Sociogenetic Organization of the Red Honey Ant (Melophorus bagoti)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Collection and Sampling
2.2. Microsatellite Markers and Genotyping
2.3. Genetic Analyses
2.3.1. Population Genetic Structure
2.3.2. Queen Number and Mating Frequency
2.3.3. Worker Subcaste Identification and Characterization
2.3.4. Maternity of the Males
3. Results
3.1. Population Genetic Structure
3.2. Queen Number and Mating Frequency
3.3. Worker Subcaste Identification and Characterisation
3.4. Maternity of the Males
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hamilton, W. The genetical evolution of social behaviour. II. J. Theor. Biol. 1964, 7, 17–52. [Google Scholar] [CrossRef]
- Hamilton, W.D. Altruism and Related Phenomena, Mainly in Social Insects. Annu. Rev. Ecol. Syst. 1972, 3, 193–232. [Google Scholar] [CrossRef]
- Boomsma, J.J. Kin Selection versus Sexual Selection: Why the Ends Do Not Meet. Curr. Biol. 2007, 17, R673–R683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boomsma, J.J. Lifetime monogamy and the evolution of eusociality. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 3191–3207. [Google Scholar] [CrossRef] [PubMed]
- Boomsma, J.J. Beyond promiscuity: Mate-choice commitments in social breeding. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120050. [Google Scholar] [CrossRef] [Green Version]
- Thorne, B.L. Evolution of eusociality. Annu. Rev. Ecol. Syst. 1997, 28, 27–54. [Google Scholar] [CrossRef] [Green Version]
- Hughes, W.O.H.; Ratnieks, F.L.W.; Oldroyd, B.P. Multiple paternity or multiple queens: Two routes to greater intracolonial genetic diversity in the eusocial Hymenoptera. J. Evol. Biol. 2008, 21, 1090–1095. [Google Scholar] [CrossRef]
- Baer, B. Proximate and ultimate consequences of polyandry in ants (Hymenoptera: Formicidae). Myrmecol. News 2016, 22, 1–9. [Google Scholar]
- Mattila, H.R.; Seeley, T.D. Genetic Diversity in Honey Bee Colonies Enhances Productivity and Fitness. Science 2007, 317, 362–364. [Google Scholar] [CrossRef] [Green Version]
- Schmid-Hempel, P. Parasites in Social Insects; Princeton University Press: Princeton, NJ, USA, 1998; 392p. [Google Scholar] [CrossRef]
- Baer, B.; Schmid-Hempel, P. Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee. Nat. Cell Biol. 1999, 397, 151–154. [Google Scholar] [CrossRef]
- Tarpy, D.R. Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proc. R. Soc. B Boil. Sci. 2003, 270, 99–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, J.C. Honey Bee Nest Thermoregulation: Diversity Promotes Stability. Science 2004, 305, 402–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oldroyd, B.P.; Fewell, J.H. Genetic diversity promotes homeostasis in insect colonies. Trends Ecol. Evol. 2007, 22, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Hughes, W.O.H.; Sumner, S.; Van Borm, S.; Boomsma, J.J. Worker caste polymorphism has a genetic basis in Acromyrmex leaf-cutting ants. Proc. Natl. Acad. Sci. USA 2003, 100, 9394–9397. [Google Scholar] [CrossRef] [Green Version]
- Rheindt, F.E.; Strehl, C.P.; Gadau, J. A genetic component in the determination of worker polymorphism in the Florida harvester ant Pogonomyrmex badius. Insectes Sociaux 2005, 52, 163–168. [Google Scholar] [CrossRef]
- Jaffé, R.; Kronauer, D.J.; Kraus, F.B.; Boomsma, J.J.; Moritz, R.F. Worker caste determination in the army ant Eciton burchellii. Biol. Lett. 2007, 3, 513–516. [Google Scholar] [CrossRef] [Green Version]
- Evison, S.E.F.; Hughes, W.O.H. Genetic caste polymorphism and the evolution of polyandry in Atta leaf-cutting ants. Naturwissenschaften 2011, 98, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.H.; Wheeler, D.E.; Fjerdingstad, E.J. Mating system evolution and worker caste diversity in Pheidole ants. Mol. Ecol. 2013, 22, 1998–2010. [Google Scholar] [CrossRef]
- Oster, G.F.; Wilson, E.O. Caste and Ecology in the Social Insects; Princeton University Press: Princeton, NJ, USA, 1978; 372p. [Google Scholar] [CrossRef]
- Moritz, R.F.A. The effects of multiple mating on the worker-queen conflict in Apis mellifera L. Behav. Ecol. Sociobiol. 1985, 16, 375–377. [Google Scholar] [CrossRef]
- Reproductive Harmony via Mutual Policing by Workers in Eusocial Hymenoptera. Am. Nat. 1988, 132, 217–236. [CrossRef]
- Boomsma, J.J. Facultative Sex Allocation by Workers and the Evolution of Polyandry by Queens in Social Hymenoptera. Am. Nat. 1995, 145, 969–993. [Google Scholar] [CrossRef]
- Beekman, M.; Ratnieks, F.L.W. Power over reproduction in social Hymenoptera. Philos. Trans. R. Soc. B Biol. Sci. 2003, 358, 1741–1753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worker Reproduction in the Higher Eusocial Hymenoptera. Q. Rev. Biol. 1988, 63, 291–311. [CrossRef]
- Hammond, R.L.; Keller, L. Conflict over Male Parentage in Social Insects. PLoS Biol. 2004, 2, e248. [Google Scholar] [CrossRef] [Green Version]
- Foster, K.R.; Ratnieks, F.L.W. Facultative worker policing in a wasp. Nat. Cell Biol. 2000, 407, 692–693. [Google Scholar] [CrossRef]
- Foster, K.R.; Ratnieks, F.L.W. Convergent evolution of worker policing by egg eating in the honeybee and common wasp. Proc. R. Soc. B Boil. Sci. 2001, 268, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Wenseleers, T.; Ratnieks, F.L.W. Comparative Analysis of Worker Reproduction and Policing in Eusocial Hymenoptera Supports Relatedness Theory. Am. Nat. 2006, 168, E163–E179. [Google Scholar] [CrossRef]
- Andersen, A.N.; Hoffmann, B.D.; Sparks, K. The Megadiverse Australian Ant Genus Melophorus: Using CO1 Barcoding to Assess Species Richness. Diversity 2016, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Heterick, B.E.; Castalanelli, M.; Shattuck, S.O. Revision of the ant genus Melophorus (Hymenoptera, Formicidae). ZooKeys 2017, 700, 1–420. [Google Scholar] [CrossRef]
- Köhler, M.; Wehner, R. Idiosyncratic route-based memories in desert ants, Melophorus bagoti: How do they interact with path-integration vectors? Neurobiol. Learn. Mem. 2005, 83, 1–12. [Google Scholar] [CrossRef]
- Cheng, K.; Narendra, A.; Sommer, S.; Wehner, R. Traveling in clutter: Navigation in the Central Australian desert ant Melophorus bagoti. Behav. Process. 2009, 80, 261–268. [Google Scholar] [CrossRef]
- Christian, K.A.; Morton, S.R. Extreme Thermophilia in a Central Australian Ant, Melophorus bagoti. Physiol. Zool. 1992, 65, 885–905. [Google Scholar] [CrossRef]
- Muser, B.; Sommer, S.; Wolf, H.; Wehner, R. Foraging ecology of the thermophilic Australian desert ant, Melophorus bagoti. Aust. J. Zool. 2005, 53, 301–311. [Google Scholar] [CrossRef]
- Conway, J.R. Notes on the excavation of a nest of Melophorus bagoti Lubbock in the Northern Territory, Australia (Hymenoptera: Formicidae). Aust. J. Entomol. 1992, 31, 247–248. [Google Scholar] [CrossRef]
- Schultheiss, P.; Schwarz, S.; Wystrach, A. Nest Relocation and Colony Founding in the Australian Desert Ant, Melophorus bagoti Lubbock (Hymenoptera: Formicidae). Psyche A J. Èntomol. 2010, 2010, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Rohland, N.; Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 2012, 22, 939–946. [Google Scholar] [CrossRef] [Green Version]
- Mariac, C.; Scarcelli, N.; Pouzadou, J.; Barnaud, A.; Billot, C.; Faye, A.; Kougbeadjo, A.; Maillol, V.; Martin, G.; Sabot, F.; et al. Cost-effective enrichment hybridization capture of chloroplast genomes at deep multiplexing levels for population genetics and phylogeography studies. Mol. Ecol. Resour. 2014, 14, 1103–1113. [Google Scholar] [CrossRef]
- Masella, A.P.; Bartram, A.K.; Truszkowski, J.M.; Brown, D.G.; Neufeld, J.D. PANDAseq: Paired-end assembler for illumina sequences. BMC Bioinform. 2012, 13, 31. [Google Scholar] [CrossRef] [Green Version]
- Meglécz, E.; Pech, N.; Gilles, A.; Dubut, V.; Hingamp, P.; Trilles, A.; Grenier, R.; Martin, J.-F. QDD version 3.1: A user-friendly computer program for microsatellite selection and primer design revisited: Experimental validation of variables determining genotyping success rate. Mol. Ecol. Resour. 2014, 14, 1302–1313. [Google Scholar] [CrossRef]
- Walsh, P.S.; Metzger, D.A.; Higuchi, R. Chelex 100 as a Medium for Simple Extraction of DNA for PCR-Based Typing from Forensic Material. Biotechniques 2013, 54, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, A.; Bauman, D.; Darras, H.; Aron, S. Sex-biased dispersal creates spatial genetic structure in a parthenogenetic ant with a dependent-lineage reproductive system. Heredity 2017, 119, 207–213. [Google Scholar] [CrossRef]
- Blacket, M.J.; Robin, C.; Good, R.T.; Lee, S.F.; Miller, A.D. Universal primers for fluorescent labelling of PCR fragments-an efficient and cost-effective approach to genotyping by fluorescence. Mol. Ecol. Resour. 2012, 12, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Holleley, C.E.; Geerts, P.G. Multiplex Manager 1.0: A cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 2009, 46, 511–517. [Google Scholar] [CrossRef]
- Rousset, F. genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 2008, 8, 103–106. [Google Scholar] [CrossRef]
- Weir, B.S. Genetic Data Analysis II; Sinauer and Associates: Sunderland, MA, USA, 1996. [Google Scholar] [CrossRef] [Green Version]
- Vargo, E.L. Hierarchical analysis of colony and population genetic structure of the eastern subterranean termite, Reticulitermes flavipes, using two classes of molecular markers. Evolution 2003, 57, 2805–2818. [Google Scholar] [CrossRef]
- Dai, H.D.; Leeder, J.S.; Cui, Y. A modified generalized Fisher method for combining probabilities from dependent tests. Front. Genet. 2014, 5, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Oosterhout, C.; Hutchinson, W.F.; Wills, D.P.M.; Shipley, P. Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 2004, 4, 535–538. [Google Scholar] [CrossRef]
- Hardy, O.J.; Vekemans, X. SPAGeDi: A versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes 2002, 2, 618–620. [Google Scholar] [CrossRef] [Green Version]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Rousset, F. Genetic Differentiation and Estimation of Gene Flow from F-Statistics under Isolation by Distance. Genetics 1997, 145, 1219–1228. [Google Scholar] [PubMed]
- Jones, O.R.; Wang, J. COLONY: A program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 2010, 10, 551–555. [Google Scholar] [CrossRef]
- Nielsen, R.; Tarpy, D.R.; Reeve, H.K. Estimating effective paternity number in social insects and the effective number of alleles in a population. Mol. Ecol. 2003, 12, 3157–3164. [Google Scholar] [CrossRef]
- Boomsma, J.J.; Ratnieks, F.L.W. Paternity in eusocial Hymenoptera. Philos. Trans. R. Soc. B Biol. Sci. 1996, 351, 947–975. [Google Scholar] [CrossRef]
- Wilson, E.O. The Origin and Evolution of Polymorphism in Ants. Q. Rev. Biol. 1953, 28, 136–156. [Google Scholar] [CrossRef]
- Whitlock, M.C. Combining probability from independent tests: The weighted Z-method is superior to Fisher’s approach. J. Evol. Biol. 2005, 18, 1368–1373. [Google Scholar] [CrossRef] [PubMed]
- Acock, A.C.; Stavig, G.R. A Measure of Association for Nonparametric Statistics. Soc. Forces 1979, 57, 1381–1386. [Google Scholar] [CrossRef]
- Foster, K.R.; Ratnieks, F.L.W.; Gyllenstrand, N.; Thoren, P.A. Colony kin structure and male production in Dolichovespula wasps. Mol. Ecol. 2001, 10, 1003–1010. [Google Scholar] [CrossRef] [Green Version]
- Ross, K.G. Molecular ecology of social behaviour: Analyses of breeding systems and genetic structure. Mol. Ecol. 2001, 10, 265–284. [Google Scholar] [CrossRef] [PubMed]
- Peeters, C.; Aron, S. Evolutionary reduction of female dispersal in Cataglyphis desert ants. Biol. J. Linn. Soc. 2017, 122, 58–70. [Google Scholar] [CrossRef]
- Bourke, A.F.; Franks, N.R. Social Evolution in Ants; Princeton University Press: Princeton, NJ, USA, 1995; 550p. [Google Scholar]
- Cronin, A.L.; Molet, M.; Doums, C.; Monnin, T.; Peeters, C. Recurrent Evolution of Dependent Colony Foundation across Eusocial Insects. Annu. Rev. Èntomol. 2013, 58, 37–55. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, D.E. The Developmental Basis of Worker Caste Polymorphism in Ants. Am. Nat. 1991, 138, 1218–1238. [Google Scholar] [CrossRef]
- Wills, B.D.; Powell, S.; Rivera, M.D.; Suarez, A.V. Correlates and Consequences of Worker Polymorphism in Ants. Annu. Rev. Èntomol. 2018, 63, 575–598. [Google Scholar] [CrossRef]
- Keller, L.; Sundström, L.; Chapuisat, M. Male reproductive success: Paternity contribution to queens and workers in Formica ants. Behav. Ecol. Sociobiol. 1997, 41, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Himler, A.G.; Caldera, E.J.; Baer, B.; Fernández-Marín, H.; Mueller, U.G. No sex in fungus-farming ants or their crops. Proc. R. Soc. B Boil. Sci. 2009, 276, 2611–2616. [Google Scholar] [CrossRef] [Green Version]
- Hunt, B.G.; Ometto, L.; Keller, L.; Goodisman, M.A.D. Evolution at Two Levels in Fire Ants: The Relationship between Patterns of Gene Expression and Protein Sequence Evolution. Mol. Biol. Evol. 2012, 30, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Giehr, J.; Senninger, L.; Ruhland, K.; Heinze, J. Ant workers produce males in queenless parts of multi-nest colonies. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Liebig, J.; Monnin, T.; Turillazzi, S. Direct assessment of queen quality and lack of worker suppression in a paper wasp. Proc. R. Soc. B Boil. Sci. 2005, 272, 1339–1344. [Google Scholar] [CrossRef] [Green Version]
- Villalta, I.; Angulo, E.; Devers, S.; Cerdá, X.; Boulay, R. Regulation of worker egg laying by larvae in a fission-performing ant. Anim. Behav. 2015, 106, 149–156. [Google Scholar] [CrossRef]
- Hartmann, A.; Wantia, J.; Torres, J.A.; Heinze, J. Worker policing without genetic conflicts in a clonal ant. Proc. Natl. Acad. Sci. USA 2003, 100, 12836–12840. [Google Scholar] [CrossRef] [Green Version]
- Olejarz, J.; Allen, B.; Veller, C.; Gadagkar, R.; Nowak, M.A. Evolution of worker policing. J. Theor. Biol. 2016, 399, 103–116. [Google Scholar] [CrossRef] [Green Version]
Colony | Workers | ka | ke | rw-w | rq-m | rm-m | Majors | Minors | Fisher p-Value | Cramer’s V |
---|---|---|---|---|---|---|---|---|---|---|
CAT1 | 15 | 3 | 3.42 | 0.39 | 0.02 | 0.04 | ||||
CAT2 | 15 | 3 | 2.41 | 0.39 | −0.04 | −0.03 | 18 (3) | 20 (3) | 0.56 | 0.19 |
CAT3 | 15 | 4 | 3.53 | 0.40 | −0.04 | 0.08 | 30 (4) | 29 (4) | 0.31 | 0.26 |
CAT4 | 15 | 2 | 1.51 | 0.55 | 0.02 | 0.00 | 30 (2) | 20 (2) | 0.11 | 0.20 |
CAT5 | 15 | 2 | 2.12 | 0.43 | −0.12 | −0.09 | ||||
CAT6 | 15 | 3 | 2.46 | 0.46 | 0.09 | 0.00 | 24 (3) | 21 (3) | 0.12 | 0.31 |
CAT7 | 15 | 3 | 3.31 | 0.49 | 0.06 | 0.05 | ||||
SPR1 | 14 | 4 | 3.41 | 0.45 | −0.04 | −0.06 | ||||
SPR2 | 14 | 3 | 2.97 | 0.44 | 0.07 | 0.01 | ||||
SPR3 | 15 | 3 | 2.79 | 0.44 | −0.03 | −0.03 | ||||
SPR5 | 14 | 3 | 2.79 | 0.43 | 0.03 | 0.05 | ||||
SPR6 | 15 | 2 | 2.12 | 0.49 | −0.03 | −0.09 | ||||
SPR7 | 15 | 4 | 3.78 | 0.33 | −0.11 | −0.08 | ||||
Mean | 14.77 | 3.00 | 2.82 | 0.44 | −0.01 | −0.01 | 25.50 | 22.50 | - | 0.24 |
SE | 0.44 | 0.71 | 0.67 | 0.01 | 0.02 | 0.02 | 5.74 | 4.36 | - | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lecocq de Pletincx, N.; Aron, S. Sociogenetic Organization of the Red Honey Ant (Melophorus bagoti). Insects 2020, 11, 755. https://doi.org/10.3390/insects11110755
Lecocq de Pletincx N, Aron S. Sociogenetic Organization of the Red Honey Ant (Melophorus bagoti). Insects. 2020; 11(11):755. https://doi.org/10.3390/insects11110755
Chicago/Turabian StyleLecocq de Pletincx, Nathan, and Serge Aron. 2020. "Sociogenetic Organization of the Red Honey Ant (Melophorus bagoti)" Insects 11, no. 11: 755. https://doi.org/10.3390/insects11110755
APA StyleLecocq de Pletincx, N., & Aron, S. (2020). Sociogenetic Organization of the Red Honey Ant (Melophorus bagoti). Insects, 11(11), 755. https://doi.org/10.3390/insects11110755