Molecular Characterization of Chitin Synthase Gene in Tetranychus cinnabarinus (Boisduval) and Its Response to Sublethal Concentrations of an Insecticide
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Mass Rearing of Experimental Mites
2.2. Preparation of Eggs and Larvae of T. cinnabarinus Synchronized in Development
2.3. Diflubenzuron Bioassays and Sublethal Effect of Diflubenzuron against Developmentally Synchronized Eggs and Larvae of T. cinnabarinus
2.4. Cloning and Sequencing of Chitin Synthase cDNA of T. cinnabarinus
2.5. Bioinformatics and Phylogenetic Analysis of TcCHS1
2.6. mRNA Expression Analysis of the Chitin Synthase Gene of T. cinnabarinus
2.7. Statistical Analysis
3. Results
3.1. The Toxicities of Diflubenzuron against Eggs and Larvae of T. cinnabarinus
3.2. Effects of Sublethal Concentrations of Diflubenzuron on the Survival Rate in T. cinnabarinus Eggs and Larvae
3.3. Identification and Characterization of Chitin Synthase Gene from T. cinnabarinus
3.4. The Different Developmental Expression Patterns of TcCHS1
3.5. Effect of Sublethal Concentrations of Diflubenzuron Exposure on TcCHS1 Gene Expression in Eggs and Larvae of T. cinnabarinus
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Merzendorfer, H. Insect chitin synthases: A review. J. Comp. Physiol. B 2006, 176, 1–15. [Google Scholar] [CrossRef]
- Merzendorfer, H.; Zimoch, L. Chitin metabolism in insects: Structure, function and regulation of chitin synthases and chitinases. J. Exp. Biol. 2003, 206, 4393–4412. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.Y.; Merzendorfer, H.; Zhang, W.; Zhang, J.; Muthukrishnan, S. Biosynthesis, turnover, and functions of chitin in insects. Annu. Rev. Entomol. 2016, 61, 177–196. [Google Scholar] [CrossRef] [PubMed]
- Tellam, R.L.; Vuocolo, T.; Johnson, S.E.; Jarmey, J.; Pearson, R.D. Insect chitin synthase: cDNA sequence, gene organization and expression. Eur. J. Biochem. 2000, 267, 6025–6043. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, G.H.; Smartt, C.T.; Kiley, L.M.; Christensen, B.M. Cloning and characterization of a chitin synthase cDNA from the mosquito Aedes aegypti. Insect Biochem. Mol. Biol. 2000, 30, 1213–1222. [Google Scholar] [CrossRef]
- Gagou, M.E.; Kapsetaki, M.; Turberg, A.; Kafetzopoulos, D. Stage-specific expression of the chitin synthase DmeChSA and DmeChSB genes during the onset of Drosophila metamorphosis. Insect Biochem. Mol. Biol. 2002, 32, 141–146. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Zhu, K.Y. Characterization of a chitin synthase cDNA and its increased mRNA level associated with decreased chitin synthesis in Anopheles quadrimaculatus exposed to diflubenzuron. Insect Biochem. Mol. Biol. 2006, 36, 712–725. [Google Scholar] [CrossRef]
- Kumar, N.S.; Tang, B.; Chen, X.; Tian, H.; Zhang, W. Molecular cloning, expression pattern and comparative analysis of chitin synthase gene B in Spodoptera exigua. Comp. Biochem. Physiol. B 2008, 149, 447–453. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Zhang, J.; Li, D.; Sun, Y.; Guo, Y.; Zhu, K.Y. Silencing of two alternative splicing-derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust, Locusta migratoria manilensis (Meyen). Insect Biochem. Mol. Biol. 2010, 40, 824–833. [Google Scholar] [CrossRef]
- Qu, M.; Yang, Q. A novel alternative splicing site of class A chitin synthase from the insect Ostrinia furnacalis–Gene organization, expression pattern and physiological significance. Insect Biochem. Mol. Biol. 2011, 41, 923–931. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Park, Y.; Zhu, K.Y. Identification and characterization of two chitin synthase genes in African malaria mosquito, Anopheles gambiae. Insect Biochem. Mol. Biol. 2012, 42, 674–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, J.F.; Mu, L.L.; Chen, X.; Guo, W.C.; Li, G.Q. RNA interference of chitin synthase genes inhibits chitin biosynthesis and affects larval performance in Leptinotarsa decemlineata (Say). Int. J. Biol. Sci. 2016, 12, 1319–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, W.K.; Ding, T.B.; Niu, J.Z.; Liao, C.Y.; Zhong, R.; Yang, W.J.; Wang, J.J. Exposure to diflubenzuron results in an up-regulation of a chitin synthase 1 gene in citrus red mite, Panonychus citri (Acari: Tetranychidae). Int. J. Mol. Sci. 2014, 15, 3711–3728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Leeuwen, T.; Demaeght, P.; Osborne, E.J.; Dermauw, W.; Gohlke, S.; Nauen, R.; Clark, R.M. Population bulk segregant mapping uncovers resistance mutations and the mode of action of a chitin synthesis inhibitor in arthropods. Proc. Natl. Acad. Sci. USA 2012, 109, 4407–4412. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.F.; Mu, L.L.; Guo, W.C.; Li, G.Q. Identification and hormone induction of putative chitin synthase genes and splice variants in Leptinotarsa decemlineata (Say). Arch. Insect Biochem. Physiol. 2016, 92, 242–258. [Google Scholar] [CrossRef]
- Arakane, Y.; Muthukrishnan, S.; Kramer, K.J.; Specht, C.A.; Tomoyasu, Y.; Lorenzen, M.D.; Beeman, R.W. The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Mol. Biol. 2005, 14, 453–463. [Google Scholar] [CrossRef]
- Bansal, R.; Mian, M.R.; Mittapalli, O.; Michel, A.P. Characterization of a chitin synthase encoding gene and effect of diflubenzuron in soybean aphid, Aphis glycines. Int. J. Biol. Sci. 2012, 8, 1323. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Sui, X.; Xu, L.; Liu, G.; Lu, L.; You, M.; Liang, R. Plant-mediated RNAi of grain aphid CHS1 gene confers common wheat resistance against aphids. Pest Manag. Sci. 2018, 74, 2754–2760. [Google Scholar] [CrossRef]
- Zhang, M.; Du, M.Y.; Wang, G.X.; Wang, Z.Y.; Lu, Y.J. Identification, mRNA expression, and functional analysis of chitin synthase 2 gene in the rusty grain beetle, Cryptolestes ferrugineus. J. Stored. Prod. Res. 2020, 87, 101622. [Google Scholar] [CrossRef]
- Smagghe, G.; Zotti, M.; Retnakaran, A. Targeting female reproduction in insects with biorational insecticides for pest management: A critical review with suggestions for future research. Curr. Opin. Insect Sci. 2019, 31, 65–69. [Google Scholar] [CrossRef]
- Mahdy, N.M.; Mohammed, M.I.; Abdou, M.A.; Ahmed, S.S.; Badawy, N.S. Toxicological and Biochemical Effects of Lufenuron and Rice Bran on Desert Locust, Schistocerca gregaria (Forskal)(Orthoptera: Acrididae). Egypt. Acad. J. Biol. Sci. F Toxicol. Pest Control 2019, 11, 37–58. [Google Scholar] [CrossRef] [Green Version]
- Meola, S.M.; Mayer, R.T. Inhibition of cellular proliferation of imaginal epidermal cells by diflubenzuron in pupae of the stable fly. Science 1980, 207, 985–987. [Google Scholar] [CrossRef]
- Gangishetti, U.; Breitenbach, S.; Zander, M.; Saheb, S.K.; Müller, U.; Schwarz, H.; Moussian, B. Effects of benzoylphenylurea on chitin synthesis and orientation in the cuticle of the Drosophila larva. Eur. J. Cell. Biol. 2009, 88, 167–180. [Google Scholar] [CrossRef]
- Bostanian, N.J.; Wise, J.C.; Isaacs, R. Pesticides for arthropod control in vineyards. In Arthropod Management in Vineyards; Springer: Dordrecht, The Netherlands, 2012; pp. 53–90. [Google Scholar]
- Merzendorfer, H. Chitin synthesis inhibitors: Old molecules and new developments. Insect Sci. 2013, 20, 121–138. [Google Scholar] [CrossRef]
- Douris, V.; Steinbach, D.; Panteleri, R.; Livadaras, I.; Pickett, J.A.; Van Leeuwen, T.; Vontas, J. Resistance mutation conserved between insects and mites unravels the benzoylurea insecticide mode of action on chitin biosynthesis. Proc. Natl. Acad. Sci. USA 2016, 113, 14692–14697. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.J.; Huang, Y.L.; Yu, H.Z.; Li, N.Y.; Xie, Y.X.; Zhang, Q.; Su, H.N. Silencing of the chitin synthase gene is lethal to the Asian citrus psyllid, Diaphorina citri. Int. J. Mol. Sci. 2019, 20, 3734. [Google Scholar] [CrossRef] [Green Version]
- Merzendorfer, H.; Kim, H.S.; Chaudhari, S.S.; Kumari, M.; Specht, C.A.; Butcher, S.; Muthukrishnan, S. Genomic and proteomic studies on the effects of the insect growth regulator diflubenzuron in the model beetle species Tribolium castaneum. Insect. Biochem. Mol. Biol. 2012, 42, 264–276. [Google Scholar] [CrossRef] [Green Version]
- Ashfaq, M.; Sonoda, S.; Tsumuki, H. Developmental and tissue-specific expression of CHS1 from Plutella xylostella and its response to chlorfluazuron. Pestic. Biochem. Physiol. 2007, 89, 20–30. [Google Scholar] [CrossRef]
- Abo-Elghar, G.E.; Fujiyoshi, P.; Matsumura, F. Significance of the sulfonylurea receptor (SUR) as the target of diflubenzuron in chitin synthesis inhibition in Drosophila melanogaster and Blattella germanica. Insect Biochem. Mol. Biol. 2004, 34, 743–752. [Google Scholar] [CrossRef]
- Cohen, E. Chitin synthesis and inhibition: A revisit. Pest Manag. Sci. 2001, 57, 946–950. [Google Scholar] [CrossRef] [PubMed]
- Auger, P.; Migeon, A.; Ueckermann, E.A.; Tiedt, L.; Navajas, M. Evidence for synonymy between Tetranychus urticae and Tetranychus cinnabaribus (Acari, prostigmata, Tetranychidae): Review and new data. Acarologia 2013, 53, 383–415. [Google Scholar] [CrossRef]
- Wei, P.; Chen, M.; Nan, C.; Feng, K.; Shen, G.; Cheng, J.; He, L. Downregulation of carboxylesterase contributes to cyflumetofen resistance in Tetranychus cinnabarinus (Boisduval). Pest Manag. Sci. 2019, 75, 2166–2173. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Feng, K.; Liu, X.; Li, J.; Li, C.; He, L. Amidase, a novel detoxifying enzyme, is involved in cyflumetofen resistance in Tetranychus cinnabarinus (Boisduval). Pestic. Biochem. Physiol. 2020, 163, 31–38. [Google Scholar] [CrossRef]
- Xin, T.R.; Li, X.Y.; Cui, X.P.; Gao, S.R.; Liu, X.Y.; Zou, Z.W.; Xia, B. Alterations in antioxidant enzyme activities and lipid peroxidation induced by diflubenzuron in the carmine spider mite, Tetranychus cinnabarinus (Boisduval)(Acari:Tetranychidae). Int. J. Acarol. 2017, 43, 366–373. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C T method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Ullah, F.; Gul, H.; Wang, X.; Ding, Q.; Said, F.; Gao, X.; Song, D. RNAi-mediated knockdown of chitin synthase 1 (CHS1) gene causes mortality and decreased longevity and fecundity in Aphis gossypii. Insects 2020, 11, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, F.; Xiong, Y.; Xia, W.K.; Wei, D.D.; Wei, D.; Wang, J.J. Identification, characterization and functional analysis of a chitin synthase gene in the brown citrus aphid, Toxoptera citricida (Hemiptera, Aphididae). Insect Mol. Biol. 2016, 25, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cooper, A.M.; Yu, Z.; Silver, K.; Zhang, J.; Zhu, K.Y. Progress and prospects of arthropod chitin pathways and structures as targets for pest management. Pestic. Biochem. Physiol. 2019, 161, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Dover, M.J.; Croft, B.A.; Welch, S.M.; Tummala, R.L. Biological control of Panonychus ulmi (Acarina: Tetranychidae) by Amblyseius fallacis (Acarina: Phytoseiidae) on apple: A prey-predator model. Environ. Entomol. 1979, 8, 282–292. [Google Scholar] [CrossRef]
- Carey, J.R. Demography of the twospotted spider mite, Tetranychus urticae Koch. Oecologia 1982, 52, 389–395. [Google Scholar] [CrossRef]
Primer Name | Primer Sequence (5′-3′) | Purpose of Experiment | Amplicon Lengths |
---|---|---|---|
TC-F1 | AYTGYTTYTGYTTYATHCCKGG | Short fragment | 500 bp |
TC-R2 | TASAKACCCADATYATKCCRTG | ||
TC-F2 | TYYTYATHTCANTHGGKTGGTG | ||
TC-R1 | CKYTGRATRCARATYTTRCAAGC | ||
TC-F3 | CYATAYGTTCARTAYGAYCARG | Short fragment | 500 bp |
TC-R4 | ARRCARTGRAAYTCTTGYGGAT | ||
TC-F4 | CYTAYACWCAYTGYCCWGARGG | ||
TC-R3 | AYTCTTGYGGRTGMARGARTGC | ||
TC-CHS-F1 | TGGGTGGTGGGAAAACTACATTG | Long fragment | 1800 bp |
TC-CHS-R2 | GCTATGAAAAATACGGCAGACGG | ||
TC-CHS-F2 | AATCTGCCTTCACTTCTCACA | ||
TC-CHS-R1 | AAGAAAAATGGTTCCTGGTCC | ||
TC-5CHS-R1 | GAGTATTTTGTGAGAAGTGAAGGCAG | 5′RACE | 750 bp |
TC-5CHS-R2 | TCAATGTAGTTTTCCCACCACC | ||
TC-3CHS-F1 | CAAATGGCTGAAGATGGTGTTAC | 3′RACE | 1800 bp |
TC-3CHS-F2 | ATCTGGGTCTTTTGTAGTGGCGG | ||
UPM long | CTAATACGACTCACTATAGGGCAA AGCAGTGGTATCAACGCAGAGT | Universal primer | |
UPM short | CTAATACGACTCACTATAGGGC | ||
NUP | AAGCAGTGGTATCAACGCAGAGT | ||
TC-CHS-F | CCAGTTGGTAGCGGTCTCA | RT-qPCR analysis | 200 bp |
TC-CHS-R | GCCTCATCGGATCTTGTCGT | ||
β-actin-F | CAGCCATGTATGTTGCCATC | Reference gene | 200 bp |
β-actin-R | AAATCACGACCAGCCAAATC |
Stages | LC-P Equation | LC50 Median Lethal Concentration (mg/L) | 95% Confidence Interval | Correlation Coefficient R | X2 |
---|---|---|---|---|---|
Larvae | y = −1.582 + 1.303x | 16.373 | 12.457–20.397 | 0.909 | 7.951 |
Eggs | y = −1.516 + 1.264x | 15.825 | 11.895–19.855 | 0.926 | 6.242 |
Concentration (mg/L) | Eggs | Larvae |
---|---|---|
LC10 | 1.534 (0.662–2.671) | 1.700 (0.768–2.887) |
LC20 | 3.417 (1.815–5.226) | 3.700 (2.034–5.553) |
LC30 | 6.089 (3.734–8.534) | 6.481 (4.078–8.955) |
LC40 | 9.976 (6.853–13.095) | 10.464 (7.322–13.593) |
LC50 | 15.825 (11.895–19.855) | 16.373 (12.457–20.397) |
Treatments | Number of Eggs | Survival Rate of Eggs (%) |
---|---|---|
LC50 | 148 | 48.16c |
LC40 | 136 | 52.31c |
LC30 | 132 | 72.13b |
LC20 | 141 | 77.65ab |
LC10 | 126 | 89.37a |
CK | 122 | 94.66a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, T.; Li, Z.; Chen, J.; Wang, J.; Zou, Z.; Xia, B. Molecular Characterization of Chitin Synthase Gene in Tetranychus cinnabarinus (Boisduval) and Its Response to Sublethal Concentrations of an Insecticide. Insects 2021, 12, 501. https://doi.org/10.3390/insects12060501
Xin T, Li Z, Chen J, Wang J, Zou Z, Xia B. Molecular Characterization of Chitin Synthase Gene in Tetranychus cinnabarinus (Boisduval) and Its Response to Sublethal Concentrations of an Insecticide. Insects. 2021; 12(6):501. https://doi.org/10.3390/insects12060501
Chicago/Turabian StyleXin, Tianrong, Zhenzhen Li, Jia Chen, Jing Wang, Zhiwen Zou, and Bin Xia. 2021. "Molecular Characterization of Chitin Synthase Gene in Tetranychus cinnabarinus (Boisduval) and Its Response to Sublethal Concentrations of an Insecticide" Insects 12, no. 6: 501. https://doi.org/10.3390/insects12060501
APA StyleXin, T., Li, Z., Chen, J., Wang, J., Zou, Z., & Xia, B. (2021). Molecular Characterization of Chitin Synthase Gene in Tetranychus cinnabarinus (Boisduval) and Its Response to Sublethal Concentrations of an Insecticide. Insects, 12(6), 501. https://doi.org/10.3390/insects12060501