A Non-Polynomial Gravity Formulation for Loop Quantum Cosmology Bounce
Abstract
1. Introduction
2. Action and Equations of Motion
3. Exact Solutions for General Equation of State Parameter and Cosmological Constant
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
NPG | Non-polynomial gravity |
LQC | Loop quantum cosmology |
FLRW | Friedmann–Lemaître–Robertson–Walker space-time |
EL | Euler–Lagrange |
LQG | Loop quantum gravity |
References
- Lilley, M.; Peter, P. Bouncing alternatives to inflation. C. R. Phys. 2015, 16, 1038. [Google Scholar] [CrossRef]
- Khoury, J.; Ovrut, B.A.; Steinhardt, P.J.; Turok, N. The Ekpyrotic universe: Colliding branes and the origin of the hot big bang. Phys. Rev. D 2001, 64, 123522. [Google Scholar] [CrossRef]
- Tsujikawa, S.; Brandenberger, R.; Finelli, F. On the construction of nonsingular pre—Big bang and ekpyrotic cosmologies and the resulting density perturbations. Phys. Rev. D 2002, 66, 083513. [Google Scholar] [CrossRef]
- Piao, Y.-S.; Feng, B.; Zhang, X.-M. Suppressing CMB quadrupole with a bounce from contracting phase to inflation. Phys. Rev. D 2004, 69, 103520. [Google Scholar] [CrossRef]
- Guo, Z.-K.; Piao, Y.-S. Obtaining the CMB anomalies with a bounce from the contracting phase to inflation. Phys. Rev. D 2013, 88, 063539. [Google Scholar]
- Novello, M.; Bergliaffa, S.E.P. Bouncing Cosmologies. Phys. Rept. 2008, 463, 127. [Google Scholar] [CrossRef]
- Brandenberger, R. Matter Bounce in Horava-Lifshitz Cosmology. Phys. Rev. D 2009, 80, 043516. [Google Scholar] [CrossRef]
- Easson, D.A.; Sawicki, I.; Vikman, A. G-Bounce. J. Cosmol. Astropart. Phys. 2011, 1111, 021. [Google Scholar] [CrossRef]
- Bamba, K.; Makarenko, A.N.; Myagky, A.N.; Nojiri, S.; Odintsov, S.D. Bounce cosmology from F(R) gravity and F(R) bigravity. J. Cosmol. Astropart. Phys. 2014, 1, 8. [Google Scholar] [CrossRef]
- Xue, B.; Garfinkle, D.; Pretorius, F.; Steinhardt, P.J. Nonperturbative analysis of the evolution of cosmological perturbations through a nonsingular bounce. Phys. Rev. D 2013, 88, 083509. [Google Scholar] [CrossRef]
- Myrzakulov, R.; Sebastiani, L. Bounce solutions in viscous fluid cosmology. Astrophys. Space Sci. 2014, 352, 281. [Google Scholar] [CrossRef]
- Boisseau, B.; Giacomini, H.; Polarski, D.; Starobinsky, A.A. Bouncing Universes in Scalar-Tensor Gravity Models admitting Negative Potentials. J. Cosmol. Astropart. Phys. 2015, 7, 002. [Google Scholar] [CrossRef]
- Gielen, S.; Turok, N. Perfect Quantum Cosmological Bounce. Phys. Rev. Lett. 2016, 117, 021301. [Google Scholar] [CrossRef] [PubMed]
- Ijjas, A.; Steinhardt, P.J. Fully stable cosmological solutions with a non-singular classical bounce. Phys. Lett. B 2017, 764, 289. [Google Scholar] [CrossRef]
- Qiu, T.; Wang, Y.T. G-Bounce Inflation: Towards Nonsingular Inflation Cosmology with Galileon Field. J. High Energy Phys. 2015, 2015, 130. [Google Scholar] [CrossRef]
- Dzierzak, P.; Malkiewicz, P.; Piechocki, W. Turning Big Bang into Big Bounce: I. Classical Dynamics. Phys. Rev. D 2009, 80, 104001. [Google Scholar] [CrossRef]
- Malkiewicz, P.; Piechocki, W. Foamy structure of spacetime. arXiv, 2009; arXiv:0907.4647. [Google Scholar]
- Malkiewicz, P.; Piechocki, W. Turning big bang into big bounce: Quantum dynamics. arXiv, 2010; arXiv:0908.4029. [Google Scholar]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rept. 2017, 692, 1. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K. Big-Bounce with Finite-time Singularity: The F(R) Gravity Description. Int. J. Mod. Phys. D 2017, 26, 1750085. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K. Bouncing cosmology with future singularity from modified gravity. Phys. Rev. D 2015, 92, 024016. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K. Matter Bounce Loop Quantum Cosmology from F(R) Gravity. Phys. Rev. D 2014, 90, 124083. [Google Scholar] [CrossRef]
- Cai, Y.; Wan, Y.; Li, H.G.; Qiu, T.; Piao, Y.S. The Effective Field Theory of nonsingular cosmology. J. High Energy Phys. 2017, 77, 090. [Google Scholar] [CrossRef]
- Cai, Y.; Li, H.G.; Qiu, T.; Piao, Y.S. The Effective Field Theory of nonsingular cosmology: II. Eur. Phys. J. C 2017, 77, 369. [Google Scholar] [CrossRef]
- Cai, Y.; Piao, Y.S. A covariant Lagrangian for stable nonsingular bounce. arXiv, 2017; arXiv:1705.03401. [Google Scholar]
- Bojowald, M. Absence of singularity in loop quantum cosmology. Phys. Rev. Lett. 2001, 86, 5227. [Google Scholar] [CrossRef] [PubMed]
- Bojowald, M. Loop quantum cosmology. Living Rev. Rel. 2005, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum nature of the big bang: Improved dynamics. Phys. Rev. D 2006, 74, 084003. [Google Scholar] [CrossRef]
- Ashtekar, A.; Corichi, A.; Singh, P. On the robustness of key features of loop quantum cosmology. Phys. Rev. D 2008, 77, 024046. [Google Scholar] [CrossRef]
- Helling, R.C.; Policastro, G. String quantization: Fock vs. LQG representations. arXiv, 2004; arXiv:hep-th/0409182. [Google Scholar]
- Helling, R.C. A lesson from the lqg string: Diffeomorphism covariance is enough. AIP Conf. Proc. 2009, 1196, 154–160. [Google Scholar]
- Helling, R.C. Higher curvature counter terms cause the bounce in loop cosmology. arXiv, 2009; arXiv:0912.3011. [Google Scholar]
- Date, G.; Sengupta, S. Effective Actions from Loop Quantum Cosmology: Correspondence with Higher Curvature Gravity. Class. Quant. Grav. 2009, 26, 105002. [Google Scholar] [CrossRef]
- Chamseddine, A.H.; Mukhanov, V. Mimetic Dark Matter. J. High Energy Phys. 2013, 135, 1311. [Google Scholar] [CrossRef]
- Chamseddine, A.H.; Mukhanov, V.; Vikman, A. Cosmology with Mimetic Matter. J. Cosmol. Astropart. Phys. 2014, 2014, 017. [Google Scholar] [CrossRef]
- Lim, E.A.; Sawicki, I.; Vikman, A. Dust of Dark Energy. J. Cosmol. Astropart. Phys. 2010, 2016, 012. [Google Scholar] [CrossRef]
- Chamseddine, A.H.; Mukhanov, V. Resolving Cosmological Singularities. J. Cosmol. Astropart. Phys. 2017, 2017, 009. [Google Scholar] [CrossRef]
- Chasmeddine, A.H.; Mukhanov, V. Nonsingular black hole. Eur. Phys. J. C 2017, 77, 183. [Google Scholar]
- Rabochaya, Y.; Zerbini, S. A note on a mimetic scalar–tensor cosmological model. Eur. Phys. J. C 2016, 76, 85. [Google Scholar]
- Liu, H.; Noui, K.; Wilson-Ewing, E.; Langlois, D. Effective loop quantum cosmology as a higher-derivative scalar-tensor theory. arXiv, 2017; arXiv:1703.10812. [Google Scholar]
- Zhu, T.; Wang, A.; Kirsten, K.; Cleaver, G.; Sheng, Q. Universal features of quantum bounce in loop quantum cosmology. Phys. Lett. B 2017, 773, 196. [Google Scholar] [CrossRef]
- Zhu, T.; Wang, A.; Kirsten, K.; Cleaver, G.; Sheng, Q. Pre-inflationary universe in loop quantum cosmology. arXiv, 2017; arXiv:1705.07544. [Google Scholar]
- Odintsov, S.D.; Oikonomou, V.K. Accelerating cosmologies and the phase structure of F(R) gravity with Lagrange multiplier constraints: A mimetic approach. Phys. Rev. D 2016, 93, 023517. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Tsujikawa, S. Properties of singularities in (phantom) dark energy universe. Phys. Rev. D 2005, 71, 063004. [Google Scholar] [CrossRef]
- Deser, S.; Sarioglu, O.; Tekin, B. Spherically symmetric solutions of Einstein + non-polynomial gravities. Gen. Rel. Grav. 2008, 40, 1–7. [Google Scholar] [CrossRef]
- Colléaux, A.; Zerbini, S. Modified gravity models admitting second order equations of motion. Entropy 2015, 17, 6643–6662. [Google Scholar] [CrossRef]
- Bellini, E.; di Criscienzo, R.; Sebastiani, L.; Zerbini, S. Black Hole Entropy for Two Higher Derivative Theories of Gravity. Entropy 2010, 12, 2186–2198. [Google Scholar] [CrossRef]
- Colléaux, A. Rational regular black holes in non-polynomial gravity. 2017. in preparation. [Google Scholar]
- Deser, S.; Ryzhov, A.V. Curvature invariants of static spherically symmetric geometries. Class. Quant. Grav. 2005, 22, 3315–3324. [Google Scholar] [CrossRef]
- Gao, C. Generalized modified gravity with the second-order acceleration equation. Phys. Rev. D 2012, 86, 103512. [Google Scholar] [CrossRef]
- Palais, R.S. The principle of symmetric criticality. Commun. Math. Phys. 1979, 69, 19–30. [Google Scholar] [CrossRef]
- Torre, C.G. Symmetric Criticality in Classical Field Theory. AIP Conf. Proc. 2011, 1360, 63–74. [Google Scholar]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clochiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirchner, R.P. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astrophys. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Perlmutter, S.; Adering, G.; Goldhaberm, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Bojowald, M. Consistent Loop Quantum Cosmology. Class. Quant. Grav. 2009, 26, 075020. [Google Scholar] [CrossRef]
- Lovelock, D. Divergence-free tensorial concomitants. Aequat. Math. 1970, 4, 127–138. [Google Scholar] [CrossRef]
- Lovelock, D. The Einstein tensor and its generalizations. J. Math. Phys. 1971, 12, 498–501. [Google Scholar] [CrossRef]
- Lovelock, D. The four dimensionality of space and the Einstein tensor. J. Math. Phys. 1972, 13, 874–876. [Google Scholar] [CrossRef]
- Hammer, K.; Vikman, A. Many Faces of Mimetic Gravity. arXiv, 2015; arXiv:1512.09118. [Google Scholar]
- Sebastiani, L.; Vagnozzi, S.; Myrzakulov, R. Mimetic gravity: A review of recent developments and applications to cosmology and astrophysics. Adv. High Energy Phys. 2017, 2017, 3156915. [Google Scholar] [CrossRef]
- Cognola, G.; Myrzakulov, R.; Sebastiani, L.; Vagnozzi, S.; Zerbini, S. Covariant Horava-like and mimetic Horndeski gravity: Cosmological solutions and perturbations. Class. Quant. Grav. 2016, 33, 225014. [Google Scholar] [CrossRef]
- Myrzakulov, R.; Sebastiani, L.; Vagnozzi, S.; Zerbini, S. Static spherically symmetric solutions in mimetic gravity: rotation curves & wormholes. Class. Quant. Grav. 2016, 33, 125005. [Google Scholar]
- Capozziello, S.; Matsumoto, J.; Nojiri, S.; Odintsov, S.D. Dark energy from modified gravity with Lagrange multipliers. Phys. Lett. B 2010, 693, 198–208. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chinaglia, S.; Colléaux, A.; Zerbini, S. A Non-Polynomial Gravity Formulation for Loop Quantum Cosmology Bounce. Galaxies 2017, 5, 51. https://doi.org/10.3390/galaxies5030051
Chinaglia S, Colléaux A, Zerbini S. A Non-Polynomial Gravity Formulation for Loop Quantum Cosmology Bounce. Galaxies. 2017; 5(3):51. https://doi.org/10.3390/galaxies5030051
Chicago/Turabian StyleChinaglia, Stefano, Aimeric Colléaux, and Sergio Zerbini. 2017. "A Non-Polynomial Gravity Formulation for Loop Quantum Cosmology Bounce" Galaxies 5, no. 3: 51. https://doi.org/10.3390/galaxies5030051
APA StyleChinaglia, S., Colléaux, A., & Zerbini, S. (2017). A Non-Polynomial Gravity Formulation for Loop Quantum Cosmology Bounce. Galaxies, 5(3), 51. https://doi.org/10.3390/galaxies5030051