From Mosquito Ovaries to Ecdysone; from Ecdysone to Wolbachia: One Woman’s Career in Insect Biology
Abstract
:Simple Summary
Abstract
1. Introduction
2. In Vitro Approaches to Insect Biology
3. Insect Cell Culture
4. Viruses and Microorganisms
5. Wolbachia in Cultured Cells
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clever, U. Actinomycin and Puromycin: Effects on Sequential Gene Activation by Ecdysone. Science 1964, 146, 794–795. [Google Scholar] [CrossRef] [PubMed]
- Clever, U. Induction and repression of a puff in Chironomus tentans. Dev. Biol. 1966, 14, 421–438. [Google Scholar] [CrossRef]
- Roth, T.F.; Porter, K.R. Yolk protein uptake in the oocyte of the mosquito Aedes aegypti. L. J. Cell Biol. 1964, 20, 313–332. [Google Scholar] [CrossRef] [Green Version]
- Hagedorn, H.H.; Judson, C.L. Purification and site of synthesis of Aedes aegypti yolk proteins. J. Exp. Zool. 1972, 182, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Fallon, A.; Wyatt, G. Cyclic Guanosine 3′,5′-monophosphate. High levels in the male accessory gland for Acheta domesticus and related crickets. Biochim. Biophys. Acta 1975, 411, 173–185. [Google Scholar] [CrossRef]
- Fallon, A.M.; Jinks, C.S.; Strycharz, G.D.; Nomura, M. Regulation of ribosomal protein synthesis in Escherichia coli by selective mRNA inactivation. Proc. Natl. Acad. Sci. USA 1979, 76, 3411–3415. [Google Scholar] [CrossRef] [Green Version]
- Fallon, A.M. Muramidase, nuclease, or hypothetical protein genes intervene between paired genes encoding DNA packaging terminase and portal proteins in Wolbachia phages and prophages. Virus Genes 2022, 58, 327–349. [Google Scholar] [CrossRef]
- Helgen, J.C.; Fallon, A.M. Polybrene-mediated transfection of cultured lepidopteran cells: Induction of a Drosophila heat shock promoter. In Vitro Cell. Dev. Biol.-Anim. 1990, 26, 731–736. [Google Scholar] [CrossRef]
- Shotkoski, F.A.; Fallon, A.M. The mosquito dihydrofolate reductase gene functions as a dominant selectable marker in transfected cells. Insect Biochem. Mol. Biol. 1993, 23, 883–893. [Google Scholar] [CrossRef]
- Mazzacano, C.A.; Fallon, A.M. Evaluation of a viral thymidine kinase gene for suicide selection in transfected mosquito cells. Insect Mol. Biol. 1995, 4, 125–134. [Google Scholar] [CrossRef]
- Park, Y.-J.; Baldridge, G.D.; Fallon, A.M. Promoter utilization in a mosquito ribosomal DNA cistron. Arch. Insect Biochem. Physiol. 1995, 28, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.C.; Fallon, A.M. Evaluation of a Heterologous Metallothionein Gene Promoter in Transfected Mosquito Cells. Comp. Biochem. Physiol. 1997, 116, 353–358. [Google Scholar] [CrossRef]
- Johnston, A.M.; Fallon, A.M. Characterization of the ribosomal proteins from mosquito (Aedes albopictus) cells. Eur. J. Biochem. 1985, 150, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Nouri, N.; Fallon, A.M. Pleiotropic changes in cycloheximide-resistant insect cell clones. In Vitro Cell. Dev. Biol.-Anim. 1987, 23, 175–180. [Google Scholar] [CrossRef]
- Durbin, J.E.; Swerdel, M.R.; Fallon, A.M. Identification of cDNAs corresponding to mosquito ribosomal protein genes. Biochim. Biophys. Acta 1988, 950, 182–192. [Google Scholar] [CrossRef]
- Hernandez, V.P.; Fallon, A.M. Ribosomal protein S6 cDNA from two Aedes mosquitoes encodes a carboxyl-terminal extension that resembles histone H1 proteins. Genetica 1999, 106, 263–267. [Google Scholar] [CrossRef]
- Li, L.; Fallon, A. Mosquito ribosomal protein S3 lacks a critical glutamine residue associated with DNA repair activity in homologous Drosophila proteins. Arch. Insect Biochem. Physiol. 2006, 63, 188–196. [Google Scholar] [CrossRef]
- Hotchkin, P.G.; Fallon, A.M. Ribosome metabolism during the vitellogenic cycle of the mosquito, Aedes aegypti. Biochim. Biophys. Acta 1987, 924, 352–359. [Google Scholar] [CrossRef]
- Niu, L.L.; Fallon, A.M. Differential regulation of ribosomal protein gene expression in Aedes aegypti mosquitoes before and after the blood meal. Insect Mol. Biol. 2000, 9, 613–623. [Google Scholar] [CrossRef]
- Shih, K.M.; Fallon, A.M. Two-dimensional electrophoretic analysis of Aedes aegypti mosquito fat body proteins during a gonotropic cycle. Am. J. Trop. Med. Hyg. 2001, 65, 42–46. [Google Scholar] [CrossRef] [Green Version]
- Niu, L.L.; Fallon, A.M. A ribosome-free extract from cultured cells improves recovery of polysomes from the mosquito fat body: Analysis of vitellogenin and ribosomal protein rpL34 gene expression. J. Insect Physiol. 2002, 48, 835–843. [Google Scholar] [CrossRef]
- Kjer, K.; Baldridge, G.; Fallon, A. Mosquito large subunit ribosomal RNA: Simultaneous alignment of primary and secondary structure. Biochim. Biophys. Acta 1994, 1217, 147–155. [Google Scholar] [CrossRef]
- Fritz, M.A.; Fallon, A.M. Evidence for multiple ribonucleases in crude extracts from cultured mosquito cells. Insect Biochem. 1985, 15, 817–825. [Google Scholar] [CrossRef]
- Baldridge, G.D.; Fallon, A.M. Evidence for a DNA homologous pairing activity in nuclear extracts from mosquito cells. Insect Biochem. Mol. Biol. 1996, 26, 667–676. [Google Scholar] [CrossRef]
- Wang, Z.H.; Fallon, A.M. Similarities to a LINE element shared by Anopheline and Culicine mosquitos map to the distal end of dihydrofolate reductase amplicons in Aedes albopictus mosquito cells. Insect Biochem. Mol. Biol. 1998, 28, 613–623. [Google Scholar] [CrossRef]
- Liu, J.; Fallon, A.M. Effect of nutrient deprivation on ribosomal RNA and ribosomal protein mRNA content in cultured mosquito cells. Arch. Insect Biochem. Physiol. 1998, 37, 239–247. [Google Scholar] [CrossRef]
- Schwientek, M.S.; Higgins, L.; Fallon, A.M. Cultured Aedes albopictus mosquito cells accumulate elongation factor-1α (EF-1α) during serum starvation. Insect Biochem. Mol. Biol. 2002, 32, 1055–1063. [Google Scholar] [CrossRef]
- Jayachandran, G.; Fallon, A.M. Decreased survival of mosquito cells after stable transfection with a Drosophila ecdysteroid response element: Possible involvement of a 40 kDa DNA binding protein. J. Insect Sci. 2002, 2, 21. [Google Scholar]
- Zhai, Y.; Fallon, A.M. PCR cloning of a histone H1 gene from Anopheles stephensi mosquito cells: Comparison of the protein sequence with histone H1-like, C-terminal extensions on mosquito ribosomal protein S6. BMC Genom. 2005, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Gerenday, A.; Coley, K.M.; Fallon, A.M. Co-immunoprecipitation of putative proteins that interact with mosquito proliferating cell nuclear antigen. Insect Mol. Biol. 2006, 15, 197–205. [Google Scholar] [CrossRef]
- Sun, D.; Eccleston, E.D.; Fallon, A.M. Cloning and expression of three cecropin cDNAs from a mosquito cell line. FEBS Lett. 1999, 454, 147–151. [Google Scholar] [CrossRef]
- Gao, Y.; Fallon, A.M. Immune activation upregulates lysozyme gene expression in Aedes aegypti mosquito cell culture. Insect Mol. Biol. 2000, 9, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Nasr, N.M.; Fallon, A.M. Detection of lysozyme-like enzymatic activity secreted by an immune-responsive mosquito cell line. J. Invertebr. Pathol. 2003, 82, 162–166. [Google Scholar] [CrossRef]
- Gerenday, A.; Blauwkamp, T.S.; Fallen, A.M. Synchronization of Aedes albopictus mosquito cells using hydroxyurea. Insect Mol. Biol. 1997, 6, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Gerenday, A.; Fallon, A.M. Increased levels of the cell cycle inhibitor protein, dacapo, accompany 20-hydroxyecdysone-induced G1 arrest in a mosquito cell line. Arch. Insect Biochem. Physiol. 2011, 78, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Sun, L.V.; Vamathevan, J.; Riegler, M.; DeBoy, R.; Brownlie, J.C.; McGraw, E.A.; Martin, W.; Esser, C.; Ahmadinejad, N.; et al. Phylogenomics of the Reproductive Parasite Wolbachia pipientis wMel: A Streamlined Genome Overrun by Mobile Genetic Elements. PLoS Biol. 2004, 2, e69. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, S.L.; Pettigrew, M.M.; Sinkins, S.P.; Braig, H.R.; Andreadis, T.G.; Tesh, R.B. In vitro cultivation of Wolbachia pipientis in an Aedes albopictus cell line. Insect Mol. Biol. 1997, 6, 33–39. [Google Scholar] [CrossRef]
- Hagedorn, H.H.; Fallon, A.M. Ovarian control of vitellogenin synthesis by the fat body in Aedes aegypti. Nature 1973, 244, 103–105. [Google Scholar] [CrossRef]
- Hagedorn, H.H.; O’Connor, J.D.; Fuchs, M.S.; Sage, B.; Schlaeger, D.A.; Bohm, M.K. The ovary as a source of alpha-ecdysone in an adult mosquito. Proc. Natl. Acad. Sci. USA 1975, 72, 3255–3259. [Google Scholar] [CrossRef] [Green Version]
- Telfer, W.H. Immunological studies of insect metamorphosis: II. The role of a sex-limited blood protein in egg formation by the Cecropia silkworm. J. Gen. Physiol. 1954, 37, 539–558. [Google Scholar] [CrossRef] [Green Version]
- Larsen, W.P. Growth in an insect organ culture. J Insect Physiol. 1967, 13, 613–619. [Google Scholar] [CrossRef]
- Spielman, A.; Gwadz, R.W.; Anderson, W.A. Ecdysone-initiated ovarian development in mosquitoes. J. Insect Physiol. 1971, 17, 1807–1814. [Google Scholar] [CrossRef]
- Fallon, A.M.; Hagedorn, H.H.; Wyatt, G.R.; Laufer, H. Activation of vitellogenin synthesis in the mosquito Aedes aegypti by ecdysone. J. Insect Physiol. 1974, 20, 1815–1823. [Google Scholar] [CrossRef]
- Telfer, W.H. Egg formation in Lepidoptera. J. Insect Sci. 2009, 9, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalid, M.; Ahmad, S.; Ngegba, P.; Zhong, G. Role of Endocrine System in the Regulation of Female Insect Reproduction. Biology 2021, 10, 614. [Google Scholar] [CrossRef] [PubMed]
- Attardo, G.M.; Hansen, I.A.; Raikhel, A.S. Nutritional regulation of vitellogenesis in mosquitoes: Implications for anautogeny. Insect Biochem. Mol. Biol. 2005, 35, 661–675. [Google Scholar] [CrossRef]
- Brennan, M.D.; Weiner, A.J.; Goralski, T.J.; Mahowald, A.P. The follicle cells are a major site of vitellogenin synthesis in Drosophila melanogaster. Dev. Biol. 1982, 89, 225–236. [Google Scholar] [CrossRef]
- Brubaker-Purkey, B.J.; Woodruff, R.I. Vitellogenesis in the Fruit Fly, Drosophila melanogaster: Antagonists Demonstrate that the PLC, IP3/DAG, PK-C Pathway is Triggered by Calmodulin. J. Insect Sci. 2013, 13, 68. [Google Scholar] [CrossRef] [Green Version]
- Goodchild, A.J.P. Culture of Insect tissues. Nature 1954, 173, 504–505. [Google Scholar] [CrossRef]
- Day, M.F.; Grace, T.D.C. Culture of insect tissues. Annu. Rev. Entomol. 1959, 4, 17–38. [Google Scholar] [CrossRef]
- Wyatt, S.S. Culture in vitro of tissue from the silkworm, Bombyx mori L. J. Gen. Physiol. 1956, 39, 841–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyatt, G.R.; Loughheed, T.C.; Wyatt, S.S. The chemistry of insect hemolymph: Organic components of the hemolymph of the silkworm, Bombyx mori, and two other species. J. Gen. Physiol. 1956, 39, 853–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grace, T.D.C. Establishment of Four Strains of Cells from Insect Tissues Grown in vitro. Nature 1962, 195, 788–789. [Google Scholar] [CrossRef]
- Fallon, A.M.; Kurtti, T.J. Cultured cells as a tool for analysis of gene expression. In Biology of Disease Vectors, 2nd ed.; Marquardt, W.C., Ed.; Elsevier: New York, NY, USA, 2005; pp. 539–549. [Google Scholar]
- Fallon, A.M. Transfection of cultured mosquito cells. In Molecular Biology of Insect Disease Vectors; Crampton, J.M., Beard, C.B., Louis, C., Eds.; Chapman and Hall: New York, NY, USA, 1997; pp. 430–443. [Google Scholar]
- Singh, K.R.P. Cell cultures derived from larvae of Aedes albopictus (Skuse) and Aedes aegypti (L.). Curr. Sci. 1967, 36, 506–508. [Google Scholar]
- Peleg, J. Growth of arboviruses from subculture mosquito embryo cells. Virology 1968, 35, 617–619. [Google Scholar] [CrossRef]
- Singh, K.R.P. Growth of arboviruses in arthropod tissue culture. Adv. Virus Res. 1972, 17, 187–206. [Google Scholar] [CrossRef]
- Lynn, D.E. Methods for the development of cell lines from insects. J. Tissue Cult. Methods 1989, 12, 23–29. [Google Scholar] [CrossRef]
- Lynn, D.E. Development and characterization of insect cell lines. Cytotechnology 1996, 20, 3–11. [Google Scholar] [CrossRef]
- Lynn, D.E. Novel techniques to establish new insect cell lines. In Vitro Cell. Dev. Biol.-Anim. 2001, 37, 319–321. [Google Scholar] [CrossRef]
- Goblirsch, M.J.; Spivak, M.S.; Kurtti, T.J. A Cell Line Resource Derived from Honey Bee (Apis mellifera) Embryonic Tissues. PLoS ONE 2013, 8, e69831. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Goodman, C.L.; Stanley, D.W.; Bonning, B.C. Cell Lines for Honey Bee Virus Research. Viruses 2020, 12, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, K.; Yoshiyama, M.; Akiduki, G.; Yokoi, K.; Hoshida, H.; Kayukawa, T.; Kimura, K.; Hatakeyama, M. A simple method for ex vivo honey bee cell culture capable of in vitro gene expression analysis. PLoS ONE 2021, 16, e0257770. [Google Scholar] [CrossRef] [PubMed]
- Shih, K.M.; Gerenday, A.; Fallon, A.M. Culture of mosquito cells in eagle’s medium. In Vitro Cell. Dev. Biol.-Anim. 1998, 34, 629–630. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Song, J.; Ni, M.; Kang, L.; Guo, W. Regulatory Mechanisms of Cell Polyploidy in Insects. Front. Cell Dev. Biol. 2020, 8, 361. [Google Scholar] [CrossRef] [PubMed]
- Willott, E.; Trenczek, T.; Thrower, L.W.; Kanost, M.R. Immunochemical identification of insect hemocyte populations: Monoclonal antibodies distinguish four major hemocyte types in Manduca sexta. Eur. J. Cell Biol. 1994, 65, 417–423. [Google Scholar]
- Ling, E.; Shirai, K.; Kanekatsu, R.; Kiguchi, K. Classification of larval circulating hemocytes of the silkworm, Bombyx mori, by acridine orange and propidium iodide staining. Histochem. Cell Biol. 2003, 120, 505–511. [Google Scholar] [CrossRef]
- Baldridge, G.D.; Baldridge, A.S.; Witthuhn, B.A.; Higgins, L.; Markowski, T.W.; Fallon, A.M. Proteomic profiling of a robust Wolbachia infection in an Aedes albopictus mosquito cell line. Mol. Microbiol. 2014, 94, 537–556. [Google Scholar] [CrossRef] [Green Version]
- Baldridge, G.; Higgins, L.; Witthuhn, B.; Markowski, T.; Baldridge, A.; Armien, A.; Fallon, A. Proteomic analysis of a mosquito host cell response to persistent Wolbachia infection. Res. Microbiol. 2017, 168, 609–625. [Google Scholar] [CrossRef]
- Fallon, A.M.; Witthuhn, B.A. Proteasome activity in a naïve mosquito cell line infected with Wolbachia pipientis wAlbB. In Vitro Cell. Dev. Biol.-Anim. 2009, 45, 460–466. [Google Scholar] [CrossRef] [Green Version]
- Loeb, M.J. Genital tract growth factors from a moth, the tobacco budworm, Heliothis virescens. In Vitro Cell. Dev. Biol.-Anim. 1994, 30, 702–708. [Google Scholar] [CrossRef]
- Smagghe, G.J.; Elsen, K.; Loeb, M.J.; Gelman, D.B.; Blackburn, M. Effects of a fat body extract on larval midgut cells and growth of lepidoptera. In Vitro Cell. Dev. Biol.-Anim. 2003, 39, 8–12. [Google Scholar] [CrossRef]
- Shotkoski, F.A.; Fallon, A.M. Expression of an Antisense Dihydrofolate Reductase Transcript in Transfected Mosquito Cells: Effects on Growth and Plating Efficiency. Am. J. Trop. Med. Hyg. 1994, 50, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Lan, Q.; Fallon, A.M. Small Heat Shock Proteins Distinguish between two Mosquito Species and Confirm Identity of Their Cell Lines. Am. J. Trop. Med. Hyg. 1990, 43, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Lan, Q.; Gerenday, A.; Fallon, A.M. Cultured Aedes albopictus mosquito cells synthesize hormone-inducible proteins. In Vitro Cell. Dev. Biol.-Anim. 1993, 29, 813–818. [Google Scholar] [CrossRef]
- Gerenday, A.; Fallon, A.M. Cell cycle parameters in Aedes albopictus mosquito cells. In Vitro Cell. Dev. Biol.-Anim. 1996, 32, 307–312. [Google Scholar] [CrossRef]
- Fallon, A.M.; Gerenday, A. Ecdysone and the cell cycle: Investigations in a mosquito cell line. J. Insect Physiol. 2010, 56, 1396–1401. [Google Scholar] [CrossRef] [Green Version]
- Stollar, V.; Thomas, V.L. An agent in the Aedes aegypti cell line (Peleg) which causes fusion of Aedes albopictus cells. Virology 1975, 64, 367–377. [Google Scholar] [CrossRef]
- Baidaliuk, A.; Lequime, S.; Moltini-Conclois, I.; Dabo, S.; Dickson, L.B.; Prot, M.; Duong, V.; Dussart, P.; Boyer, S.; Shi, C.; et al. Novel genome sequences of cell-fusing agent virus allow comparison of virus phylogeny with the genetic structure of Aedes aegypti populations. Virus Evol. 2020, 6, veaa018. [Google Scholar] [CrossRef]
- Zhang, G.; Asad, S.; Khromykh, A.A.; Asgari, S. Cell fusing agent virus and dengue virus mutually interact in Aedes aegypti cell lines. Sci. Rep. 2017, 7, 6935. [Google Scholar] [CrossRef] [Green Version]
- Baidaliuk, A.; Miot, E.F.; Lequime, S.; Moltini-Conclois, I.; Delaigue, F.; Dabo, S.; Dickson, L.B.; Aubry, F.; Merkling, S.H.; Cao-Lormeau, V.-M.; et al. Cell-fusing agent virus reduces arbovirus dissemination in Aedes aegypti mosquitoes in vivo. J. Virol. 2019, 93, e00705-19. [Google Scholar] [CrossRef] [Green Version]
- Felberbaum, R.S. The baculovirus expression vector system: A commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnol. J. 2015, 10, 702–714. [Google Scholar] [CrossRef] [PubMed]
- Hertig, M.; Wolbach, S.B. Studies on Rickettsia-like micro-organisms in insects. J. Med. Res. 1924, 44, 329–374. [Google Scholar] [PubMed]
- Hertig, M. The rickettsia, Wolbachia pipientis (gen. et sp.n.) and associated inclusions of the mosquito, Culex pipiens. Parasitology 1936, 28, 453–486. [Google Scholar] [CrossRef]
- Yen, J.H.; Barr, A.R. New Hypothesis of the Cause of Cytoplasmic Incompatibility in Culex pipiens L. Nature 1971, 232, 657–658. [Google Scholar] [CrossRef] [PubMed]
- Yen, J.H.; Barr, A. The etiological agent of cytoplasmic incompatibility in Culex pipiens. J. Invertebr. Pathol. 1973, 22, 242–250. [Google Scholar] [CrossRef]
- Duron, O.; Weill, M. Wolbachia infection influences the development of Culex pipiens embryo in incompatible crosses. Heredity 2006, 96, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Sinkins, S.P.; Walker, T.; Lynd, A.R.; Steven, A.R.; Makepeace, B.L.; Godfray, H.C.J.; Parkhill, J. Wolbachia variability and host effects on crossing type in Culex mosquitoes. Nature 2005, 436, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Bonneau, M.; Atyame, C.; Beji, M.; Justy, F.; Cohen-Gonsaud, M.; Sicard, M.; Weill, M. Culex pipiens crossing type diversity is governed by an amplified and polymorphic operon of Wolbachia. Nat. Commun. 2018, 9, 319. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, M.; Hochstrasser, M. The Biochemistry of Cytoplasmic Incompatibility Caused by Endosymbiotic Bacteria. Genes 2020, 11, 852. [Google Scholar] [CrossRef]
- Laven, H. Eradication of Culex pipiens fatigans through Cytoplasmic Incompatibility. Nature 1967, 216, 383–384. [Google Scholar] [CrossRef]
- Curtis, C.F.; Sinkins, S.P. Wolbachiaas a possible means of driving genes into populations. Parasitology 1998, 116, S111–S115. [Google Scholar] [CrossRef] [PubMed]
- Zug, R.; Hammerstein, P. Still a Host of Hosts for Wolbachia: Analysis of Recent Data Suggests That 40% of Terrestrial Arthropod Species Are Infected. PLoS ONE 2012, 7, e38544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, J.E.; De Bruyne, J.T.; Iturbe-Ormaetxe, I.; Stepnell, J.; Burns, R.L.; Flores, H.A.; O’Neill, S.L. Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes. PLoS Pathog. 2017, 13, e1006751. [Google Scholar] [CrossRef] [PubMed]
- Moreira, L.A.; Iturbe-Ormaetxe, I.; Jeffery, J.A.; Lu, G.; Pyke, A.T.; Hedges, L.M.; Rocha, B.C.; Hall-Mendelin, S.; Day, A.; Riegler, M.; et al. A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium. Cell 2009, 139, 1268–1278. [Google Scholar] [CrossRef] [Green Version]
- Walker, T.; Johnson, P.H.; Moreira, L.A.; Iturbe-Ormaetxe, I.; Frentiu, F.; McMeniman, C.; Leong, Y.S.; Dong, Y.; Axford, J.; Kriesner, P.; et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 2011, 476, 450–453. [Google Scholar] [CrossRef]
- Zhang, D.; Lees, R.; Xi, Z.; Gilles, J.R.L.; Bourtzis, K. Combining the Sterile Insect Technique with Wolbachia-Based Approaches: II- A Safer Approach to Aedes albopictus Population Suppression Programmes, Designed to Minimize the Consequences of Inadvertent Female Release. PLoS ONE 2015, 10, e0135194. [Google Scholar] [CrossRef]
- Serbus, L.R.; Landmann, F.; Bray, W.M.; White, P.M.; Ruybal, J.; Lokey, R.S.; Debec, A.; Sullivan, W. A Cell-Based Screen Reveals that the Albendazole Metabolite, Albendazole Sulfone, Targets Wolbachia. PLoS Pathog. 2012, 8, e1002922. [Google Scholar] [CrossRef]
- Fallon, A.M. Growth and maintenance of Wolbachia in insect cell lines. Insects 2021, 12, 706. [Google Scholar] [CrossRef]
- Noda, H.; Miyoshi, T.; Koizumi, Y. In vitro cultivation of Wolbachia in insect and mammalian cell lines. In Vitro Cell. Dev. Biol.-Anim. 2002, 38, 423–427. [Google Scholar] [CrossRef]
- Fallon, A.M.; Baldridge, G.D.; Higgins, L.A.; Witthuhn, B.A. Wolbachia from the planthopper Laodelphax striatellus establishes a robust, persistent, streptomycin-resistant infection in clonal mosquito cells. In Vitro Cell. Dev. Biol.-Anim. 2013, 49, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Fallon, A.M. Conditions facilitating infection of mosquito cell lines with Wolbachia, an obligate intracellular bacterium. In Vitro Cell. Dev. Biol.-Anim. 2019, 55, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Fallon, A.M. Flow cytometric evaluation of the intracellular bacterium, Wolbachia pipientis, in mosquito cells. J. Microbiol. Methods 2014, 107, 119–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckmann, J.F.; Fallon, A.M. Detection of the Wolbachia protein WPIP0282 in mosquito spermathecae: Implications for cytoplasmic incompatibility. Insect Biochem. Mol. Biol. 2013, 43, 867–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckmann, J.F.; Ronau, J.A.; Hochstrasser, M. A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nat. Microbiol. 2017, 2, 17007. [Google Scholar] [CrossRef] [Green Version]
- Beckmann, J.F.; Sharma, G.D.; Mendez, L.; Chen, H.; Hochstrasser, M. The Wolbachia cytoplasmic incompatibility enzyme CidB targets nuclear import and protamine-histone exchange factors. Elife 2019, 8, e50026. [Google Scholar] [CrossRef]
- Bell-Sakyi, L.; Beliavskaia, A.; Hartley, C.S.; Jones, L.; Luu, L.; Haines, L.R.; Hamilton, J.G.C.; Darby, A.C.; Makepeace, B.L. Isolation in Natural Host Cell Lines of Wolbachia Strains wPip from the Mosquito Culex pipiens and wPap from the Sand Fly Phlebotomus papatasi. Insects 2021, 12, 871. [Google Scholar] [CrossRef] [PubMed]
- Fallon, A.M. Cytological properties of an Aedes albopictus mosquito cell line infected with Wolbachia strain wAlbB. In Vitro Cell. Dev. Biol.-Anim. 2008, 44, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Xi, Z.; Joshi, D. Genetic control of malaria and dengue using Wolbachia. In Genetic Control of Malaria and Dengue; Adelman, Z.N., Ed.; Academic Press: London, UK, 2016; Chapter 14; pp. 305–333. [Google Scholar] [CrossRef]
- Fallon, A.M. Assessment of mitotically inactivated mosquito cell feeder layers produced with mitomycin C. In Vitro Cell. Dev. Biol.-Anim. 2021, 57, 583–586. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fallon, A.M. From Mosquito Ovaries to Ecdysone; from Ecdysone to Wolbachia: One Woman’s Career in Insect Biology. Insects 2022, 13, 756. https://doi.org/10.3390/insects13080756
Fallon AM. From Mosquito Ovaries to Ecdysone; from Ecdysone to Wolbachia: One Woman’s Career in Insect Biology. Insects. 2022; 13(8):756. https://doi.org/10.3390/insects13080756
Chicago/Turabian StyleFallon, Ann M. 2022. "From Mosquito Ovaries to Ecdysone; from Ecdysone to Wolbachia: One Woman’s Career in Insect Biology" Insects 13, no. 8: 756. https://doi.org/10.3390/insects13080756
APA StyleFallon, A. M. (2022). From Mosquito Ovaries to Ecdysone; from Ecdysone to Wolbachia: One Woman’s Career in Insect Biology. Insects, 13(8), 756. https://doi.org/10.3390/insects13080756