Genome Sequence of the Asian Honeybee in Pakistan Sheds Light on Its Phylogenetic Relationship with Other Honeybees
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Genome Sequencing, Assembly and Annotation
3.2. Phylogeny Analysis of A. cerana in Pakistan
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, K.A.; Ansari, M.J.; Al-Ghamdi, A.; Sharma, D.; Ali, H. Biodiversity and relative abundance of different honeybee species (Hymenoptera: Apidae) in Murree-Punjab, Pakistan. J. Entomol. Zool. Stud. 2014, 2, 324–327. [Google Scholar]
- Khan, K. Beekeeping in Pakistan (History, Potential, and Current Status). Preprints 2020, 2020070503. [Google Scholar] [CrossRef]
- Ahmad, R.; Camphor, E.; Ahmed, M. Factors affecting honey yield of the oriental bee, Apis cerana in Pakistan. Pak. J. Agric. Res. 1983, 4, 190–197. [Google Scholar]
- Koetz, A.H. Ecology, Behaviour and Control of Apis cerana with a Focus on Relevance to the Australian Incursion. Insects 2013, 4, 558–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jasra, A.W.; Sabira, A.; Kasi, M.A. Apple pollination problems in Balochistan, Pakistan. Int. J. Agric. Biol. 2001, 3, 210–213. [Google Scholar]
- Chantawannakul, P.; De Guzman, L.I.; Li, J.; Williams, G.R. Parasites, pathogens, and pests of honeybees in Asia. Apidologie 2016, 47, 301–324. [Google Scholar] [CrossRef]
- Ilyasov, R.; Youn, H.G.; Lee, M.-L.; Kim, K.W.; Proshchalykin, M.; Lelej, A.; Takahashi, J.-I.; Kwon, H.W. Phylogenetic Relationships of Russian Far-East Apis cerana with Other North Asian Populations. J. Apic. Sci. 2019, 63, 289–314. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Huang, J.; Wang, Y.; Zhao, X.; Su, L.; Thomas, G.W.C.; Zhao, M.; Zhang, X.; Jungreis, I.; Kellis, M.; et al. Genus-Wide Characterization of Bumblebee Genomes Provides Insights into Their Evolution and Variation in Ecological and Behavioral Traits. Mol. Biol. Evol. 2021, 38, 486–501. [Google Scholar] [CrossRef]
- Heavens, D.; Accinelli, G.G.; Clavijo, B.; Clark, M.D. A method to simultaneously construct up to 12 differently sized Illumina Nextera long mate pair libraries with reduced DNA input, time, and cost. Biotechniques 2015, 59, 42–45. [Google Scholar] [CrossRef] [Green Version]
- Love, R.R.; Weisenfeld, N.I.; Jaffe, D.B.; Besansky, N.J.; Neafsey, D.E. Evaluation of DISCOVAR de novo using a mosquito sample for cost-effective short-read genome assembly. BMC Genom. 2016, 17, 187. [Google Scholar] [CrossRef] [Green Version]
- Sahlin, K.; Vezzi, F.; Nystedt, B.; Lundeberg, J.; Arvestad, L. BESST-Efficient scaffolding of large fragmented assemblies. BMC Bioinform. 2014, 15, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waterhouse, R.M.; Seppey, M.; Simão, F.A.; Manni, M.; Ioannidis, P.; Klioutchnikov, G.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics. Mol. Biol. Evol. 2018, 35, 543–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantarel, B.L.; Korf, I.; Robb, S.M.; Parra, G.; Ross, E.; Moore, B.; Holt, C.; Alvarado, A.S.; Yandell, M. MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 2008, 18, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Korf, I. Gene finding in novel genomes. BMC Bioinform. 2004, 5, 59. [Google Scholar] [CrossRef] [Green Version]
- Lomsadze, A.; Ter-Hovhannisyan, V.; Chernoff, Y.; Borodovsky, M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 2005, 33, 6494–6506. [Google Scholar] [CrossRef] [PubMed]
- Stanke, M.; Schöffmann, O.; Morgenstern, B.; Waack, S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinform. 2006, 7, 62. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.; Binns, D.; Chang, H.-Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef] [Green Version]
- Flynn, J.M.; Hubley, R.; Goubert, C.; Rosen, J.; Clark, A.G.; Feschotte, C.; Smit, A.F. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl. Acad. Sci. USA 2020, 117, 9451–9457. [Google Scholar] [CrossRef]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef] [Green Version]
- Emms, D.; Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019, 20, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [Green Version]
- Criscuolo, A.; Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): A new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 2010, 10, 210. [Google Scholar] [CrossRef] [Green Version]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [Green Version]
- Lam-Tung, N.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar]
- Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019, 35, 4453–4455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, D.; Jung, J.W.; Choi, B.-S.; Jayakodi, M.; Lee, J.; Lim, J.; Yu, Y.; Choi, Y.-S.; Lee, M.-L.; Park, Y.; et al. Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing. BMC Genom. 2015, 16, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diao, Q.; Sun, L.; Zheng, H.; Zeng, Z.; Wang, S.; Xu, S.; Zheng, H.; Chen, Y.; Shi, Y.; Wang, Y.; et al. Genomic and transcriptomic analysis of the Asian honeybee Apis cerana provides novel insights into honeybee biology. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef]
- Wang, Z.-L.; Zhu, Y.; Yan, Q.; Yan, W.; Zheng, H.; Zeng, Z. A Chromosome-Scale Assembly of the Asian Honeybee Apis cerana Genome. Front. Genet. 2020, 11, 279. [Google Scholar] [CrossRef] [PubMed]
- Koeniger, N.; Koeniger, G.; Smith, D. Phylogeny of the Genus Apis; Springer: Berlin/Heidelberg, Germany, 2011; pp. 23–50. [Google Scholar]
- Ji, Y. The geographical origin, refugia, and diversification of honey bees (Apis spp.) based on biogeography and niche modeling. Apidologie 2021, 52, 367–377. [Google Scholar] [CrossRef]
- Radloff, S.E.; Hepburn, C.; Hepburn, H.R.; Fuchs, S.; Hadisoesilo, S.; Tan, K.; Engel, M.; Kuznetsov, V. Population structure and classification ofApis cerana. Apidologie 2010, 41, 589–601. [Google Scholar] [CrossRef] [Green Version]
Genome Sequencing | ||||
---|---|---|---|---|
Read number (Million) | Read length (bp) | Total read length (Gb) | ||
Fragment library | 90.66 | 250 | 22.67 | |
Jump libraries | 39.65 | 150 | 5.95 | |
Genome Assembly | ||||
Genome assembly size | Scaffold N50 (Mb) | Contig N50 (Kb) | BUSCO | |
214.44 | 2.85 | 311.13 | 99.50% | |
Genome Annotation | ||||
Protein-coding gene number | Genes with a GO term | Genes with a protein domain | BUSCO | |
11,864 | 6750 | 8813 | 97.90% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, H.; Naeem, M.; Ali, H.; Shakeel, M.; Kuang, H.; Zhang, Z.; Sun, C. Genome Sequence of the Asian Honeybee in Pakistan Sheds Light on Its Phylogenetic Relationship with Other Honeybees. Insects 2021, 12, 652. https://doi.org/10.3390/insects12070652
Tan H, Naeem M, Ali H, Shakeel M, Kuang H, Zhang Z, Sun C. Genome Sequence of the Asian Honeybee in Pakistan Sheds Light on Its Phylogenetic Relationship with Other Honeybees. Insects. 2021; 12(7):652. https://doi.org/10.3390/insects12070652
Chicago/Turabian StyleTan, Hongwei, Muhammad Naeem, Hussain Ali, Muhammad Shakeel, Haiou Kuang, Ze Zhang, and Cheng Sun. 2021. "Genome Sequence of the Asian Honeybee in Pakistan Sheds Light on Its Phylogenetic Relationship with Other Honeybees" Insects 12, no. 7: 652. https://doi.org/10.3390/insects12070652
APA StyleTan, H., Naeem, M., Ali, H., Shakeel, M., Kuang, H., Zhang, Z., & Sun, C. (2021). Genome Sequence of the Asian Honeybee in Pakistan Sheds Light on Its Phylogenetic Relationship with Other Honeybees. Insects, 12(7), 652. https://doi.org/10.3390/insects12070652