213, 129. [Google Scholar] [CrossRef]
- Yada, B. Genetic Analysis of Agronomic Traits and Resistance to Sweetpotato Weevil and Sweet Potato Virus Disease in a Bi-Parental Sweetpotato Population. Ph.D. Thesis, North Carolina State University (NCSU), Raleigh, NC, USA, 2014. [Google Scholar]
- Wolfe, G.W. The Origin and Dispersal of the Pest Species of Cylas with a Key to the Pest Species Groups of the World. In Sweet Potato Pest Management. A Global Perspective; Jansson, R.K., Raman, K.V., Eds.; Westview Press: Boulder, CO, USA, 1991. [Google Scholar]
- Chalfant, R.; Jansson, R.; Dakshina, R.; Schalk, J. Ecology and Management of Sweetpotato Insects. Annu. Rev. Entomol. 1990, 35, 17–180. [Google Scholar] [CrossRef]
- Ames, T.; Smit, N.E.J.M.; Braun, A.R.; O’Sullivan, J.N.; Skoglund, L.G. Sweetpotato: Major Pests, Diseases, and Nutritional Disorders; International Potato Center (CIP): Lima, Peru, 1996. [Google Scholar]
- Nderitu, J.; Sila, M.; Nyamasyo, G.; Kasina, M. Effectiveness of Entomopathogenic Nematodes against Sweet Potato Weevil (Cylas puncticollis Boheman (Coleoptera: Apionidae)] under Semi-Field Conditions in Kenya. J. Entomol. 2009, 6, 145–154. [Google Scholar] [CrossRef]
- Abidin, P.E. Sweetpotato Breeding for North Eastern Uganda: Farmer Varieties, Farmer-Articipatory Selection, and Stability of Performance. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2004. [Google Scholar]
- Muyinza, H.; Talwana, H.L.; Mwanga, R.O.M.; Stevenson, P.C. Sweetpotato Weevil (Cylas Spp.) Resistance in African Sweetpotato Germplasm. Int. J. Pest Manag. 2012, 58, 73–81. [Google Scholar] [CrossRef]
- Smit, N.E.J.M.; Matengo, L.O. Farmers’ Cultural Practices and Their Effects on Pest Control in Sweetpotato in South Nyanza, Kenya. Int. J. Pest Manag. 1995, 41, 2–7. [Google Scholar] [CrossRef]
- Smit, N. The Effect of the Indigenous Cultural Practices of In-Ground Storage and Piecemeal Harvesting of Sweet Potato on Yield and Quality Losses Caused by Sweet Potato Weevil in Uganda. Agric. Ecosyst. Environ. 1997, 64, 191–200. [Google Scholar] [CrossRef]
- Smit, N.E.J.M.; Van Huis, A. Biology of the African Sweetpotato Weevil Species Cylas puncticollis (Boheman) and C. Brunneus (Fabricius) (Coleoptera: Apionidae). Int. J. Trop. Insect Sci. 1998, 18, 93–100. [Google Scholar] [CrossRef]
- Stathers, T.; Namanda, S.; Mwanga, R.O.M.; Khissa, G.; Kapinga, R. Manual for Sweetpotato Integrated Production and Pest Management Farmer Field Schools in Sub-Saharan Africa; International Potato Center: Kampala, Uganda, 2005. [Google Scholar]
- Smit, N.E.J.M.; Downham, M.C.A.; Laboke, P.O.; Hall, D.R.; Odongo, B. Mass-Trapping Male Cylas Spp. with Sex Pheromones: A Potential IPM Component in Sweetpotato Production in Uganda. Crop Prot. 2001, 20, 643–651. [Google Scholar] [CrossRef]
- Talekar, N.S. Insect Factors in Breeding and Cultivation of Sweet Potato. In Sweet Potato Technology for the 21st Century; Hill, W., Bonsai, C., Loretan, P.A., Eds.; Tuskegee University: Tuskegee, AL, USA, 1992. [Google Scholar]
- AVRDC Asian Vegetable Research and Development Center. Sweet Potato Breeding and Sweet Potato Entomology; Asian Vegetable Research and Development Center: Shanhua, Taiwan, 1987; pp. 163–198. [Google Scholar]
- Ebregt, E.; Struik, P.C.; Odongo, B.; Abidin, P.E. Pest Damage in Sweet Potato, Groundnut and Maize in North-Eastern Uganda with Special Reference to Damage by Millipedes (Diplopoda). J. Life Sci. 2005, 53, 49–69. [Google Scholar] [CrossRef]
- Otto, N.; Russel, M.; Eric, C. Sweetpotato Weevil. A Review of Recent Management Advances and Appraisal of Previous Research in Papua; 2006. [Google Scholar]
- Allard, G.B. Integrated Control of Arthropod Pests of Root Crops; Mid-term Report-November 1988–December 1989; CAB International Institute of Biological Control: Nairobi, Kenya, 1990. [Google Scholar]
- Hwang, J.S. Integrated Control of Sweetpotato Weevil, Cylas Formicarius Fabricius, with Sex Pheromone and Insecticide 2000.
- Bassey, E.E. Field Evaluation of Yield and Resistances of Local and Improved Sweet Potato (Ipomoea Batatas (L) Lam) Accessions to Cylas puncticollis and Meloidogyne Incognita in Southeastern Nigeria. Asian J. Agric. Sci. 2012, 4, 390–394. [Google Scholar]
- Jansson, R.K. Biological Control of Cylas Spp. In Sweet Potato Pest Management: A Global Perspective; Jansson, R.K., Raman, K.V., Eds.; Westview Press Inc.: Boulder, CO, USA, 1991. [Google Scholar]
- Ondiaka, S.; Maniania, N.K.; Nyamasyo, G.H.N.; Nderitu, J.H. Virulence of the Entomopathogenic Fungi Beauveria Bassiana and Metarhizium Anisopliae to Sweet Potato Weevil Cylas Puncticollis and Effects on Fecundity and Egg Viability. Ann. Appl. Biol. 2008, 153, 41–48. [Google Scholar] [CrossRef]
- Kaya, H.K. Soil Ecology. In Entomopathogenic Nematodes in Biological Control; Gaugler, R., Kaya, H.K., Eds.; CRC Press: Boca Raton, FL, USA, 1990. [Google Scholar]
- Kaur, S. Molecular Approaches towards Development of Novel Bacillus thuringiensis Biopesticides. World J. Microbiol. Biotechnol. 2000, 16, 781–793. [Google Scholar] [CrossRef]
- Lacey, L.A.; Frutos, R.; Kaya, H.K.; Vail, P. Insect Pathogens as Biological Control Agents: Do They Have a Future? Biol. Control 2001, 21, 230–248. [Google Scholar] [CrossRef]
- Rukarwa, R.J.; Prentice, K.; Ormachea, M.; Kreuze, J.F.; Tovar, J.; Mukasa, S.B.; Ssemakula, G.; Mwanga, R.O.M.; Ghislain, M. Evaluation of Bioassays for Testing Bt Sweetpotato Events against Sweetpotato Weevils. Afr. Crop Sci. J. 2013, 21, 235–244. [Google Scholar]
- Kreuze, K.F.; Valkonen, J.P.T.; Ghislain, M. Genetic Engineering. In The Sweetpotato; Loebenstein, G., Thottappilly, G., Eds.; Springer Inc.: New York, NY, USA, 2009. [Google Scholar]
- Ikegawa, Y.; Kawamura, F.; Sadoyama, Y.; Kinjo, K.; Haraguchi, D.; Honma, A.; Himuro, C.; Matsuyama, T. Eradication of Sweetpotato Weevil, Cylas Formicarius, from Tsuken Island, Okinawa, Japan, under Transient Invasion of Males. J. Appl. Entomol. 2022, 146, 850–859. [Google Scholar] [CrossRef]
- Himuro, C.; Kohama, T.; Matsuyama, T.; Sadoyama, Y.; Kawamura, F.; Honma, A.; Ikegawa, Y.; Haraguchi, D. First Case of Successful Eradication of the Sweet Potato Weevil, Cylas Formicarius (Fabricius), Using the Sterile Insect Technique. PLoS ONE 2022, 17, e0267728. [Google Scholar] [CrossRef] [PubMed]
- Stathers, T.E.; Rees, D.; Kabi, S.; Mbilinyi, L.; Smit, N.; Kiozya, H.; Jeremiah, S.; Nyango, A.; Jeffries, D. Sweetpotato Infestation by Cylas Spp. in East Africa: I. Cultivar Differences in Field Infestation and the Role of Plant Factors. Int. J. Pest Manag. 2003, 49, 131–140. [Google Scholar] [CrossRef]
- Skoglund, L.G.; Smit, N.E. Major Diseases and Pests of Sweetpotato in Eastern Africa; International Potato Center (CIP): Lima, Peru, 1994; p. 67. [Google Scholar]
- Mugisa, I.; Karungi, J.; Musana, P.; Odama, R.; Alajo, A.; Chelangat, D.M.; Anyanga, M.O.; Oloka, B.M.; Gonçalves dos Santos, I.; Talwana, H.; et al. Combining Ability and Heritability Analysis of Sweetpotato Weevil Resistance, Root Yield, and Dry Matter Content in Sweetpotato. Front. Plant Sci. 2022, 13, 956936. [Google Scholar] [CrossRef]
- Magira, P. Evaluation of Sweetpotato Clones from International Potato Center (CIP) for Resistance to the Sweetpotato Weevils, Cylas puncticollis and C. Brunneus (Coleoptera: Curculionidae). Master’s Thesis, Makerere University, Kampala, Uganda, 2003. [Google Scholar]
- Heleno, S.A.; Martins, A.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. Bioactivity of Phenolic Acids: Metabolites versus Parent Compounds: A Review. Food Chem. 2015, 173, 501–513. [Google Scholar] [CrossRef]
- Lin, K.H.; Lai, Y.C.; Chang, K.Y.; Chen, Y.F.; Hwang, S.Y.; Lo, H.F. Improving Breeding Efficiency for Quality and Yield of Sweetpotato. Bot. Stud. 2007, 48, 283–292. [Google Scholar]
- Cervantes-Flores, J.C.; Sosinski, B.; Pecota, K.V.; Mwanga, R.O.M.; Catignani, G.L.; Truong, V.D.; Watkins, R.H.; Ulmer, M.R.; Yencho, G.C. Identification of Quantitative Trait Loci for Dry-Matter, Starch, and β-Carotene Content in Sweetpotato. Mol. Breed. 2011, 28, 201–216. [Google Scholar] [CrossRef]
- Grüneberg, W.J.; Mwanga, R.O.M.; Andrade, M.; Dapaah, H. Sweetpotato Breeding. In Unleashing the Potential of Sweetpotato in Sub-Saharan Africa: Current Challenges and Way Forward; Andrade, M., Barker, I., Cole, D., Dapaah, H., Elliott, H., Fuentes, S., Gruneberg, W.J., Kapinga, R., Kroschel, J., Labarta, R., et al., Eds.; CIP SSA: Nairobi, Kenya, 2009. [Google Scholar]
- Mwanga, R.; Odongo, B.; Niringiye, C.; Kapinga, R.; Tumwegamire, S.; Abidin, P.; Carey, E.; Lemaga, B.; Nsumba, J.; Zhang, D. Sweetpotato Selection Releases: Lessons Learnt from Uganda. Afr. Crop Sci. J. 2010, 15, 11–23. [Google Scholar] [CrossRef]
- Grüneberg, W.J.; Eyzaguirre, R.; Espinoza, J.; Mwanga, R.O.M.; Andrade, M.; Dapaah, H.; Tumwegamire, S.; Agili, S.; Ndingo-Chipungu, F.P.; Attaluri, S.; et al. Procedures for the Evaluation of Sweetpotato Trials; International Potato Center (CIP): Lima, Peru, 2019; ISBN 978-92-9060-522-5. [Google Scholar]
- Osaru, F.; Karungi, J.; Odama, R.; Chelangat, D.M.; Musana, P.; Otema, M.A.; Oloka, B.; Gibson, P.; Edema, R.; Ssali, R.T.; et al. Identification of the Key Morphological Sweetpotato Weevil Resistance Predictors in Ugandan Sweetpotato Genotypes Using Correlation and Path-coefficient Analysis. Crop Sci. 2023, 63, 1126–1138. [Google Scholar] [CrossRef]
- Mwanga, R.O.M.; Odongo, B.; Niringiye, C.; Alajo, A.; Kigozi, B.; Makumbi, R.; Lugwana, E.; Namukula, J.; Mpembe, I.; Kapinga, R.; et al. ‘NASPOT 7’, ‘NASPOT 8’, ‘NASPOT 9 O’, ‘NASPOT 10 O’, and ‘Dimbuka-Bukulula’ Sweetpotato. HortScience 2009, 44, 828–832. [Google Scholar] [CrossRef]
- Mwanga, R.O.M.; Odongo, B.; p’Obwoya, C.O.; Gibson, R.W.; Smit, N.E.J.M.; Carey, E.E. Release of Five Sweetpotato Cultivars in Uganda. HortScience 2001, 36, 385–386. [Google Scholar] [CrossRef]
- Oloka, B.M. Genetic Linkage Map Construction and QTL Analysis of Important Pest and Agronomic Traits in Two Bi-Parental Sweetpotato SNP Mapping Populations. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2019. [Google Scholar]
- Gaffney, J.; Schussler, J.; Löffler, C.; Cai, W.; Paszkiewicz, S.; Messina, C.; Groeteke, J.; Keaschall, J.; Cooper, M. Industry-Scale Evaluation of Maize Hybrids Selected for Increased Yield in Drought-Stress Conditions of the US Corn Belt. Crop Sci. 2015, 55, 1608–1618. [Google Scholar] [CrossRef]
- Larkin, D.L.; Lozada, D.N.; Mason, R.E. Genomic Selection—Considerations for Successful Implementation in Wheat Breeding Programs. Agronomy 2019, 9, 479. [Google Scholar] [CrossRef]
- Chang, K.; Lo, H.; Lai, Y.; Yao, P.; Lin, K.; Hwang, S. Identification of Quantitative Trait Loci Associated with Yield-Related Traits in Sweetpotato (Ipomoea Batatas). Bot. Stud. 2009, 50, 43–50. [Google Scholar]
- Mwanga, R.O.M.; Ghislain, M.; Kreuze, J.; Ssemakula, G.N.; Yencho, C. Exploiting the Use of Biotechnology in Sweet Potato for Improved Nutrition and Food Security: Progress and Future Outlook. In Proceedings of the International Conference on AgroBiotechnology, Biosafety and Seed Systems in Developing Countries, Kampala, Uganda, 8–11 March 2011; pp. 25–31. [Google Scholar]
- Cervantes-Flores, J.C.; Yencho, G.C.; Kriegner, A.; Pecota, K.V.; Faulk, M.A.; Mwanga, R.O.M.; Sosinski, B. Development of a Genetic Linkage Map and Identification of Homologous Linkage Groups in Sweetpotato Using Multiple-Dose AFLP Markers. Mol. Breed. 2008, 21, 511–532. [Google Scholar] [CrossRef]
- Collard, B.C.Y.; Mackill, D.J. Marker-Assisted Selection: An Approach for Precision Plant Breeding in the Twenty-First Century. Phil. Trans. R. Soc. B 2008, 363, 557–572. [Google Scholar] [CrossRef]
- Buteler, M.I.; Jarret, R.L.; LaBonte, D.R. Sequence Characterization of Microsatellites in Diploid and Polyploid Ipomoea. Theor. Appl. Genet. 1999, 99, 123–132. [Google Scholar] [CrossRef]
- Hu, J.; Nakatani, M.; Mizuno, K.; Fujimura, T. Development and Characterization of Microsatellite Markers in Sweetpotato. Breed. Sci. 2004, 54, 177–188. [Google Scholar] [CrossRef]
- Zhang, D.P.; Cervantes, J.; Huamán, Z.; Ghislain, M. Assessing Genetic Diversity of Sweetpotato (Ipomoea Batatas (L) Lam) Varieties from Tropical America Using AFLP. Genet. Resour. Crop Evol. 2000, 47, 659–665. [Google Scholar] [CrossRef]
- Nakayama, H.; Tanaka, M.; Takahata, Y.; Matsui, K.; Iwahori, H.; Sano, Z.; Yoshinaga, M. Development of AFLP-Derived SCAR Markers Associated with Resistance to Two Races of Southern Root-Knot Nematode in Sweetpotato. Euphytica 2012, 188, 175–185. [Google Scholar] [CrossRef]
- Kriegner, A.; Cervantes, J.C.; Burg, K.; Mwanga, R.O.M.; Zhang, D. A Genetic Linkage Map of Sweetpotato [Ipomoea Batatas (L.) Lam.] Based on AFLP Markers. Mol. Breed. 2003, 11, 169–185. [Google Scholar] [CrossRef]
- Oloka, B.M.; Da Silva Pereira, G.; Amankwaah, V.A.; Mollinari, M.; Pecota, K.V.; Yada, B.; Olukolu, B.A.; Zeng, Z.-B.; Craig Yencho, G. Discovery of a Major QTL for Root-Knot Nematode (Meloidogyne Incognita) Resistance in Cultivated Sweetpotato (Ipomoea Batatas). Theor. Appl. Genet. 2021, 134, 1945–1955. [Google Scholar] [CrossRef] [PubMed]
- Yada, B.; Brown-Guedira, G.; Alajo, A.; Ssemakula, G.N.; Mwanga, R.O.M.; Yencho, G.C. Simple Sequence Repeat Marker Analysis of Genetic Diversity among Progeny of a Biparental Mapping Population of Sweetpotato. HortScience 2015, 50, 1143–1147. [Google Scholar] [CrossRef]
- Gemenet, D.C.; Lindqvist-Kreuze, H.; De Boeck, B.; da Silva Pereira, G.; Mollinari, M.; Zeng, Z.B.; Craig Yencho, G.; Campos, H. Sequencing Depth and Genotype Quality: Accuracy and Breeding Operation Considerations for Genomic Selection Applications in Autopolyploid Crops. Theor. Appl. Genet. 2020, 133, 3345–3363. [Google Scholar] [CrossRef]
- Mahadevaiah, C.; Appunu, C.; Aitken, K.; Suresha, G.S.; Vignesh, P.; Mahadeva Swamy, H.K.; Valarmathi, R.; Hemaprabha, G.; Alagarasan, G.; Ram, B. Genomic Selection in Sugarcane: Current Status and Future Prospects. Front. Plant Sci. 2021, 12, 708233. [Google Scholar] [CrossRef]
- Gezan, S.A.; Osorio, L.F.; Verma, S.; Whitaker, V.M. An Experimental Validation of Genomic Selection in Octoploid Strawberry. Hortic. Res. 2017, 4, 16070. [Google Scholar] [CrossRef] [PubMed]
- Badji, A.; Machida, L.; Kwemoi, D.B.; Kumi, F.; Okii, D.; Mwila, N.; Agbahoungba, S.; Ibanda, A.; Bararyenya, A.; Nghituwamhata, S.N.; et al. Factors Influencing Genomic Prediction Accuracies of Tropical Maize Resistance to Fall Armyworm and Weevils. Plants 2020, 10, 29. [Google Scholar] [CrossRef]
- Wu, S.; Lau, K.H.; Cao, Q.; Hamilton, J.P.; Sun, H.; Zhou, C.; Eserman, L.; Gemenet, D.C.; Olukolu, B.A.; Wang, H.; et al. Genome Sequences of Two Diploid Wild Relatives of Cultivated Sweetpotato Reveal Targets for Genetic Improvement. Nat. Commun. 2018, 9, 4580. [Google Scholar] [CrossRef]
- Komaki, K.; Regima, H.N.; Katayama, K.; Tamiya, S. Morphological and RAPD Pattern Variations in Sweetpotato and Its Closely Related Species. Breed. Sci. 1998, 48, 281–286. [Google Scholar] [CrossRef]
- Huang, J.C.; Sun, M. Genetic Diversity and Relationships of Sweetpotato and Its Wild Relatives in Ipomoea Series Batatas (Convolvulaceae) as Revealed by Inter-Simple Sequence Repeat (ISSR) and Restriction Analysis of Chloroplast DNA. Theor. Appl. Genet. 2000, 100, 1050–1060. [Google Scholar] [CrossRef]
- Srisuwan, S.; Sihachakr, D.; Siljak-Yakovlev, S. The Origin and Evolution of Sweet Potato (Ipomoea Batatas Lam.) and Its Wild Relatives through the Cytogenetic Approaches. Plant Sci. 2006, 171, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Roullier, C.; Duputié, A.; Wennekes, P.; Benoit, L.; Fernández Bringas, V.M.; Rossel, G.; Tay, D.; McKey, D.; Lebot, V. Disentangling the Origins of Cultivated Sweet Potato (Ipomoea Batatas (L.) Lam.). PLoS ONE 2013, 8, e62707. [Google Scholar] [CrossRef]
- Yang, J.; Moeinzadeh, M.-H.; Kuhl, H.; Helmuth, J.; Xiao, P.; Haas, S.; Liu, G.; Zheng, J.; Sun, Z.; Fan, W.; et al. Haplotype-Resolved Sweet Potato Genome Traces Back Its Hexaploidization History. Nat. Plants 2017, 3, 696–703. [Google Scholar] [CrossRef]
- Ngoc, P.B.; Lan, V.T.; Trang, T.T.; Thuong, N.H.; Ngoc, L.T.; Ha, C.H.; Binh, L.T. Agrobacterium-Mediated Transformation of Cry8db Gene in Vietnam Sweet Potato Cultivar. JLS 2015, 10, 262–271. [Google Scholar] [CrossRef]
- Sefasi, A.; Ssemakula, G.; Ghislain, M.; Prentice, K.; Kiggundu, A.; Mwanga, R.O.M. Transient Expression of β -Glucoronidase in Recalcitrant Ugandan Sweetpotato and Putative Transformation with Two Cry Genes. Afr. Crop Sci. J. 2014, 22, 215–227. [Google Scholar]
- Ekobu, M.; Solera, M.; Kyamanywa, S.; Mwanga, R.O.M.; Odongo, B.; Ghislain, M.; Moar, W.J. Toxicity of Seven Bacillus thuringiensis Cry Proteins Against Cylas puncticollis and Cylas brunneus (Coleoptera: Brentidae) Using a Novel Artificial Diet. J. Econ. Entomol. 2010, 103, 1493–1502. [Google Scholar] [CrossRef] [PubMed]
- Anyanga, M.O.; Farman, D.I.; Ssemakula, G.N.; Mwanga, R.O.M.; Stevenson, P.C. Effects of Hydroxycinnamic Acid Esters on Sweetpotato Weevil Feeding and Oviposition and Interactions with Bacillus thuringiensis Proteins. J. Pest Sci. 2021, 94, 783–794. [Google Scholar] [CrossRef]
- Prentice, K.; Pertry, I.; Christiaens, O.; Bauters, L.; Bailey, A.; Niblett, C.; Ghislain, M.; Gheysen, G.; Smagghe, G. Transcriptome Analysis and Systemic RNAi Response in the African Sweetpotato Weevil (Cylas puncticollis, Coleoptera, Brentidae). PLoS ONE 2015, 10, e0115336. [Google Scholar] [CrossRef] [PubMed]
- Christiaens, O.; Prentice, K.; Pertry, I.; Ghislain, M.; Bailey, A.; Niblett, C.; Gheysen, G.; Smagghe, G. RNA Interference: A Promising Biopesticide Strategy against the African Sweetpotato Weevil Cylas brunneus. Sci. Rep. 2016, 6, 38836. [Google Scholar] [CrossRef]
- Cobb, J.N.; DeClerck, G.; Greenberg, A.; Clark, R.; McCouch, S. Next-Generation Phenotyping: Requirements and Strategies for Enhancing Our Understanding of Genotype–Phenotype Relationships and Its Relevance to Crop Improvement. Theor. Appl. Genet. 2013, 126, 867–887. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Bosquet, L.; Crossa, J.; Von Zitzewitz, J.; Serret, M.D.; Luis Araus, J. High-Throughput Phenotyping and Genomic Selection: The Frontiers of Crop Breeding ConvergeF: High-Throughput Phenotyping and Genomic Selection. J. Integr. Plant Biol. 2012, 54, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Armengaud, P.; Zambaux, K.; Hills, A.; Sulpice, R.; Pattison, R.J.; Blatt, M.R.; Amtmann, A. EZ-Rhizo: Integrated Software for the Fast and Accurate Measurement of Root System Architecture. Plant J. 2009, 57, 945–956. [Google Scholar] [CrossRef] [PubMed]
- Backhaus, A.; Kuwabara, A.; Bauch, M.; Monk, N.; Sanguinetti, G.; Fleming, A. LEAFPROCESSOR: A New Leaf Phenotyping Tool Using Contour Bending Energy and Shape Cluster Analysis. New Phytol. 2010, 187, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.T.; MacCurdy, R.B.; Jung, J.K.; Shaff, J.E.; McCouch, S.R.; Aneshansley, D.J.; Kochian, L.V. Three-Dimensional Root Phenotyping with a Novel Imaging and Software Platform. Plant Physiol. 2011, 156, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Yada, B.; Tukamuhabwa, P.; Alajo, A.; Mwanga, R.O.M. Field Evaluation of Ugandan Sweetpotato Germplasm for Yield, Dry Matter and Disease Resistance. South Afr. J. Plant Soil 2011, 28, 142–146. [Google Scholar] [CrossRef]
- Allison, G.G.; Thain, S.C.; Morris, P.; Morris, C.; Hawkins, S.; Hauck, B.; Barraclough, T.; Yates, N.; Shield, I.; Bridgwater, A.V.; et al. Quantification of Hydroxycinnamic Acids and Lignin in Perennial Forage and Energy Grasses by Fourier-Transform Infrared Spectroscopy and Partial Least Squares Regression. Bioresour. Technol. 2009, 100, 1252–1261. [Google Scholar] [CrossRef]
- Yencho, G.C.; Pecota, K.V.; Schultheis, J.R.; VanEsbroeck, Z.-P.; Holmes, G.J.; Little, B.E.; Thornton, A.C.; Truong, V.-D. ‘Covington’ Sweetpotato. HortScience 2008, 43, 1911–1914. [Google Scholar] [CrossRef]
- Grüneberg, W.J.; Ma, D.; Mwanga, R.O.M.; Carey, E.E.; Huamani, K.; Diaz, F.; Eyzaguirre, R.; Guaf, E.; Jusuf, M.; Karuniawan, A.; et al. Advances in Sweetpotato Breeding from 1992 to 2012. In Potato and Sweetpotato in Africa: Transforming the Value Chains for Food and Nutrition Security; Low, J., Nyongesa, M., Quinn, S., Parker, M., Eds.; CABI: Wallingford, UK, 2015; pp. 3–68. ISBN 978-1-78064-420-2. [Google Scholar]
- Mugisa, I.; Karungi, J.; Musana, P.; Odama, R.; Anyanga, M.O.; Edema, R.; Gibson, P.; Ssali, R.T.; Campos, H.; Oloka, B.M.; et al. Heterotic Gains, Transgressive Segregation and Fitness Cost of Sweetpotato Weevil Resistance Expression in a Partial Diallel Cross of Sweetpotato. Euphytica 2023, 219, 110. [Google Scholar] [CrossRef]
- Gurmu, F.; Hussein, S.; Laing, M. Self-and Cross Incompatibilities in Sweetpotato and Their Implications on Breeding. Aust. J. Crop Sci. 2013, 7, 2074–2078. [Google Scholar]
- Buteler, M.I.; LaBonte, D.R.; Jarret, R.L.; Macchiavelli, R.E. Microsatellite-Based Paternity Analysis in Polyploidy Sweetpotato. J. Am. Soc. Hortic. Sci. 2002, 127, 392–396. [Google Scholar] [CrossRef]
Trait | C. puncticollis | C. brunneus |
---|---|---|
Morphology | Eggs: 0.45 × 0.30 mm2 (average size) | 0.7 × 0.5 mm2 (average size) |
Larvae: 5–10 mm long | 7–8 mm in length | |
Pupae: 6–7 mm long, creamy-white cuticle | 4–5 mm long, white in color | |
Adults: 5–8 mm long, eyes narrowly parted | 5–7 mm long, eyes widely separated | |
Male: 6.9–6.7 mm long, filiform antennal | 5.7–5.5 mm long, filiform antennal | |
Female: 7.2–6.8 mm long, club-like antennal | 5.7–5.5 mm long, club-like antennal | |
Oviposition | Females take 2–24 days before laying eggs | Females start laying eggs a day or so after becoming sexually active |
Development | Takes place between 17.5–35 °C | Is possible between 17.5–32 °C |
Coloration of adults | Initially creamy white, but later change to gray and black | Turn from creamy white to brown and finally black with reddish brown thorax |
Host range | Has a wider host range including morning glory, cotton, sesame, and maize | Has a smaller host range including morning glory and water spinach |
Distribution | Reported in 24 African countries | Recorded in 9 African countries |
Dispersion | Adults can fly for longer distances (up to 120 m) | Adults fly for short distances (up to 80 m) |
Cultural Practices |
---|
These practices contribute towards the reduction in weevil populations either by making sweetpotato plants less accessible to weevils or by preventing the weevil population from increasing to harmful levels [23]. They include using clean planting material, crop rotation [27], hilling up and mulching, the removal of alternate crops and wild host plants, field sanitation [25,28], the use of barrier crops, intercropping, the planting of new crop away from weevil-infested fields, timely or early planting and harvesting before onset of the dry season [22,29], and flooding [30]. Cultural interventions are most effective when weevil populations are low; they are less successful during extended droughts, which typically result in population peaks [23]. |
Chemical Practices |
Insecticides as foliar sprays control weevils to some extent [31,32]. They can reduce the populations of adult weevils, but may not adequately control immature larvae due to their cryptic nature [3]. Dipping plant material into a synthetic pesticide prior to planting can delay pest invasion for a number of months [25]. Insecticides are expensive and at times inaccessible to growers in SSA, making their use impractical and unsustainable [33]. |
Biological |
Natural enemies such as ants, maggots, and wasps attack weevils, but most seem to be ineffective at suppressing SPW populations under field conditions [23,34]. Entomopathogenic fungi such as Beauveria bassiana have successfully been used to control SPWs in combination with other control methods. They cause a reduction in feeding ability, fecundity, and egg viability in C. puncticollis [35]. Entomopathogenic nematodes like Steinernema carpocapsae and Heterorhabditis bacteriophora have shown potential for the practical biological suppression of Cylas spp., but are not readily available, and small-scale farmers may not have the required purchasing power [19,36]. Bacteria such as Bacillus thuringiensis Berliner (Bt) have been developed to confer inherent pest resistance against SPWs [37,38]. Bt sweetpotato events against SPWs have previously been tested in SSA, but with minimal success, though transgenic plants expressing Bt cry genes are in use in some countries outside the region [39,40]. A combination of the male annihilation technique (MAT) and the sterile insect technique (SIT) appears to be quite effective in the management of Cylas spp. They were successfully used in Japan to eradicate C. formicarius over a wide area [41,42]. |
Host Plant Resistance |
This approach is a major line of defense against SPWs. It involves the use of resistant or tolerant clones. Various investigations have been carried out in the past to comprehend the mechanisms of SPW resistance, and efforts have been made to develop SPW-resistant varieties [11,12,13,43]. Sweetpotato landraces and varieties were found to be highly heterogeneous in their susceptibility to field infestations by weevils [21]. Deep-rooting and early-maturing varieties were less prone to infection than shallow-rooted and late-maturing types [44]. The low heritability of the weevil-resistant trait coupled with the limited number of varieties that exhibit high levels of SPW resistance have contributed to the slow progress in developing weevil-resistant cultivars in SSA through conventional breeding [12,45]. There are further ongoing efforts to develop clones with significant levels of resistance using genomic tools. |
Year of Release | Variety | a Reaction to SPWs |
---|---|---|
1995 | “Bwanjule” | MR |
“New Kawogo” | MR | |
“Sowola” | MR | |
“Tanzania” | S | |
“Wagabolige” | MR | |
“Tororo 3” | MR | |
1999 | NASPOT 1 | S |
NASPOT 2 | S | |
NASPOT 3 | MR | |
NASPOT 4 | MR | |
NASPOT 5 | MR | |
NASPOT 6 | MR | |
2004 | “Ejumula” | S |
SPK004 (Kakamega) | S | |
2007 | NASPOT 7 | S |
NASPOT 8 | S | |
NASPOT 9 O | S | |
NASPOT 10 O | S | |
“Dimbuka Bukulula” | S | |
2010 | NASPOT 11 | S |
2013 | NASPOT 12 O | S |
NASPOT 13 O | S | |
2017 | NAROSPOT 1 | MR |
NAROSPOT 2 | S | |
NAROSPOT 3 | S | |
NAROSPOT 4 | S | |
NAROSPOT 5 | S | |
2023 | NAROSPOT 6 | MR |
NAROSPOT 7 O | MR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yada, B.; Musana, P.; Chelangat, D.M.; Osaru, F.; Anyanga, M.O.; Katungisa, A.; Oloka, B.M.; Ssali, R.T.; Mugisa, I. Breeding Cultivars for Resistance to the African Sweetpotato Weevils, Cylas puncticollis and Cylas brunneus, in Uganda: A Review of the Current Progress. Insects 2023, 14, 837. https://doi.org/10.3390/insects14110837
Yada B, Musana P, Chelangat DM, Osaru F, Anyanga MO, Katungisa A, Oloka BM, Ssali RT, Mugisa I. Breeding Cultivars for Resistance to the African Sweetpotato Weevils, Cylas puncticollis and Cylas brunneus, in Uganda: A Review of the Current Progress. Insects. 2023; 14(11):837. https://doi.org/10.3390/insects14110837
Chicago/Turabian StyleYada, Benard, Paul Musana, Doreen M. Chelangat, Florence Osaru, Milton O. Anyanga, Arnold Katungisa, Bonny M. Oloka, Reuben T. Ssali, and Immaculate Mugisa. 2023. "Breeding Cultivars for Resistance to the African Sweetpotato Weevils, Cylas puncticollis and Cylas brunneus, in Uganda: A Review of the Current Progress" Insects 14, no. 11: 837. https://doi.org/10.3390/insects14110837
APA StyleYada, B., Musana, P., Chelangat, D. M., Osaru, F., Anyanga, M. O., Katungisa, A., Oloka, B. M., Ssali, R. T., & Mugisa, I. (2023). Breeding Cultivars for Resistance to the African Sweetpotato Weevils, Cylas puncticollis and Cylas brunneus, in Uganda: A Review of the Current Progress. Insects, 14(11), 837. https://doi.org/10.3390/insects14110837