# Estimation of the Recent Expansion Rate of Ruspolia nitidula (Orthoptera) on a Regional and Landscape Scale

^{*}

## Abstract

**:**

## Simple Summary

## Abstract

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Model Species and Its Known Distribution

#### 2.2. Landscape-Scale Occurrence Data

#### 2.3. Regional-Scale Field Survey at the Areal Margin

^{−1}= 0–2 on the Beaufort scale). The first males were detected at the mouth of the Moravian Gate in 2013. Regular monitoring began in 2016 and was annually repeated until 2020 (the monitoring in each year is depicted in Figure 2). The monitoring began at dusk when the first males began to stridulate and continued to 22 h. The starting point was always in the northernmost area where R. nitidula males had been detected in the preceding season. After the first positive record of singing male, the observer started to monitor singing males by driving slowly through the landscape to the north with the windows opened on both sides at a speed of 20–50 km/h. If a male was detected, it was traced and located by triangulation method as precisely as possible. The position of the singing male was confirmed visually in most cases and the geographical position was recorded with a GPS Garmin eTrex Legend HCx with an accuracy 3 m. Males were audible at 20–40 m depending on the anthropogenic noise at the given location. During the monitoring, we recorded 42 individual occurrence records. We did not collect and preserve any voucher specimens, because each removed specimen could potentially affect subsequent spreading.

#### 2.4. Dispersal Distances

#### 2.5. Expansion Rate Analysis

## 3. Results

#### 3.1. Habitat Suitability Model

#### 3.2. Landscape Scale

#### 3.3. Regional-Scale Survey in Odra Basin

## 4. Discussion

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Beckmann, B.C.; Purse, B.V.; Roy, D.B.; Roy, H.E.; Sutton, P.G.; Thomas, C.D. Two Species with an Unusual Combination of Traits Dominate Responses of British Grasshoppers and Crickets to Environmental Change. PLoS ONE
**2015**, 10, e0130488. [Google Scholar] [CrossRef] [Green Version] - Mason, S.C.; Palmer, G.; Fox, R.; Gillings, S.; Hill, J.K.; Thomas, C.D.; Oliver, T.H. Geographical range margins of many taxonomic groups continue to shift polewards. Biol. J. Linn. Soc.
**2015**, 115, 586–597. [Google Scholar] [CrossRef] - Löffler, F.; Poniatowski, D.; Fartmann, T. Orthoptera community shifts in response to land-use and climate change—Lessons from a long-term study across different grassland habitats. Biol. Conserv.
**2019**, 236, 315–323. [Google Scholar] [CrossRef] - Menéndez, R.; González-Megías, A.; Jay-Robert, P.; Marquéz-Ferrando, R. Climate change and elevational range shifts: Evidence from dung beetles in two European mountain ranges. Glob. Ecol. Biogeogr.
**2014**, 23, 646–657. [Google Scholar] [CrossRef] - Soroye, P.; Newbold, T.; Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science
**2020**, 367, 685–688. [Google Scholar] [CrossRef] - Lenoir, J.; Bertrand, R.; Comte, L.; Bourgeaud, L.; Hattab, T.; Murienne, J.; Grenouillet, G. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol.
**2020**, 4, 1044–1059. [Google Scholar] [CrossRef] - Wilson, R.J.; Fox, R. Insect responses to global change offer signposts for biodiversity and conservation. Ecol. Entomol.
**2021**. [Google Scholar] [CrossRef] - Didham, R.K.; Barbero, F.; Collins, C.M.; Forister, M.L.; Hassall, C.; Leather, S.R.; Packer, L.; Saunders, M.E.; Stewart, A.J.A. Spotlight on insects: Trends, threats and conservation challenges. Insect Conserv. Divers.
**2020**, 13, 99–102. [Google Scholar] [CrossRef] [Green Version] - Burton, J. The apparent influence of climatic change on recent changes of range by European insects (Lepidoptera, Orthoptera). Changes in ranges: Invertebrates on the move. In Proceedings of the 13th International Colloquium of the European Invertebrate Survey, Leiden, The Netherlands, 2–5 September 2001; Volume 2003, pp. 13–21. [Google Scholar]
- Fartmann, T.; Krämer, B.; Stelzner, F.; Poniatowski, D. Orthoptera as ecological indicators for succession in steppe grassland. Ecol. Indic.
**2012**, 20, 337–344. [Google Scholar] [CrossRef] - Monnerat, C. Situation de Ruspolia nitidula (Scopoli, 1786) dans trois secteurs de Suisse occidentale: Les prémices d’une expansion? Bull. Romand Dentomol.
**2003**, 21, 33–47. [Google Scholar] - Brodacki, M. First records of the Large Cone-head Bush-cricket Ruspolia nitidula (Scopoli, 1786)(Orthoptera, Tettigoniidae) in Poland. Naturalia
**2015**, 3, 123–126. [Google Scholar] - Drukker, D.; van der Arend, I.; van Deijk, J.; Houkes, J.; Maas, D.; Schut, D. De grote spitskop Ruspolia nitidula in Nederland (Orthoptera). Ned. Faun. Meded.
**2020**, 54, 7–16. [Google Scholar] - Braun, V.B.; Lederer, E.; Sackl, P.; Zechner, L. Verbreitung, Phänologie und Habitatansprüche der Großen Schiefkopfschrecke, Ruspolia nitidula Scopoli, 1786, in der Steiermark und im südlichen Burgenland. Abt. Zool. Landesmus
**1995**, 49, 57–87. [Google Scholar] - Kočárek, P.; Holuša, J.; Vlk, R.; Marhoul, P. Rovnokřídlí (Insecta: Orthoptera) České Republiky; Academia: Praha, Czech Republic, 2013. [Google Scholar]
- Kleukers, R.; Decleer, K.; Haes, E.; Kolshorn, P.; Thomas, B. The recent expansion of Conocephalus discolor (Thunberg) (Orthoptera: Tettigoniidae) in western Europe. Entomol. Gaz.
**1996**, 47, 37–50. [Google Scholar] - Fedor, P.J.; Majzlan, O. Distribution and infiltration of the tree Cricket Oecanthus pellucens (Scopoli, 1763) to unoriginal conditions in Slovakia. Bull. Soc. Nat. Luxemb.
**2001**, 102, 103–108. [Google Scholar] - Kočárek, P.; Holuša, J.; Vlk, R.; Marhoul, P.; Zuna-Kratky, T. Recent expansions of bush-crickets Phaneroptera falcata and Phaneroptera nana (Orthoptera: Tettigoniidae) in the Czech Republic. Articulata
**2008**, 23, 67–75. [Google Scholar] - Kenyeres, Z.; Takács, G.; Bauer, N. Response of orthopterans to macroclimate changes: A 15-year case study in Central European humid grasslands. J. Orthoptera Res.
**2019**, 28, 187–193. [Google Scholar] [CrossRef] - Marini, L.; Bommarco, R.; Fontana, P.; Battisti, A. Disentangling effects of habitat diversity and area on orthopteran species with contrasting mobility. Biol. Conserv.
**2010**, 143, 2164–2171. [Google Scholar] [CrossRef] - Penone, C.; Kerbiriou, C.; Julien, J.F.; Julliard, R.; Machon, N.; Le Viol, I. Urbanisation effect on Orthoptera: Which scale matters? Insect Conserv. Divers.
**2013**, 6, 319–327. [Google Scholar] [CrossRef] - Detzel, P. Die Heuschrecken Baden-Württembergs; Verlag Eugen Ulmer GmbH & Co.: Stuttgart, Germany, 1998. [Google Scholar]
- Ingrisch, S.; Köhler, G. Die Heuschrecken Mitteleuropas; Westarp Wissenschaften: Magdeburg, Germany, 1998. [Google Scholar]
- Hassall, C.; Thompson, D.J. Accounting for recorder effort in the detection of range shifts from historical data. Methods Ecol. Evol.
**2010**, 1, 343–350. [Google Scholar] [CrossRef] - Preuss, S.; Low, M.; Cassel-Lundhagen, A.; Berggren, Å. Evaluating range-expansion models for calculating nonnative species’ expansion rate. Ecol. Evol.
**2014**, 4, 2812–2822. [Google Scholar] [CrossRef] - Etherington, T.R. Least-cost modelling and landscape ecology: Concepts, applications, and opportunities. Curr. Landsc. Ecol. Rep.
**2016**, 1, 40–53. [Google Scholar] [CrossRef] [Green Version] - Palmer, S.C.F.; Coulon, A.; Travis, J.M.J. Introducing a ‘stochastic movement simulator’ for estimating habitat connectivity. Methods Ecol. Evol.
**2011**, 2, 258–268. [Google Scholar] [CrossRef] - Scharf, A.K.; Belant, J.L.; Beyer, D.E.; Wikelski, M.; Safi, K. Habitat suitability does not capture the essence of animal-defined corridors. Mov. Ecol.
**2018**, 6, 1–12. [Google Scholar] [CrossRef] - Alexander, J.L.; Olimb, S.K.; Bly, K.L.S.; Restani, M. Use of least-cost path analysis to identify potential movement corridors of swift foxes in Montana. J. Mammal.
**2016**, 97, 891–898. [Google Scholar] [CrossRef] [Green Version] - LaPoint, S.; Gallery, P.; Wikelski, M.; Kays, R. Animal behavior, cost-based corridor models, and real corridors. Landsc. Ecol.
**2013**, 28, 1615–1630. [Google Scholar] [CrossRef] [Green Version] - LaRue, M.A.; Nielsen, C.K. Modelling potential dispersal corridors for cougars in midwestern North America using least-cost path methods. Ecol. Model.
**2008**, 212, 372–381. [Google Scholar] [CrossRef] - Pullinger, M.G.; Johnson, C.J. Maintaining or restoring connectivity of modified landscapes: Evaluating the least-cost path model with multiple sources of ecological information. Landsc. Ecol.
**2010**, 25, 1547–1560. [Google Scholar] [CrossRef] - Balbi, M.; Croci, S.; Petit, E.J.; Butet, A.; Georges, R.; Madec, L.; Caudal, J.P.; Ernoult, A. Least-cost path analysis for urban greenways planning: A test with moths and birds across two habitats and two cities. J. Appl. Ecol.
**2021**, 58, 632–643. [Google Scholar] [CrossRef] - Mineur, F.; Davies, A.J.; Maggs, C.A.; Verlaque, M.; Johnson, M.P. Fronts, jumps and secondary introductions suggested as different invasion patterns in marine species, with an increase in spread rates over time. Proc. R. Soc. B Biol. Sci.
**2010**, 277, 2693–2701. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kuska, A. Ryjkowce (Coleoptera: Rhynchitidae, Apionidae, Nanophyidae, Curculionidae) terenow kserotermicznych Gornego Slaska. Nat. Silesiae Super. Cent. Dziedzictwa Przyr. Górnego Śląska
**2001**, 5, 61–77. [Google Scholar] - Cieślak, E. Migration history of xerothermic plants on the area of the southern Poland, in terms of molecular data. Fragm. Florist. Geobot. Pol.
**2015**, 22, 3–13. [Google Scholar] - Banaszak, J.; Twerd, L.; Sobieraj-Betlińska, A.; Kilińska, B. The Moravian Gate as route of migration of thermophilous bee species to Poland: Fact or myth? A case study in the “Góra Gipsowa” steppe reserve and other habitats near Kietrz. Pol. J. Entomol.
**2017**, 86, 141–164. [Google Scholar] [CrossRef] - Parusel, J. Brama Morawska—Aspekty badawcze i turystyczne. In Brama Morawska—Aspekty Badawcze i Turystyczne; Jankowski, A.T., Ed.; Chapter Brama Morawska-Biogeograficzne Aspekty Badawcze; University of Silesia: Katowice, Poland, 1997; pp. 85–89. [Google Scholar]
- Sierka, W.; Sierka, E.; Fedor, P. Introduction to the probable movement of Thysanoptera through the Moravian Gate (Štramberk, Czech Republic). Acta Phytopathol. Entomol. Hung.
**2008**, 43, 367–372. [Google Scholar] [CrossRef] - Kočárek, P.; Holuša, J.; Vidlička, L. Blattaria, Mantodea, Orthoptera & Dermaptera of the Czech and Slovak Republics; Kabourek: Zlín, Czech Republic, 2005. [Google Scholar]
- Krištín, A.; Kaňuch, P.; Sarossy, M. Did the northern range of distribution of two tropical orthopterans (Insecta) change recently. Pol. J. Ecol.
**2007**, 55, 297–304. [Google Scholar] - Krištín, A.; Kaňuch, P.; Sarossy, M. Distribution and ecology of Ruspolia nitidula (Scopoli 1786) and Aiolopus thalassinus (Fabricius 1781)(Orthoptera) in Slovakia. Linzer Biol. Beitr.
**2007**, 39, 451–461. [Google Scholar] - Mařan, J. Beitrag zur Kenntnis der Taxonomie, Okologie und der geographischen Verbreitung von Homorocoryphus nitidulus (Scop.) in der Tschechoslowakei (Orthoptera-Tettigonoidea). Acta Faun. Entomol. Mus. Nat. Pragae
**1965**, 11, 307–326. [Google Scholar] - Holuša, J.; Kočárek, P.; Marhoul, P. First sightings of Ruspolia nitidula (Orthoptera: Tettigoniidae) and Mecostethus parapleurus (Orthoptera: Acrididae) after fifty years in the Czech Republic. Articulata
**2007**, 22, 47–51. [Google Scholar] - AOPK ČR. Nálezová Databáze Ochrany Přírody. 2021. Available online: https://portal.nature.cz (accessed on 13 July 2021).
- Saerens, M.; Achbany, Y.; Fouss, F.; Yen, L. Randomized shortest-path problems: Two related models. Neural Comput.
**2009**, 21, 2363–2404. [Google Scholar] [CrossRef] - van Etten, J.; Hijmans, R.J. A Geospatial Modelling Approach Integrating Archaeobotany and Genetics to Trace the Origin and Dispersal of Domesticated Plants. PLoS ONE
**2010**, 5, 1–12. [Google Scholar] [CrossRef] [Green Version] - Phillips, S.; Dudík, M.; Schapire, R. Maxent Software for Modeling Species Niches and Distributions (Version 3.4.3). 2020. Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 13 July 2021).
- Naimi, B.; Araújo, M.B. sdm: A reproducible and extensible R platform for species distribution modelling. Ecography
**2016**, 39, 368–375. [Google Scholar] [CrossRef] [Green Version] - Hijmans, R.J.; Phillips, S.; Leathwick, J.; Elith, J. dismo: Species Distribution Modeling. R Package Version 1.1-4. 2017. Available online: https://CRAN.R-project.org/package=dismo (accessed on 13 July 2021).
- Global Administrative Areas. GADM Database of Global Administrative Areas. Version 3.6. 2018. Available online: www.gadm.org (accessed on 13 July 2021).
- Amatulli, G.; McInerney, D.; Sethi, T.; Strobl, P.; Domisch, S. Geomorpho90m, empirical evaluation and accuracy assessment of global high-resolution geomorphometric layers. Sci. Data
**2020**, 7, 1–18. [Google Scholar] [CrossRef] [PubMed] - © European Union, Copernicus Land Monitoring Service; European Environment Agency (EEA): København, Denmark, 2021.
- Naimi, B.; Hamm, N.A.S.; Groen, T.A.; Skidmore, A.K.; Toxopeus, A.G. Where is positional uncertainty a problem for species distribution modelling. Ecography
**2014**, 37, 191–203. [Google Scholar] [CrossRef] - Aiello-Lammens, M.E.; Boria, R.A.; Radosavljevic, A.; Vilela, B.; Anderson, R.P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography
**2015**, 38, 541–545. [Google Scholar] [CrossRef] - Marhoul, P.; Kočárek, P. Biological Library—BioLib. Chapter Mapa Rozšíření Ruspolia nitidula v České Republice. 2021. Available online: https://www.biolib.cz/cz/taxonmap/id377/ (accessed on 13 July 2021).
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol.
**2014**, 5, 1198–1205. [Google Scholar] [CrossRef] - Warren, D.L.; Seifert, S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl.
**2011**, 21, 335–342. [Google Scholar] [CrossRef] [Green Version] - Boyce, M.S.; Vernier, P.R.; Nielsen, S.E.; Schmiegelow, F.K. Evaluating resource selection functions. Ecol. Model.
**2002**, 157, 281–300. [Google Scholar] [CrossRef] [Green Version] - Hirzel, A.H.; Le Lay, G.; Helfer, V.; Randin, C.; Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model.
**2006**, 199, 142–152. [Google Scholar] [CrossRef] - Di Cola, V.; Broennimann, O.; Petitpierre, B.; Breiner, F.T.; D’Amen, M.; Randin, C.; Engler, R.; Pottier, J.; Pio, D.; Dubuis, A.; et al. ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography
**2017**, 40, 774–787. [Google Scholar] [CrossRef] - Ferro, C.A.; Stephenson, D.B. Extremal dependence indices: Improved verification measures for deterministic forecasts of rare binary events. Weather Forecast.
**2011**, 26, 699–713. [Google Scholar] [CrossRef] [Green Version] - Wunderlich, R.F.; Lin, Y.P.; Anthony, J.; Petway, J.R. Two alternative evaluation metrics to replace the true skill statistic in the assessment of species distribution models. Nat. Conserv.
**2019**, 35, 97–116. [Google Scholar] [CrossRef] - Hijmans, R.J. Raster: Geographic Data Analysis and Modeling. R Package Version 3.4-10. 2021. Available online: https://CRAN.R-project.org/package=raster (accessed on 13 July 2021).
- van Etten, J. R Package gdistance: Distances and Routes on Geographical Grids. J. Stat. Softw. Artic.
**2017**, 76, 1–21. [Google Scholar] [CrossRef] [Green Version] - Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-Response Analysis Using R. PLoS ONE
**2016**, 10, 1–13. [Google Scholar] [CrossRef] [Green Version] - R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- QGIS Development Team. QGIS Geographic Information System. QGIS Association, 2021. Available online: https://qgis.org/en/site/getinvolved/faq/index.html#how-to-cite-qgis (accessed on 13 July 2021).
- Simmons, A.; Thomas, C. Changes in Dispersal during Species’ Range Expansions. Am. Nat.
**2004**, 164, 378–395. [Google Scholar] [CrossRef] [PubMed] - Travis, J.M.; Dytham, C. Dispersal evolution during invasions. Evol. Ecol. Res.
**2002**, 4, 1119–1129. [Google Scholar] - Wagner, D.L.; Fox, R.; Salcido, D.M.; Dyer, L.A. A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proc. Natl. Acad. Sci. USA
**2021**, 118. [Google Scholar] [CrossRef] - Fahrner, S.; Aukema, B.H. Correlates of spread rates for introduced insects. Glob. Ecol. Biogeogr.
**2018**, 27, 734–743. [Google Scholar] [CrossRef] - Zuna-Kratky, T.; Landmann, A.; Illich, I.; Zechner, L.; Essl, F.; Lechner, K.; Ortner, A.; Weißmair, W.; Wöss, G. Die Heuschrecken Österreichs; Biologiezentrum: Linz, Austria, 2017. [Google Scholar]
- Zuna-Kratky, T.; Karner-Ranner, E.; Lederer, E.; Braun, B.; Berg, H.M.; Denner, M.; Bieringer, G.; Ranner, A.; Zechner, L. Verbreitungsatlas der Heuschrecken und Fangschrecken Ostösterreichs; Naturhistorischen Museums Wien: Wien, Austria, 2009. [Google Scholar]
- Hickling, R.; Roy, D.B.; Hill, J.K.; Fox, R.; Thomas, C.D. The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Chang. Biol.
**2006**, 12, 450–455. [Google Scholar] [CrossRef] - Hochkirch, A.; Damerau, M. Rapid range expansion of a wing-dimorphic bush-cricket after the 2003 climatic anomaly. Biol. J. Linn. Soc.
**2009**, 97, 118–127. [Google Scholar] [CrossRef] [Green Version] - Walker, T.J.; Nickle, D.A. Introduction and Spread of Pest Mole Crickets: Scapteriscus vicinus and S. acletus Reexamined1. Ann. Entomol. Soc. Am.
**1981**, 74, 158–163. [Google Scholar] [CrossRef] - Coulon, A.; Aben, J.; Palmer, S.C.F.; Stevens, V.M.; Callens, T.; Strubbe, D.; Lens, L.; Matthysen, E.; Baguette, M.; Travis, J.M.J. A stochastic movement simulator improves estimates of landscape connectivity. Ecology
**2015**, 96, 2203–2213. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Milanesi, P.; Holderegger, R.; Caniglia, R.; Fabbri, E.; Randi, E. Different habitat suitability models yield different least-cost path distances for landscape genetic analysis. Basic Appl. Ecol.
**2016**, 17, 61–71. [Google Scholar] [CrossRef]

**Figure 1.**Overview of study area and Ruspolia nitidula occurrences. The occurrences include those in the national (landscape-scale) databases, and those obtained from the regional-scale survey in the Odra River basin.

**Figure 2.**Driving routes used to monitor the spread of R. nitidula in the Odra River basin and R. nitidula detections in a 5-year period.

**Figure 3.**Paths of R. nitidula spread calculated with three methods for estimating distance (geographic, LCP, and passage LCP), and the distribution and median of their distances from 2007 to 2020. Squares in the maps represent two R. nitidula origin points.

**Figure 4.**Simple linear regression of cumulative maximum distances of R. nitidula spread at the landscape scale, calculated with three methods for estimating spread distance: geographic, LCP, and passage LCP.

**Figure 5.**Comparison of R. nitidula spread paths from the two origin occurrences (2006) to the two most distant occurrences at the areal margin (2020) as calculated with three methods for estimating distance (geographic, LCP, and passage LCP).

**Figure 6.**Estimates of expansion rate in decreasing and increasing sampling effort based on Weibull four-parametric dose-response model.

**Figure 7.**Annual paths of R. nitidula spread in the Odra River basin and distribution and median of distances as indicated by three methods for determining paths and distances (geographic, LCP, and passage LCP). Squares indicate origin points in a given year, and highlighted lines represent the path with the highest calculated distance.

**Figure 8.**Simple linear regression of cumulative maximum distances of R. nitidula spread in the Odra River basin calculated with geographic, LCP, or passage LCP methods.

**Table 1.**Results of simple linear models of the R. nitidula expansion spread rate at the landscape scale based on three methods for calculating spread distance.

Method | km/y | Adjusted R^{2} | F | CI 2.5 | CI 97.5 | p-Value |
---|---|---|---|---|---|---|

Geographic | 13.81 | 0.90 | 119.11 | 11.05 | 16.57 | <0.001 |

LCP | 16.18 | 0.90 | 112.31 | 12.86 | 19.51 | <0.001 |

Passage LCP | 15.09 | 0.88 | 95.07 | 11.71 | 18.46 | <0.001 |

**Table 2.**Estimates of R. nitidula expansion rate based on distances between the two origins (2006) and the most distant recent occurrences (2020) calculated with three methods.

Origin | Method | km | km/y |
---|---|---|---|

Geographic | 161.0 | 11.5 | |

A | LCP | 189.2 | 13.5 |

Passage LCP | 176.7 | 12.6 | |

Geographic | 162.7 | 11.6 | |

B | LCP | 186.1 | 13.3 |

Passage LCP | 171.1 | 12.2 |

**Table 3.**Results of simple linear models of rate of R. nitidula expansion in the Odra River basin based on three methods of distance calculation.

Method | km/y | Adjusted R^{2} | F | CI 2.5 | CI 97.5 | p-Value |
---|---|---|---|---|---|---|

Geographic | 11.09 | 0.99 | 209.64 | 7.80 | 14.39 | 0.005 |

LCP | 11.67 | 0.98 | 169.61 | 7.81 | 15.52 | 0.006 |

Passage LCP | 11.48 | 0.98 | 165.83 | 7.65 | 15.32 | 0.006 |

**Table 4.**Calculated R. nitidula spread distances (km) and their means ( ± SD) in the Odra River basin based on three methods of distance calculation.

Method | 2016–2017 | 2017–2018 | 2018–2019 | 2019–2020 | Mean ± SD |
---|---|---|---|---|---|

Geographic | 11.60 | 13.67 | 10.85 | 8.83 | 11.24 ± 2.00 |

LCP | 13.08 | 14.82 | 11.14 | 9.21 | 12.06 ± 2.42 |

Passage LCP | 11.99 | 14.57 | 11.06 | 8.96 | 11.64 ± 2.32 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kaláb, O.; Pyszko, P.; Kočárek, P.
Estimation of the Recent Expansion Rate of *Ruspolia nitidula* (Orthoptera) on a Regional and Landscape Scale. *Insects* **2021**, *12*, 639.
https://doi.org/10.3390/insects12070639

**AMA Style**

Kaláb O, Pyszko P, Kočárek P.
Estimation of the Recent Expansion Rate of *Ruspolia nitidula* (Orthoptera) on a Regional and Landscape Scale. *Insects*. 2021; 12(7):639.
https://doi.org/10.3390/insects12070639

**Chicago/Turabian Style**

Kaláb, Oto, Petr Pyszko, and Petr Kočárek.
2021. "Estimation of the Recent Expansion Rate of *Ruspolia nitidula* (Orthoptera) on a Regional and Landscape Scale" *Insects* 12, no. 7: 639.
https://doi.org/10.3390/insects12070639