Identification of Natural Hybrids between Ahlbergia frivaldszkyi (Lederer, 1853) and Callophrys rubi (Linnaeus, 1758) (Lepidoptera, Lycaenidae) Using Mitochondrial and Nuclear Markers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimens Sampling
2.2. Molecular Markers, DNA Extraction, and PCR Amplification
2.3. Phylogenetic Reconstructions
2.4. Morphological Analysis
3. Results
3.1. Morphology
3.1.1. Ahlbergia frivaldszkyi
3.1.2. Calloprhys rubi
3.1.3. Putative Hybrid Specimens A. frivaldszkyi × C. rubi
3.2. Phylogenetic Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Barton, N.H.; Hewitt, G.M. Analysis of hybrid zones. Ann. Rev. Ecol. Syst. 1985, 16, 113–148. [Google Scholar] [CrossRef]
- Mallet, J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 2005, 20, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Mallet, J. Hybrid speciation. Nature 2007, 446, 279–283. [Google Scholar] [CrossRef]
- Lukhtanov, V.A.; Shapoval, N.A.; Anokhin, B.A.; Saifitdinova, A.F.; Kuznetsova, V.G. Homoploid hybrid speciation and genome evolution via chromosome sorting. Proc. R. Soc. Lond. B Biol. Sci. 2015, 282, 20150157. [Google Scholar] [CrossRef] [Green Version]
- Harrison, R.G.; Larson, E. Hybridization, introgression, and the nature of species boundaries. J. Hered. 2014, 105, 795–809. [Google Scholar] [CrossRef] [Green Version]
- Bull, V.; Beltrán, M.; Jiggins, C.D.; McMillan, W.O.; Bermingham, E.; Mallet, J. Polyphyly and gene flow between non-sibling Heliconius species. BMC Biol. 2006, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Kronforst, M.R.; Young, L.G.; Blume, L.M.; Gilbert, L.E. Multilocus analyses of admixture and introgression among hybridizing Heliconius butterflies. Evolution 2006, 60, 1254–1268. [Google Scholar] [CrossRef]
- Kronforst, M.R. Gene flow persists millions of years after speciation in Heliconius butterflies. BMC Evol. Biol. 2008, 8, 98. [Google Scholar] [CrossRef] [Green Version]
- Hundsdoerfer, A.K.; Kitching, I.J.; Wink, M. The phylogeny of the Hyles euphorbiae complex (Lepidoptera: Sphingidae): Molecular evidence from sequence data and ISSR-PCR fingerprints. Org. Divers. Evol. 2005, 5, 173–198. [Google Scholar] [CrossRef] [Green Version]
- Jasso-Martínez, J.M.; Machkour-M’Rabet, S.; Vila, R.; Rodríguez-Arnaiz, R.; Castañeda-Sortibrán, A.N. Molecular evidence of hybridization in sympatric populations of the Enantia jethys complex (Lepidoptera: Pieridae). PLoS ONE 2018, 13, e0197116. [Google Scholar] [CrossRef] [PubMed]
- Abbott, R.; Albach, D.; Ansell, S.; Arntzen, J.W.; Baird, S.J.E.; Bierne, N.; Boughman, J.; Brelsford, A.; Buerkle, C.A.; Buggs, R.; et al. Hybridization and speciation. J. Evol. Biol. 2013, 26, 229–246. [Google Scholar] [CrossRef] [Green Version]
- Sperling, F.A.H. Natural hybrids of Papilio (Insecta: Lepidoptera): Poor taxonomy or interesting evolutionary problem? Can. J. Zool. 1990, 68, 1790–1799. [Google Scholar] [CrossRef]
- Mullen, S.P.; Dopman, E.B.; Harrison, R.G. Hybrid zone origins, species boundaries, and the evolution of wing-pattern diversity in a polytypic species complex of north American admiral butterflies (Nymphalidae: Limenitis). Evolution 2008, 62, 1400–1417. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, H.E.; Jasieniuk, M.; Okada, M.; Shapiro, A.M. Molecular evidence for hybridization in Colias (Lepidoptera: Pieridae): Are Colias hybrids really hybrids? Ecol. Evol. 2015, 5, 2865–2877. [Google Scholar] [CrossRef] [PubMed]
- Warren, A.D.; Robbins, R.K. A natural hybrid between Callophrys (Callophrys) sheridanii and C. (Incisalia) augustinus (Lycaenidae). J. Lepid. Soc. 1993, 47, 236–240. [Google Scholar]
- ten Hagen, W. Freilandhybriden bei Bläulingen aus Ostanatolien und Iran (Lepidoptera: Lycaenidae). Nachr. Entomol. Ver. Apollo 2003, 23, 199–203. [Google Scholar]
- Ivonin, V.V.; Kosterin, O.E.; Nikolaev, S.L. Butterflies (Lepidoptera, Diurna) of Novosibirskaya Oblast, Russia. 2. Lycaenidae. Euroasian Entomol. J. 2011, 10, 217–242. [Google Scholar]
- Pratt, G.F.; Ballmer, G.R.; Wright, D.M. Allozyme-Based Phylogeny of North American Callophrys (s. l.) (Lycaenidae). J. Lepid. Soc. 2011, 65, 205–222. [Google Scholar] [CrossRef] [Green Version]
- ten Hagen, W.; Miller, M.A. Molekulargenetische Untersuchungen der paläarktischen Arten des Genus Callophrys Billberg, 1820 mit Hilfe von mtDNA-COI-Barcodes und taxonomische Überlegungen (Lepidoptera: Lycaenidae). Nachr. Entomol. Ver. Apollo 2010, 30, 177–197. [Google Scholar]
- Krupitsky, A.V.; Devyatkin, A.L. Taxonomic studies on the Callophrys suaveola (Staudinger, 1881)—Species group: A new species from South Iran. Atalanta 2012, 43, 149–150. [Google Scholar]
- ten Hagen, W. Beschreibung neuer Unterarten des Genus Callophrys Billberg, 1820 aus Iran (Lepidoptera, Lycaenidae). Nachr. Entomol. Ver. Apollo 2012, 33, 49–56. [Google Scholar]
- Krupitsky, A.V.; Pljushtsh, I.G.; Pak, O.V. Taxonomic studies on the Callophrys suaveola (Staudinger, 1881)—Species group: A new species from Central Afghanistan. Atalanta 2012, 43, 145–148. [Google Scholar]
- Krupitsky, A.V.; Kolesnichenko, K.A. A new species of the Callophrys mystaphia Miller, 1913—Group from Iran (Lepidoptera: Lycaenidae: Eumaeini). Zootaxa 2013, 3619, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Krupitsky, A.V.; Pljushtch, I.G.; Pak, O.V. A new species of the Callophrys paulae Pfeiffer, 1932 species group from Afghanistan (Lepidoptera, Lycaenidae). Zootaxa 2015, 4027, 281–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, K. The Palaearctic «elfin» butterflies (Lycaenidae, Theclinae). Neue Entomol. Nachr. 1992, 29, 1–141. [Google Scholar]
- Huang, H.; Zhou, L.-P. Discovery of two new species of the “elfin” butterflies from Shaanxi province, China. Atalanta 2014, 45, 139–150. [Google Scholar]
- Huang, H.; Zhu, J.-Q. Ahlbergia maoweiweii sp. n. from Shaanxi, China with revisional notes on similar species (Lepidoptera: Lycaenidae). Zootaxa 2016, 4114, 409–433. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Sun, W.-H. Ahlbergia bijieensis spec. nov. from Guizhou, China (Lepidoptera, Lycaenidae). Atalanta 2016, 47, 151–160. [Google Scholar]
- Huang, H. New and little known butterflies from China—4. Atalanta 2021, 52, 345–413. [Google Scholar]
- Gilham, N.W. Incisalia Scudderi, a Holarctic Genus (Lepidoptera: Lycaenidae). Psyche: A J. Entomol. 1955, 62, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Robbins, R.K. Lycaenidae. Theclinae. Tribe Eumaeini. In Atlas of Neotropical Lepidoptera; Lamas, G., Heppner, J.B., Eds.; Checklist: Part 4A. Hesperioidea–Papilionoidea; Association for Tropical Lepidoptera and Scientific Publishers: Gainesville, FL, USA, 2004; pp. 118–137. [Google Scholar]
- Opler, P.A.; Warren, A.D. Butterflies of North America. 2. Scientific Names List for Butterfly Species of North America, North of Mexico; Contributions of the C.P. Gillette Museum of Arthropod Diversity; Colorado State University: Ft. Collins, CO, USA, 2004; p. 83. [Google Scholar]
- Pelham, J.P. A catalogue of the butterflies of the United States and Canada, with a complete bibliography of the descriptive and systematic literature. J. Res. Lepid. 2008, 40, 1–652. [Google Scholar]
- Gorbunov, P.Y. The Butterflies of Russia: Classification, Genitalia, Keys for Identification (Lepidoptera: Hesperioidea and Papilionoidea); Thesis Universität Ekaterinburg: Ekaterinburg, Russia, 2001; p. 320. [Google Scholar]
- Gorbunov, P.Y.; Kosterin, O.E. The Butterflies (Hesperioidea and Papilionoidea) of North Asia (Asian Part of Russia) in Nature; Rodina & Fodio: Moscow, Russia; Gallery Fund: Cheliabinsk, Russia, 2003; Volume 1, p. 392. [Google Scholar]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R.C. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Brower, A.V.Z.; DeSalle, R. Mitochondrial vs. nuclear DNA sequence evolution among nymphalid butterflies: The utility of Wingless as a source of characters for phylogenetic inference. Insect Mol. Biol. 1998, 7, 73–82. [Google Scholar] [CrossRef]
- Wahlberg, N.; Wheat, C.W. Genomic outposts serve the phylogenomic pioneers: Designing novel nuclear markers for genomic DNA extractions of Lepidoptera. Syst. Biol. 2008, 57, 231–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahlberg, N.; Peña, C.; Ahola, M.; Wheat, C.W.; Rota, J. PCR primers for 30 novel gene regions in the nuclear genomes of Lepidoptera. ZooKeys 2016, 596, 129–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapoval, N.A.; Lukhtanov, V.A. Intragenomic variations of multicopy ITS2 marker in Agrodiaetus blue butterflies (Lepidoptera, Lycaenidae). Comp. Cytogenet. 2015, 9, 483–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. JModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [Green Version]
- Krupitsky, A.V. A new “elfin” butterfly species of Cissatsuma Johnson, 1992 (Lepidoptera, Lycaenidae) from northwestern Sichuan, China. Zootaxa 2018, 4524, 482–488. [Google Scholar] [CrossRef]
- Miller, L.D. Nomenclature of wing weins and cells. J. Res. Lepid. 1970, 8, 37–48. [Google Scholar]
- Birky, C.W., Jr. Uniparental inheritance of mitochondrial and chloroplast genes: Mechanisms and evolution. Proc. Natl. Acad. Sci. USA 1995, 92, 11331–11338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; DeWaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Lukhtanov, V.A.; Shapoval, N.A. Detection of cryptic species in sympatry using population analysis of unlinked genetic markers: A study of the Agrodiaetus kendevani species complex (Lepidoptera: Lycaenidae). Dokl. Biol. Sci. 2008, 423, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Lukhtanov, V.A.; Sourakov, A.; Zakharov, E.V.; Hebert, P.D.N. DNA barcoding Central Asian butterflies: Increasing geographical dimension does not significantly reduce the success of species identification. Mol. Ecol. Resour. 2009, 9, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
- Lukhtanov, V.A.; Shapoval, N.A. Chromosomal identification of cryptic species sharing their DNA barcodes: Polyommatus (Agrodiaetus) antidolus and P. (A.) morgani in Iran (Lepidoptera, Lycaenidae). Comp. Cytogenet. 2017, 11, 759–768. [Google Scholar] [CrossRef] [Green Version]
- Tuzov, V. Guide to the Butterflies of Russia and Adjacent Territories; Pensoft Publishers: Sofia, Bulgaria, 2000; Volume 2, p. 580. [Google Scholar]
- de Lesse, H. Spéciation et variation chromosomique chez les Lépidoptères Rhopalocères. Ann. Sci. Nat. 1960, 2, 1–224. [Google Scholar]
- Robinson, R. Lepidoptera Genetics; Pergamon Press: Oxford, UK, 1971; p. 687. [Google Scholar]
- Stekolnikov, A.A.; Ivanov, V.D.; Kuznetzov, V.I.; Lukhtanov, V.A. Evolution of chromosomes, wing articulation, male genitalia and phylogeny of butterflies (Lepidoptera: Hesperioidea, Papilionoidea). Entomol. Obozr. 2000, 79, 123–149. (In Russian) [Google Scholar]
- Federley, H. Chromosomenzahlen finnländischer Lepidopteren I. Rhopalocera. Hereditas 1938, 24, 397–464. [Google Scholar] [CrossRef]
- Bigger, T.R.L. Chromosome numbers of Lepidoptera. Part II. Ent. Gaz. 1961, 12, 85–89. [Google Scholar]
Taxon | Sample ID | GenBank Accession Number | Locality | |||
---|---|---|---|---|---|---|
COI | Wingless | Ca-ATPase | RPS5 | |||
Callophrys rubi × Ahlbergia frivaldszkyi | CFR01 | MW785873 | MW811215 MW811216 | MW811223 MW811224 | MW811246 | Irkutsk * |
Callophrys rubi × Ahlbergia frivaldszkyi | CFR02 | MW785872 | OL584270 OL584273 | MW811225 MW811226 | OL584250 | Buryatia ** |
Callophrys rubi × Ahlbergia frivaldszkyi | CFR03 | OL457027 | OL584271 OL584272 | OL584293 OL584294 | OL584251 | Omsk *** |
Callophrys rubi | 01RUB | MW785853 | MW811207 | OL584295 | MW811237 | Irkutsk |
Callophrys rubi | 02RUB | MW785854 | MW811208 | MW811219 | MW811238 | Irkutsk |
Callophrys rubi | 03RUB | MW785855 | MW811209 | MW811218 | MW811239 | Irkutsk |
Callophrys rubi | 04RUB | MW785856 | MW811210 | MW811217 | MW811240 | Irkutsk |
Callophrys rubi | 05RUB | MW785857 | OL584274 | OL584296 | MW811241 | Irkutsk |
Callophrys rubi | 15RUB | MW785862 | OL584275 | MW811227 | OL584252 | Buryatia |
Callophrys rubi | 16RUB | MW785863 | OL584276 | MW811228 | OL584253 | Buryatia |
Callophrys rubi | 17RUB | MW785864 | OL584277 | MW811229 | OL584254 | Buryatia |
Callophrys rubi | 18RUB | MW785865 | OL584278 | MW811230 | OL584255 | Buryatia |
Callophrys rubi | 19RUB | MW785866 | OL584279 | MW811231 | OL584256 | Buryatia |
Callophrys rubi | 28RUB | OL457028 | OL584280 | OL584297 | OL584257 | Omsk |
Callophrys rubi | 29RUB | OL457029 | OL584281 | OL584298 | OL584258 | Omsk |
Callophrys rubi | 30RUB | OL457030 | OL584282 | OL584299 | OL584259 | Omsk |
Callophrys rubi | 31RUB | OL457031 | OL584283 | OL584300 | OL584260 | Omsk |
Callophrys rubi | 32RUB | OL457032 | OL584284 | OL584301 | OL584261 | Omsk |
Ahlbergia frivaldszkyi | 06FR | MW785858 | MW811211 | MW811220 | MW811242 | Irkutsk |
Ahlbergia frivaldszkyi | 07FR | MW785859 | MW811212 | MW811221 | MW811243 | Irkutsk |
Ahlbergia frivaldszkyi | 08FR | MW785860 | MW811213 | MW811222 | MW811244 | Irkutsk |
Ahlbergia frivaldszkyi | 10FR | MW785861 | MW811214 | OL584302 | MW811245 | Irkutsk |
Ahlbergia frivaldszkyi | 20FR | MW785867 | OL584285 | MW811232 | OL584266 | Buryatia |
Ahlbergia frivaldszkyi | 21FR | MW785868 | OL584286 | MW811234 | OL584265 | Buryatia |
Ahlbergia frivaldszkyi | 22FR | MW785869 | OL584287 | MW811236 | OL584264 | Buryatia |
Ahlbergia frivaldszkyi | 23FR | MW785870 | OL584288 | MW811235 | OL584263 | Buryatia |
Ahlbergia frivaldszkyi | 24FR | MW785871 | OL584289 | MW811233 | OL584262 | Buryatia |
Ahlbergia frivaldszkyi | 25FR | OL457024 | OL584290 | OL584303 | OL584267 | Omsk |
Ahlbergia frivaldszkyi | 26FR | OL457025 | OL584291 | OL584304 | OL584268 | Omsk |
Ahlbergia frivaldszkyi | 27FR | OL457026 | OL584292 | OL584305 | OL584269 | Omsk |
Taxon/Haplotype | Nucleotide Position | ||||||||
---|---|---|---|---|---|---|---|---|---|
40 | 82 | 103 | 271 | 310 | 361 | 400 | 406 | 529 | |
Ahlbergia frivaldszkyi/Ah01 | G | T | T | A | A | C | T | T | C |
Callophrys rubi/Cl01 | A | T | C | T | A | T | T | T | C |
Callophrys rubi/Cl02 | A | T | C | T | G | T | T | T | C |
Callophrys rubi/Cl03 | A | C | C | T | A | T | C | T | A |
Ahlbergia frivaldszkyi × Callophrys rubi/AhCl01 | A | T | C | T | A | T | T | C | C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shapoval, N.A.; Yakovlev, R.V.; Kuftina, G.N.; Lukhtanov, V.A.; Knyazev, S.A.; Romanovich, A.E.; Krupitsky, A.V. Identification of Natural Hybrids between Ahlbergia frivaldszkyi (Lederer, 1853) and Callophrys rubi (Linnaeus, 1758) (Lepidoptera, Lycaenidae) Using Mitochondrial and Nuclear Markers. Insects 2021, 12, 1124. https://doi.org/10.3390/insects12121124
Shapoval NA, Yakovlev RV, Kuftina GN, Lukhtanov VA, Knyazev SA, Romanovich AE, Krupitsky AV. Identification of Natural Hybrids between Ahlbergia frivaldszkyi (Lederer, 1853) and Callophrys rubi (Linnaeus, 1758) (Lepidoptera, Lycaenidae) Using Mitochondrial and Nuclear Markers. Insects. 2021; 12(12):1124. https://doi.org/10.3390/insects12121124
Chicago/Turabian StyleShapoval, Nazar A., Roman V. Yakovlev, Galina N. Kuftina, Vladimir A. Lukhtanov, Svyatoslav A. Knyazev, Anna E. Romanovich, and Anatoly V. Krupitsky. 2021. "Identification of Natural Hybrids between Ahlbergia frivaldszkyi (Lederer, 1853) and Callophrys rubi (Linnaeus, 1758) (Lepidoptera, Lycaenidae) Using Mitochondrial and Nuclear Markers" Insects 12, no. 12: 1124. https://doi.org/10.3390/insects12121124
APA StyleShapoval, N. A., Yakovlev, R. V., Kuftina, G. N., Lukhtanov, V. A., Knyazev, S. A., Romanovich, A. E., & Krupitsky, A. V. (2021). Identification of Natural Hybrids between Ahlbergia frivaldszkyi (Lederer, 1853) and Callophrys rubi (Linnaeus, 1758) (Lepidoptera, Lycaenidae) Using Mitochondrial and Nuclear Markers. Insects, 12(12), 1124. https://doi.org/10.3390/insects12121124