Predation Pressure on Sentinel Insect Prey along a Riverside Urbanization Gradient in Hungary
Abstract
:1. Introduction
2. Materials and Methods
Data Analysis
3. Results
3.1. Predation Levels along the Urbanization Gradient
3.1.1. Overall Predation on Dummy Caterpillars
3.1.2. Bird Predation on Dummy Caterpillars
3.1.3. Mammalian Predation on Dummy Caterpillars
3.1.4. Arthropod Predation on Dummy Caterpillars
3.2. Seasonal Trends
3.2.1. Overall Predation on Dummy Caterpillars
3.2.2. Bird Predation on Dummy Caterpillars
3.2.3. Mammalian Predation on Dummy Caterpillars
3.2.4. Arthropod Predation on Dummy Caterpillars
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Period | Floodbed Inundated (occasions) | Average Length of flood (days) | Inundation ≥50 cm (occasions) | Average Length of ≥50 cm Inundation (days) | Average Max Depth of Inundation (cm) |
---|---|---|---|---|---|
Whole year | 25 | 44.6 (range 1–95) | 20 | 41.0 (range 9–78) | 173.1 (range 5–449) |
April–October | 24 | 35.6 (range 4–77) | 20 | 31.9 (range 6–73) | 172.1 (range 23–449) |
References
- Willoughby, P.R. The evolution of the ancient city: urban theory and the archaeology of the Fertile Crescent. Can. Stud. Popul. 2013, 40, 107–108. [Google Scholar] [CrossRef] [Green Version]
- United Nations. World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Medley, K.E.; McDonnell, M.J.; Pickett, S.T.A. Forest-landscape structure along an urban-to-rural gradient. Prof. Geogr. 1995, 47, 159–168. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; Cadenasso, M.L.; Grove, J.M.; Nilon, C.H.; Pouyat, R.V.; Zipperer, W.C.; Costanza, R. Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu. Rev. Ecol. Syst. 2001, 32, 127–157. [Google Scholar] [CrossRef] [Green Version]
- Grimmond, C.S.B. Climate of cities. In The Routledge Handbook of Urban Ecology; Douglas, I., Goode, D., Houck, M., Wang, R., Eds.; Routledge: London, UK, 2015; pp. 103–119. [Google Scholar]
- McDonnell, M.J.; Pickett, S.T.A.; Groffman, P.; Bohlen, P.; Pouyat, R.V.; Zipperer, W.C.; Parmelee, R.W.; Carreiro, M.M.; Medley, K.E. Ecosystem processes along an urban-to-rural gradient. Urban Ecosyst. 1997, 1, 21–36. [Google Scholar] [CrossRef]
- Niemelä, J. Ecology and urban planning. Biodivers. Conserv. 1999, 8, 119–131. [Google Scholar] [CrossRef]
- Stracey, C.M.; Robinson, S.K. Does nest predation shape urban bird communities? In Urban Bird Ecology and Conservation; University of California Press: Berkeley, CA, USA, 2012; pp. 49–70. [Google Scholar]
- Magura, T.; Lövei, G.L.; Tóthmérész, B. Conversion from environmental filtering to randomness as assembly rule of ground beetle assemblages along an urbanization gradient. Sci. Rep. 2018, 8, 16992. [Google Scholar] [CrossRef] [Green Version]
- Newton, I. Population Limitation in Birds; Academic Press: New York, NY, USA, 1998; ISBN 9780080879239. [Google Scholar]
- Marzluff, J.M.; Bowman, R.; Donnelly, R. A historical perspective on urban bird research: trends, terms, and approaches. In Avian Ecology and Conservation in an Urbanizing World; Marzluff, J.M., Bowman, R., Donnelly, R., Eds.; Springer: Boston, MA, USA, 2001; pp. 1–17. [Google Scholar]
- McIntyre, N.E. Ecology of urban arthropods: A review and a call to action. Ann. Entomol. Soc. Am. 2000, 93, 825–835. [Google Scholar] [CrossRef]
- Tóthmérész, B.; Máthé, I.; Balázs, E.; Magura, T. Responses of carabid beetles to urbanization in Transylvania (Romania). Landsc. Urban Plan. 2011, 101, 330–337. [Google Scholar] [CrossRef] [Green Version]
- Weller, B.; Ganzhorn, J.U. Carabid beetle community composition, body size, and fluctuating asymmetry along an urban-rural gradient. Basic Appl. Ecol. 2004, 5, 193–201. [Google Scholar] [CrossRef]
- Magura, T.; Tóthmérész, B.; Lövei, G.L. Body size inequality of carabids along an urbanisation gradient. Basic Appl. Ecol. 2006, 7, 472–482. [Google Scholar] [CrossRef] [Green Version]
- Elek, Z.; Lövei, G.L.; Bátki, M. No increase in fluctuating asymmetry in ground beetles (Carabidae) as urbanisation progresses. Community Ecol. 2014, 15, 131–138. [Google Scholar] [CrossRef]
- Partecke, J.; Gwinner, E. Inceased sedentariness in European blackbirds following urbanization: A consequence of local adaptation? Ecology 2007, 88, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Seress, G.; Bókony, V.; Pipoly, I.; Szép, T.; Nagy, K.; Liker, A. Urbanization, nestling growth and reproductive success in a moderately declining house sparrow population. J. Avian Biol. 2012, 43, 403–414. [Google Scholar] [CrossRef]
- Riley, S.P.D.; Sauvajot, R.M.; Fuller, T.K.; York, E.C.; Kamradt, D.A.; Bromley, C.; Wayne, R.K. Effects of urbanization and habitat fragmentation on bobcats and coyotes in southern California. Conserv. Biol. 2003, 17, 566–576. [Google Scholar] [CrossRef] [Green Version]
- Devictor, V.; Julliard, R.; Couvet, D.; Lee, A.; Jiguet, F. Functional homogenization effect of urbanization on bird communities. Conserv. Biol. 2007, 21, 741–751. [Google Scholar] [CrossRef]
- Liker, A.; Papp, Z.; Bókony, V.; Lendvai, Á.Z. Lean birds in the city: Body size and condition of house sparrows along the urbanization gradient. J. Anim. Ecol. 2008, 77, 789–795. [Google Scholar] [CrossRef]
- Lövei, G.L.; Magura, T.; Tóthmérész, B.; Ködöböcz, V. The influence of matrix and edges on species richness patterns of ground beetles (Coleoptera: Carabidae) in habitat islands. Glob. Ecol. Biogeogr. 2006, 15, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Sacco, A.G.; Rui, A.M.; Bergmann, F.B.; Müller, S.C.; Hartz, S.M.; Sacco, A.G.; Rui, A.M.; Bergmann, F.B.; Müller, S.C.; Hartz, S.M. Reduction in taxonomic and functional bird diversity in an urban area in Southern Brazil. Iheringia. Série Zool. 2015, 105, 276–287. [Google Scholar] [CrossRef] [Green Version]
- Magura, T.; Lövei, G.L.; Tóthmérész, B. Does urbanization decrease diversity in ground beetle (Carabidae) assemblages? Glob. Ecol. Biogeogr. 2010, 19, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Grimm, N.B.; Hale, R.L.; Cook, E.M.; Iwaniec, D.M. Urban biogeochemical flux analysis. In The Routledge Handbook of Urban Ecology; Douglas, I., Goode, D., Houck, M., Wang, R., Eds.; Routledge: London, UK, 2015; pp. 503–520. [Google Scholar]
- Harrison, T.; Winfree, R. Urban drivers of plant-pollinator interactions. Funct. Ecol. 2015, 29, 879–888. [Google Scholar] [CrossRef]
- Fenoglio, M.S.; Videla, M.; Salvo, A.; Valladares, G. Beneficial insects in urban environments: Parasitism rates increase in large and less isolated plant patches via enhanced parasitoid species richness. Biol. Conserv. 2013, 164, 82–89. [Google Scholar] [CrossRef]
- Eötvös, C.B.; Magura, T.; Lövei, G.L. A meta-analysis indicates reduced predation pressure with increasing urbanization. Landsc. Urban Plan. 2018, 180, 54–59. [Google Scholar] [CrossRef]
- Ferrante, M.; Lo Cacciato, A.; Lövei, G.L. Quantifying predation pressure along an urbanisation gradient in Denmark using artificial caterpillars. Eur. J. Entomol. 2014, 111, 649–654. [Google Scholar] [CrossRef] [Green Version]
- Shochat, E.; Warren, P.S.; Faeth, S.H.; McIntyre, N.E.; Hope, D. From patterns to emerging processes in mechanistic urban ecology. Trends Ecol. Evol. 2006, 21, 186–191. [Google Scholar] [CrossRef]
- Haskell, D.G.; Knupp, A.M.; Schneider, M.C. Nest predator abundance and urbanization. In Avian Ecology and Conservation in an Urbanizing World; Marzluff, J.M., Bowman, B., Donnelly, R., Eds.; Springer: Boston, MA, USA, 2001; pp. 243–258. [Google Scholar]
- Sorace, A. High density of bird and pest species in urban habitats and the role of predator abundance. Ornis Fenn. 2002, 79, 60–71. [Google Scholar]
- Tigas, L.A.; Van Vuren, D.H.; Sauvajot, R.M. Behavioral responses of bobcats and coyotes to habitat fragmentation and corridors in an urban environment. Biol. Conserv. 2002, 108, 299–306. [Google Scholar] [CrossRef]
- Gaston, K.J.; Bennie, J.; Davies, T.W.; Hopkins, J. The ecological impacts of nighttime light pollution: A mechanistic appraisal. Biol. Rev. 2013, 88, 912–927. [Google Scholar] [CrossRef]
- Clergeau, P.; Savard, J.-P.L.; Mennechez, G.; Falardeau, G. Bird Abundance and Diversity along an Urban-Rural Gradient: A Comparative Study between Two Cities on Different Continents. Condor 1998, 100, 413–425. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, A.T.; Petit, S. Biomass and biodiversity of nocturnal aerial insects in an Adelaide City park and implications for bats (Microchiroptera). Urban Ecosyst. 2008, 11, 91–106. [Google Scholar] [CrossRef]
- Gering, J.C.; Blair, R.B. Predation on artificial bird nests along an urban gradient: Predatory risk or relaxation in urban environments? Ecography 1999, 22, 532–541. [Google Scholar] [CrossRef]
- Laundre, J.W.; Hernandez, L.; Ripple, W.J. The Landscape of Fear: Ecological Implications of Being Afraid. Open Ecol. J. 2010, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Avilés, J.M.; Bednekoff, P.A. How do vigilance and feeding by common cranes Grus grus depend on age, habitat, and flock size? J. Avian Biol. 2007, 38, 690–697. [Google Scholar] [CrossRef]
- Kistner, E.J.; Lewis, M.; Carpenter, E.; Melhem, N.; Hoddle, C.; Strode, V.; Oliva, J.; Castillo, M.; Hoddle, M.S. Digital video surveillance of natural enemy activity on Diaphorina citri (Hemiptera: Liviidae) colonies infesting citrus in the southern California urban landscape. Biol. Control 2017, 115, 141–151. [Google Scholar] [CrossRef]
- Kidd, N.A.C.; Jervis, M.A. Population Dynamics. In Insects as Natural Enemies; Springe: Dordrecht, The Netherlands, 2007; pp. 435–523. [Google Scholar]
- Lövei, G.L.; Ferrante, M. A review of the sentinel prey method as a way of quantifying invertebrate predation under field conditions. Insect Sci. 2017, 24, 528–542. [Google Scholar] [CrossRef]
- Wilson, A.P.; Hough-Goldstein, J.A.; Vangessel, M.J.; Pesek, J.D. Effects of Varying Weed Communities in Corn on European Corn Borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), Oviposition, and Egg Mass Predation. Environ. Entomol. 2004, 33, 320–327. [Google Scholar] [CrossRef]
- Rowe, R.L.; Goulson, D.; Doncaster, C.P.; Clarke, D.J.; Taylor, G.; Hanley, M.E. Evaluating ecosystem processes in willow short rotation coppice bioenergy plantations. GCB Bioenergy 2013, 5, 257–266. [Google Scholar] [CrossRef]
- Östman, Ö. The relative effects of natural enemy abundance and alternative prey abundance on aphid predation rates. Biol. Control 2004, 30, 281–287. [Google Scholar] [CrossRef]
- Howe, A.; Lövei, G.L.; Nachman, G. Dummy caterpillars as a simple method to assess predation rates on invertebrates in a tropical agroecosystem. Entomol. Exp. Appl. 2009, 131, 325–329. [Google Scholar] [CrossRef]
- Demographia World Urban Areas 14th Annual Edition. Available online: http://www.demographia.com/db-worldua.pdf (accessed on 20 December 2019).
- LeRoy Poff, N.; David Allan, J.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The Natural Flow Regime A paradigm for river conservation and restoration. Bioscience 1997, 47, 769–784. [Google Scholar]
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A Method for Assessing Hydrologic Alteration within Ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef] [Green Version]
- Gray, J.S. Effects of environmental stress on species rich assemblages. Biol. J. Linn. Soc. 1989, 37, 19–32. [Google Scholar] [CrossRef]
- Cushing, D.H. Plankton production and year-class strength in fish populations: An update of the match/mismatch hypothesis. Adv. Mar. Biol. 1990, 26, 249–293. [Google Scholar]
- Durant, J.; Hjermann, D.; Ottersen, G.; Stenseth, N. Climate and the match or mismatch between predator requirements and resource availability. Clim. Res. 2007, 33, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Bereczki, K.; Ódor, P.; Csóka, G.; Mag, Z.; Báldi, A. Effects of forest heterogeneity on the efficiency of caterpillar control service provided by birds in temperate oak forests. For. Ecol. Manag. 2014, 327, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, W.I. Population structure and dynamics of sympatric Apodemus species (Rodentia: Muridae). J. Zool. 1980, 192, 351–377. [Google Scholar] [CrossRef]
- Dunka, S.; Fejér, L.; Vágás, I. A verítékes honfoglalás. A Tisza-szabályozás története; Varrók, E., Kaján, I., Eds.; Vízügyi Múzeum, Levéltár és Könyvgyűjtemény: Budapest, Hungary, 1996; ISBN 9630489902. (In Hungarian) [Google Scholar]
- Elek, Z. Ground beetle (Coleoptera, Carabidae) assemblages along an urbanisation gradient near Sorø, Zealand, Denmark. Entomol. Meddelelser 2005, 73, 115–121. [Google Scholar]
- Balogh, L.; Dancza, I.; Király, G. A magyarországi neofitonok időszerű jegyzéke, és besorolásuk inváziós szempontból. In Biológiai inváziók Magyarországon - Özönnövények; TermészetBÚVÁR Alapítvány Kiadó: Budapest, Hungary, 2004; pp. 61–92. ISBN 963 86107 5 1. (In Hungarian) [Google Scholar]
- Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Bates, D.M. lme4: Mixed-effects modeling with R; Springer: Berlin, Germany, 2010. [Google Scholar]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.-S.S.; Henry, M.; Stevens, H.; White, J.-S.S. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef]
- Breslow, N.E.; Clayton, D.G. Approximate Inference in Generalized Linear Mixed Models. J. Am. Stat. Assoc. 1993, 88, 9. [Google Scholar]
- Vonesh, E.F.; Wang, H.; Nie, L.; Majumdar, D. Conditional Second-Order Generalized Estimating Equations for Generalized Linear and Nonlinear Mixed-Effects Models. J. Am. Stat. Assoc. 2002, 97, 271–283. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 29 December 2019).
- Bjornstad, O.N.; Cai, J. Spatial Covariance Functions [R package ncf version 1.2-8]. Available online: https://cran.r-project.org/package=ncf (accessed on 19 May 2019).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression; Sage Publications: Thousand Oaks, CA, USA, 2018; ISBN 9781544336473. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; ISBN 0387954570. [Google Scholar]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-140. Available online: https://cran.r-project.org/package=nlme (accessed on 19 May 2019).
- Antrop, M. Landscape change and the urbanization process in Europe. Landsc. Urban Plan. 2004, 67, 9–26. [Google Scholar] [CrossRef]
- Connell, J.H. Diversity in tropical rain forests and coral reefs. Science 1978, 199, 1302–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, J.D.; Cleeton, S.H.; Lyons, T.P.; Miller, J.R. Urbanization and the Predation Paradox: The Role of Trophic Dynamics in Structuring Vertebrate Communities. Bioscience 2012, 62, 809–818. [Google Scholar] [CrossRef]
- Kajak, A.; Breymeyer, A.; Petal, J. Productivity investigation of two types of meadows in the Vistula Valley. XI. Predatory arthropods. Ekol Pol Ser A 1971, 19, 223–233. [Google Scholar]
- Nyffeler, M.; Birkhofer, K. An estimated 400–800 million tons of prey are annually killed by the global spider community. Sci. Nat. 2017, 104, 30. [Google Scholar] [CrossRef] [Green Version]
- Elek, Z.; Lövei, G.L. Patterns in ground beetle (Coleoptera: Carabidae) assemblages along an urbanisation gradient in Denmark. Acta Oecologica 2007, 32, 104–111. [Google Scholar] [CrossRef]
- Magura, T.; Tóthmérész, B.; Molnár, T. Changes in carabid beetle assemblages along an urbanisation gradient in the city of Debrecen, Hungary. Landsc. Ecol. 2004, 19, 747–759. [Google Scholar] [CrossRef]
- Tajthi, B.; Horváth, R.; Mizser, S.; Nagy, D.D.; Tóthmérész, B. Spider assemblages in floodplain forests along an urbanization gradient. Community Ecol. 2017, 18, 311–318. [Google Scholar] [CrossRef]
- Seress, G.; Hammer, T.; Bókony, V.; Vincze, E.; Preiszner, B.; Pipoly, I.; Sinkovics, C.; Evans, K.L.; Liker, A. Impact of urbanization on abundance and phenology of caterpillars and consequences for breeding in an insectivorous bird. Ecol. Appl. 2018, 28, 1143–1156. [Google Scholar] [CrossRef] [Green Version]
- Speakman, J.R. The physiological costs of reproduction in small mammals. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 375–398. [Google Scholar] [CrossRef] [Green Version]
- Fitch, H.S. Seasonal Acceptance of Bait by Small Mammals. J. Mammal. 1954, 35, 39. [Google Scholar] [CrossRef]
- Parmenter, R.R.; MacMahon, J.A. Factors Influencing Species Composition and Population Sizes in a Ground Beetle Community (Carabidae): Predation by Rodents. Oikos 1988, 52, 350. [Google Scholar] [CrossRef]
- Contesse, P.; Hegglin, D.; Gloor, S.; Bontadina, F.; Deplazes, P. The diet of urban foxes (Vulpes vulpes) and the availability of anthropogenic food in the city of Zurich, Switzerland. Mamm. Biol. 2004, 69, 81–95. [Google Scholar] [CrossRef]
Common Name | Scientific Name | Number of Dummy Caterpillars On Tree Species in | Presence in Undergrowth in | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R | S | U | R | S | U | ||||||||
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | ||
Green ash * | Fraxinus pennsylvanica | 24 | 1 | 30 | 16 | 7 | 4 | Y | Y | Y | |||
Grey poplar | Populus x canescens | 8 | 11 | 2 | 1 | 37 | 5 | Y | Y | ||||
White willow | Salix alba | 15 | 3 | 8 | 6 | 32 | |||||||
Box elder * | Acer negundo | 25 | 7 | 7 | 2 | 4 | Y | Y | Y | ||||
European White elm | Ulmus laevis | 1 | 6 | 1 | 1 | 1 | |||||||
Black poplar | Populus nigra | 1 | 5 | 1 | |||||||||
White mulberry | Morus alba | 1 | 3 | Y | |||||||||
Silver maple | Acer saccharinum | 9 | 3 | Y | |||||||||
Field maple | Acer campestre | Y | |||||||||||
False indigo * | Amorpha fruticosa | Y | Y | Y | Y | Y | Y | ||||||
Riverbank grape * | Vitis riparia | Y | Y |
Predation Pressure (% prey Attacked) on Ground vs. Trunk | |||
---|---|---|---|
Group | Overall (n = 12672) | Ground (n = 6336) | Trunk (n = 6336) |
All predators | 14.6 | 16.0 | 13.2 |
Birds | 2.3 | 3.4 | 1.2 |
Mammals | 6.7 | 10.4 | 3.0 |
Arthropods | 5.7 | 2.6 | 8.8 |
Missing | 3.5 | 5.4 | 1.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eötvös, C.B.; Lövei, G.L.; Magura, T. Predation Pressure on Sentinel Insect Prey along a Riverside Urbanization Gradient in Hungary. Insects 2020, 11, 97. https://doi.org/10.3390/insects11020097
Eötvös CB, Lövei GL, Magura T. Predation Pressure on Sentinel Insect Prey along a Riverside Urbanization Gradient in Hungary. Insects. 2020; 11(2):97. https://doi.org/10.3390/insects11020097
Chicago/Turabian StyleEötvös, Csaba Béla, Gábor L. Lövei, and Tibor Magura. 2020. "Predation Pressure on Sentinel Insect Prey along a Riverside Urbanization Gradient in Hungary" Insects 11, no. 2: 97. https://doi.org/10.3390/insects11020097
APA StyleEötvös, C. B., Lövei, G. L., & Magura, T. (2020). Predation Pressure on Sentinel Insect Prey along a Riverside Urbanization Gradient in Hungary. Insects, 11(2), 97. https://doi.org/10.3390/insects11020097