The Challenge of Detecting Intracluster Filaments with Faraday Rotation
Abstract
:1. Introduction
Predictions of Magnetic Fields in Filaments
2. Methods and Materials
2.1. Simulations of Extragalactic Magnetic Fields
2.2. Filament Selection and Properties
2.3. Mock Rotation Measure observations
- A fixed contribution to RM from the Galactic foreground. We restricted ourselves to targets at high galactic latitude (≥80°), for which the RM contribution is in general of [9]. In particular, we assumed here for simplicity a fixed contribution to each field, noticing that this contribution should in general be the easiest to tell apart in real observations, because the extent of the typical size of filaments around galaxy clusters we consider here is ≤0.1–0.5°, i.e., much smaller than the typical angular scales of variations of the Galactic foreground. For example, based on Equation (20) in Anderson et al. [45], we can estimate a typical RM fluctuation of ≤0.5 rad/m2 across 0.5° from the Galactic foreground.
- a residual contribution to the RM, RMres, which includes an internal contribution to each background source RMsrc; a contribution from other extragalactic sources as intervening MgII absorbers RMMgII [46]; a residual RM after Galactic foreground subtraction which can be present on scales smaller than the one used to fit the Galactic contribute . This value has been estimated by Schnitzeler [47] to be normally distributed as rad/m2 and has been confirmed by Banfield et al. [48] ( in their work). We follow their treatment and keep RMsrc, RMMgII and together in the one factor RMres. However Banfield et al. [48] note that the value is dependent on the background source population. At 1.4 GHz, the WISE-AGN population defined in Jarrett et al. [49] biases the estimate of and shows a larger rad/m2. We thus consider the latter as a more conservative case, while we considered rad/m2 as a standard case based on literature works [47,48] that can be optimized e.g., using only star-forming nearby galaxies for background studies.
2.4. Non-Parametric Tests of RM Distributions
3. Results
Detectability of Intracluster Filaments Using RM
- On average, with our procedure we estimate that galaxy clusters have projected filaments which can be identified by X-ray inspection. This result is consistent with the results by Colberg et al. [35], who found that ∼80% of clusters have 1 to 4 projected connections between them.
- Filaments selected in our procedure are on average ∼10–50 times denser that the smooth environment around galaxy clusters, have a mean temperature of 1–5 and an average magnetic field of 10–50 nG (see Section 4.1).
- The typical RM in filaments is in the range ∼0.2–2 rad/m2 for the primordial seeding scenario considered here, i.e., a factor ∼102 larger than the average RM distribution in our control fields for the detectable ones, ∼30 times larger for filaments in general. However, the distributions of RMs can reach up to ∼10 rad/m2 in a few % of the cells, and the chances of confirming the presence of magnetic fields in filaments rely on the detection of such rare fluctuations.
- The rejection fraction has been fitted with a power-law trend with respect to the number of detected sources . Considering the 7 filaments with the highest rejection fraction in the most favorable case (i.e., extragalactic residual RM noise is small or absent), Figure 2, right panel), the best fit gives rf ∝ before saturation. To this end, just the filaments showing an improved rejection fraction above detection threshold even for small samples () were considered. Including the other filaments would affect the trend with random low rejection rates.
- Limited to the most favorable objects and for low contribution from residual RM on the sources, the increased sensitivity that will be provided by SKA-MID compared to JVLA-like observations improves the rejection fractions distribution by a factor ∼3(1.5) at , while the number of observations with a rejection fraction larger than 0.5 increases from 0(0) to 9(3) over 29 objects.
- The actual limiting factor for the detection of filaments is the extragalactic residual RM scatter , more than the number of detected sources NS throughout the field. Going from rad/m2 to rad/m2 the rejection fraction median drops down by a factor 3(3.3) even for the SKA-MID-like observation with 100 sources per set, and the observations with a rejection fraction larger than 0.5 falls from 31% to 0% even for this large value.
4. Discussion
4.1. Properties of Most Detectable Filaments
4.2. Alternative Models of Magnetic Fields in Filaments
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
RM | Rotation Measure |
SKA | Square Kilometer Array |
MeerKAT | Karoo Array Telescope |
JVLA | Jansky Very Large Array |
K-S | Kolmogorov Smirnov |
M-W | Mann Whitney |
ΛCDM | Lambda Cold Dark Matter |
AGN | Active Galactic Nucleus |
CMB | Cosmic Microwave Background |
AMR | Adaptive Mesh Refinement |
MHD | Magneto Hydro Dynamics |
ICM | Intra Cluster Medium |
IGM | Inter Galactic Medium |
WHIM | Warm Hot Interagalactic Medium |
LOS | Line of Sight |
References
- Feretti, L.; Giovannini, G.; Govoni, F.; Murgia, M. Clusters of galaxies: Observational properties of the diffuse radio emission. Astron. Astrophys. Rev. 2012, 20, 54. [Google Scholar] [CrossRef]
- Ryu, D.; Kang, H.; Cho, J.; Das, S. Turbulence and Magnetic Fields in the Large-Scale Structure of the Universe. Science 2008, 320, 909–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolag, K.; Bartelmann, M.; Lesch, H. SPH simulations of magnetic fields in galaxy clusters. Astron. Astrophys. 1999, 348, 351–363. [Google Scholar]
- Vazza, F.; Brunetti, G.; Brüggen, M.; Bonafede, A. Resolved magnetic dynamo action in the simulated intracluster medium. Mon. Not. R. Astron. Soc. 2018, 474, 1672–1687. [Google Scholar] [CrossRef]
- Donnert, J.; Vazza, F.; Brüggen, M.; ZuHone, J. Magnetic Field Amplification in Galaxy Clusters and its Simulation. arXiv, 2018; arXiv:1810.09783. [Google Scholar]
- Widrow, L.M.; Ryu, D.; Schleicher, D.R.G.; Subramanian, K.; Tsagas, C.G.; Treumann, R.A. The First Magnetic Fields. Sci. Space Rev. 2012, 166, 37–70. [Google Scholar] [CrossRef]
- Brentjens, M.A.; de Bruyn, A.G. Faraday rotation measure synthesis. Astron. Astrophys. 2005, 441, 1217–1228. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Kronberg, P.P.; Habib, S.; Dufton, Q.W. A Faraday Rotation Search for Magnetic Fields in Large-scale Structure. Astrophys. J. 2006, 637, 19–26. [Google Scholar] [CrossRef]
- Oppermann, N.; Junklewitz, H.; Greiner, M.; Enßlin, T.A.; Akahori, T.; Carretti, E.; Gaensler, B.M.; Goobar, A.; Harvey-Smith, L.; Johnston-Hollitt, M.; et al. Estimating extragalactic Faraday rotation. Astron. Astrophys. 2015, 575, A118. [Google Scholar] [CrossRef]
- Vernstrom, T.; Gaensler, B.M.; Brown, S.; Lenc, E.; Norris, R.P. Low-frequency radio constraints on the synchrotron cosmic web. Mon. Not. R. Astron. Soc. 2017, 467, 4914–4936. [Google Scholar] [CrossRef]
- Brown, S.; Vernstrom, T.; Carretti, E.; Dolag, K.; Gaensler, B.M.; Staveley-Smith, L.; Bernardi, G.; Haverkorn, M.; Kesteven, M.; Poppi, S. Limiting magnetic fields in the cosmic web with diffuse radio emission. Mon. Not. R. Astron. Soc. 2017, 468, 4246–4253. [Google Scholar] [CrossRef]
- O’Sullivan, S.P.; Machalski, J.; Van Eck, C.L.; Heald, G.; Brueggen, M.; Fynbo, J.P.U.; Heintz, K.E.; Lara-Lopez, M.A.; Vacca, V.; Hardcastle, M.J.; et al. The intergalactic magnetic field probed by a giant radio galaxy. arXiv, 2018; arXiv:1811.07934. [Google Scholar]
- Govoni, F.; Murgia, M.; Xu, H.; Li, H.; Norman, M.L.; Feretti, L.; Giovannini, G.; Vacca, V. Polarization of cluster radio halos with upcoming radio interferometers. Astron. Astrophys. 2013, 554, A102. [Google Scholar] [CrossRef] [Green Version]
- Akahori, T.; Gaensler, B.M.; Ryu, D. Statistical Techniques for Detecting the Intergalactic Magnetic Field from Large Samples of Extragalactic Faraday Rotation Data. Astrophys. J. 2014, 790, 123. [Google Scholar] [CrossRef]
- Johnston-Hollitt, M.; Govoni, F.; Beck, R.; Dehghan, S.; Pratley, L.; Akahori, T.; Heald, G.; Agudo, I.; Bonafede, A.; Carretti, E.; et al. Using SKA Rotation Measures to Reveal the Mysteries of the Magnetised Universe. In Proceedings of the Advancing Astrophysics with the Square Kilometre Array (AASKA14), Giardini Naxos, Italy, 9–13 June 2015; p. 92. [Google Scholar]
- Govoni, F.; Murgia, M.; Xu, H.; Li, H.; Norman, M.; Feretti, L.; Giovannini, G.; Vacca, V.; Bernardi, G.; Bonafede, A.; et al. Cluster magnetic fields through the study of polarized radio halos in the SKA era. In Proceedings of the Advancing Astrophysics with the Square Kilometre Array (AASKA14), Giardini Naxos, Italy, 9–13 June 2015; p. 105. [Google Scholar]
- Bonafede, A.; Vazza, F.; Brüggen, M.; Akahori, T.; Carretti, E.; Colafrancesco, S.; Feretti, L.; Ferrari, C.; Giovannini, G.; Govoni, F.; et al. Unravelling the origin of large-scale magnetic fields in galaxy clusters and beyond through Faraday Rotation Measures with the SKA. In Proceedings of the Advancing Astrophysics with the Square Kilometre Array (AASKA14), Giardini Naxos, Italy, 9–13 June 2015; p. 95. [Google Scholar]
- Vacca, V.; Oppermann, N.; Enßlin, T.; Jasche, J.; Selig, M.; Greiner, M.; Junklewitz, H.; Reinecke, M.; Brüggen, M.; Carretti, E.; et al. Using rotation measure grids to detect cosmological magnetic fields: A Bayesian approach. Astron. Astrophys. 2016, 591, A13. [Google Scholar] [CrossRef]
- Akahori, T.; Ryu, D.; Gaensler, B.M. Fast Radio Bursts as Probes of Magnetic Fields in the Intergalactic Medium. Astrophys. J. 2016, 824, 105. [Google Scholar] [CrossRef]
- Vazza, F.; Brüggen, M.; Hinz, P.M.; Wittor, D.; Locatelli, N.; Gheller, C. Probing the origin of extragalactic magnetic fields with Fast Radio Bursts. Mon. Not. R. Astron. Soc. 2018, 480, 3907–3915. [Google Scholar] [CrossRef]
- Akahori, T.; Ideguchi, S.; Aoki, T.; Takefuji, K.; Ujihara, H.; Takahashi, K. Optimum Frequency of Faraday Tomography to Explore the Inter-Galactic Magnetic Field in Filaments of Galaxies. arXiv, 2018; arXiv:1808.10546. [Google Scholar]
- Nicastro, F. A Decade of WHIM Search: Where Do We Stand and Where Do We Go. XMM-Newton: The Next Decade. 2016; p. 27. Available online: http://xxx.lanl.gov/abs/1611.03722 (accessed on 30 July 2018).
- Eckert, D.; Jauzac, M.; Shan, H.; Kneib, J.P.; Erben, T.; Israel, H.; Jullo, E.; Klein, M.; Massey, R.; Richard, J.; et al. Warm-hot baryons comprise 5–10 per cent of filaments in the cosmic web. Nature 2015, 528, 105–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Planck, C.; Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A.J.; et al. Planck intermediate results. VIII. Filaments between interacting clusters. Astron. Astrophys. 2013, 550, A134. [Google Scholar] [CrossRef]
- Bonjean, V.; Aghanim, N.; Salomé, P.; Douspis, M.; Beelen, A. Gas and galaxies in filaments between clusters of galaxies. The study of A399–A401. Astron. Astrophys. 2018, 609, A49. [Google Scholar] [CrossRef]
- De Graaff, A.; Cai, Y.C.; Heymans, C.; Peacock, J.A. Missing baryons in the cosmic web revealed by the Sunyaev-Zel’dovich effect. arXiv, 2017; arXiv:1709.10378. [Google Scholar]
- Brown, S.D. Synchrotron Emission on the Largest Scales: Radio Detection of the Cosmic-Web. J. Astrophys. Astron. 2011, 32, 577–584. [Google Scholar] [CrossRef] [Green Version]
- Vazza, F.; Ferrari, C.; Brüggen, M.; Bonafede, A.; Gheller, C.; Wang, P. Forecasts for the detection of the magnetised cosmic web from cosmological simulations. Astron. Astrophys. 2015, 580, A119. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.; Ryu, D. Characteristic Lengths of Magnetic Field in Magnetohydrodynamic Turbulence. Astrophys. J. 2009, 705, L90–L94. [Google Scholar] [CrossRef]
- Brüggen, M.; Ruszkowski, M.; Simionescu, A.; Hoeft, M.; Dalla Vecchia, C. Simulations of Magnetic Fields in Filaments. Astrophys. J. 2005, 631, L21–L24. [Google Scholar] [CrossRef] [Green Version]
- Vazza, F.; Brüggen, M.; Gheller, C.; Wang, P. On the amplification of magnetic fields in cosmic filaments and galaxy clusters. Mon. Not. R. Astron. Soc. 2014, 445, 3706–3722. [Google Scholar] [CrossRef]
- Marinacci, F.; Vogelsberger, M.; Mocz, P.; Pakmor, R. The large-scale properties of simulated cosmological magnetic fields. Mon. Not. R. Astron. Soc. 2015, 453, 3999–4019. [Google Scholar] [CrossRef]
- Vazza, F.; Brüggen, M.; Gheller, C.; Hackstein, S.; Wittor, D.; Hinz, P.M. Simulations of extragalactic magnetic fields and of their observables. Class. Quantum Gravity 2017, 34, 234001. [Google Scholar] [CrossRef] [Green Version]
- Gheller, C.; Vazza, F.; Brüggen, M.; Alpaslan, M.; Holwerda, B.W.; Hopkins, A.M.; Liske, J. Evolution of cosmic filaments and of their galaxy population from MHD cosmological simulations. Mon. Not. R. Astron. Soc. 2016, 462, 448–463. [Google Scholar] [CrossRef] [Green Version]
- Colberg, J.M.; Krughoff, K.S.; Connolly, A.J. Intercluster filaments in a ΛCDM Universe. Mon. Not. R. Astron. Soc. 2005, 359, 272–282. [Google Scholar] [CrossRef]
- Dolag, K.; Meneghetti, M.; Moscardini, L.; Rasia, E.; Bonaldi, A. Simulating the physical properties of dark matter and gas inside the cosmic web. Mon. Not. R. Astron. Soc. 2006, 370, 656–672. [Google Scholar] [CrossRef] [Green Version]
- Gheller, C.; Vazza, F.; Favre, J.; Brüggen, M. Properties of cosmological filaments extracted from Eulerian simulations. Mon. Not. R. Astron. Soc. 2015, 453, 1164–1185. [Google Scholar] [CrossRef] [Green Version]
- Donnert, J.; Dolag, K.; Lesch, H.; Müller, E. Cluster magnetic fields from galactic outflows. Mon. Not. R. Astron. Soc. 2009, 392, 1008–1021. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Li, H.; Collins, D.C.; Li, S.; Norman, M.L. Turbulence and Dynamo in Galaxy Cluster Medium: Implications on the Origin of Cluster Magnetic Fields. Astrophys. J. 2009, 698, L14–L17. [Google Scholar] [CrossRef]
- Bryan, G.L.; Norman, M.L.; O’Shea, B.W.; Abel, T.; Wise, J.H.; Turk, M.J.; Reynolds, D.R.; Collins, D.C.; Wang, P.; Skillman, S.W.; et al. ENZO: An Adaptive Mesh Refinement Code for Astrophysics. Astrophys. J. Suppl. 2014, 211, 19. [Google Scholar] [CrossRef]
- Wang, P.; Abel, T. Magnetohydrodynamic Simulations of Disk Galaxy Formation: The Magnetization of the Cold and Warm Medium. Astrophys. J. 2009, 696, 96–109. [Google Scholar] [CrossRef]
- Vazza, F.; Brunetti, G.; Gheller, C.; Brunino, R. Massive and refined: A sample of large galaxy clusters simulated at high resolution. I: Thermal gas and properties of shock waves. New Astron. 2010, 15, 695–711. [Google Scholar] [CrossRef] [Green Version]
- Wittor, D.; Vazza, F.; Brüggen, M. Testing cosmic ray acceleration with radio relics: A high-resolution study using MHD and tracers. Mon. Not. R. Astron. Soc. 2017, 464, 4448–4462. [Google Scholar] [CrossRef]
- Subramanian, K. The origin, evolution and signatures of primordial magnetic fields. arXiv, 2015; arXiv:1504.02311. [Google Scholar]
- Anderson, C.S.; Gaensler, B.M.; Feain, I.J.; Franzen, T.M.O. Broadband Radio Polarimetry and Faraday Rotation of 563 Extragalactic Radio Sources. Astrophys. J. 2015, 815, 49. [Google Scholar] [CrossRef]
- Joshi, R.; Chand, H. Dependence of residual rotation measure on intervening Mg II absorbers at cosmic distances. Mon. Not. R. Astron. Soc. 2013, 434, 3566–3571. [Google Scholar] [CrossRef]
- Schnitzeler, D.H.F.M. The latitude dependence of the rotation measures of NVSS sources. Mon. Not. R. Astron. Soc. 2010, 409, L99–L103. [Google Scholar] [CrossRef]
- Banfield, J.K.; Schnitzeler, D.H.F.M.; George, S.J.; Norris, R.P.; Jarrett, T.H.; Taylor, A.R.; Stil, J.M. Radio galaxies and their magnetic fields out to z ≤ 3. Mon. Not. R. Astron. Soc. 2014, 444, 700–710. [Google Scholar] [CrossRef]
- Jarrett, T.H.; Masci, F.; Tsai, C.; Petty, S.; Benford, D. WISE Nearby Galaxy Atlas. In Proceedings of the American Astronomical Society Meeting, Nantes, France, 2–7 October 2011; Volume 43. [Google Scholar]
- Rudnick, L.; Owen, F.N. The Distribution of Polarized Radio Sources >15 μJy in GOODS-N. Astrophys. J. 2014, 785, 45. [Google Scholar] [CrossRef]
- Neuhäuser, M. Wilcoxon–Mann–Whitney Test. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1656–1658. [Google Scholar]
- Connor, T.; Kelson, D.D.; Mulchaey, J.; Vikhlinin, A.; Patel, S.G.; Balogh, M.L.; Joshi, G.; Kraft, R.; Nagai, D.; Starikova, S. Wide-Field Optical Spectroscopy of Abell 133: A Search for Filaments Reported in X-ray Observations. arXiv, 2018; arXiv:1809.08241. [Google Scholar]
- Domínguez Fernández, P.; Vazza, F.; Brüggen, M. Spectral analysis of magnetic fields in simulated galaxy clusters. arXiv, 2018; arXiv:1810.08009. [Google Scholar]
- Planck, C.; Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; et al. Planck 2015 results. XIX. Constraints on primordial magnetic fields. Astron. Astrophys. 2016, 594, A19. [Google Scholar] [CrossRef]
- Cassano, R.; Bernardi, G.; Brunetti, G.; Brüggen, M.; Clarke, T.; Dallacasa, D.; Dolag, K.; Ettori, S.; Giacintucci, S.; Giocoli, C.; et al. Cluster Radio Halos at the crossroads between astrophysics and cosmology in the SKA era. arXiv, 2014; arXiv:1412.5940. [Google Scholar]
- Nuza, S.E.; Gelszinnis, J.; Hoeft, M.; Yepes, G. Can cluster merger shocks reproduce the luminosity and shape distribution of radio relics? Mon. Not. R. Astron. Soc. 2017, 470, 240–263. [Google Scholar] [CrossRef] [Green Version]
- Lamee, M.; Rudnick, L.; Farnes, J.S.; Carretti, E.; Gaensler, B.M.; Haverkorn, M.; Poppi, S. Magnetic Field Disorder and Faraday Effects on the Polarization of Extragalactic Radio Sources. Astrophys. J. 2016, 829, 5. [Google Scholar] [CrossRef]
1. | |
2. | We notice that the density weighting in the velocity spectra ensures that the magnetic and velocity spectra have the same units and can be quantitatively compared, as in Vazza et al. [4]. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Locatelli, N.; Vazza, F.; Domínguez-Fernández, P. The Challenge of Detecting Intracluster Filaments with Faraday Rotation. Galaxies 2018, 6, 128. https://doi.org/10.3390/galaxies6040128
Locatelli N, Vazza F, Domínguez-Fernández P. The Challenge of Detecting Intracluster Filaments with Faraday Rotation. Galaxies. 2018; 6(4):128. https://doi.org/10.3390/galaxies6040128
Chicago/Turabian StyleLocatelli, Nicola, Franco Vazza, and Paola Domínguez-Fernández. 2018. "The Challenge of Detecting Intracluster Filaments with Faraday Rotation" Galaxies 6, no. 4: 128. https://doi.org/10.3390/galaxies6040128
APA StyleLocatelli, N., Vazza, F., & Domínguez-Fernández, P. (2018). The Challenge of Detecting Intracluster Filaments with Faraday Rotation. Galaxies, 6(4), 128. https://doi.org/10.3390/galaxies6040128