Boxy/Peanut Bulges: Comparative Analysis of EGIPS Galaxies and TNG50 Models
Abstract
1. Introduction
2. Data
- TNG50 distances and masses are given in units of , where is the Hubble constant. For example, masses are measured in units of . Those quantities were converted to appropriate values by dividing them by .
- Each galaxy is simulated in SKIRT using photon packets.
- Each image encompasses a region extending from −22.5 to 22.5 kpc from the galaxy center in the disk plane, and from −7.5 to 7.5 kpc along the vertical direction.
- The images have a resolution of 300 × 100 pixels. The linear scale of each pixel is then 150 pc. Assuming a distance of 150 Mpc, this gives a pixel scale of 0.2 arcsec, which is slightly better than Pan-STARRS resolution.
- Each stellar particle is assumed to represent a single stellar population, characterized by a Chabrier initial mass function [48], with defined formation time, metallicity, and the initial mass (mass at formation time). For the spectral energy distribution, we adopt the Bruzual and Charlot stellar population synthesis model [49].
- As the smoothing length, we adopt the distance to the 32 nearest particles (see [50]), a parameter that is directly available in the TNG50 simulation snapshots. However, as noted in the SKIRT description (see https://skirt.ugent.be/root/_home.html, accessed on 28 December 2025), if the softening length is uncapped, it can lead to the appearance of large artificial blobs, as some distant particles in a given simulation snapshot can have very large distances (e.g., >100 kpc). Therefore, we capped the softening length at 1.5 kpc. In practice, we verified that the image does not change significantly as long as at least several pixels are covered by the softening length. For our chosen softening value, the softening covers 10 pixels.
- The resulting images were convolved with a Gaussian kernel of FWHM 5 pixels (1 arcsec, assuming a distance of 150 Mpc), simulating the effect of the Pan-STARRS PSF in the i-band.

3. Photometric Decomposition
3.1. Preprocessing
3.2. General Setup
3.3. Photometric Functions
3.4. Fitting Essentials
4. B/PS Bulge Parameters from Photometric Decomposition
- The X-structure opening angle . The angle value is generally linked to the dominant orbital family forming the B/PS bulge [28], which in turn is determined by the physical properties of the galaxy. However, it is also subject to projection effects, i.e., the orientation of the bar major axis with respect to the LoS [20,35].
- The scale length of the Sérsic profile below the ray, which we denote as to distinguish it from other scale lengths. Since we fixed Sérsic index to for our X-shaped bulge photometric model, corresponds a simple exponential scale length. (note that in Equation (3) is always the effective radius, even for . The corresponding exponential scale length can be calculated as .). Its value generally tells us how large the B/PS bulge is.
- Other geometric properties of the B/PS bulge: shape of isophotes below the ray and the amplitude of the intensity dip between the rays, quantified by (see Section 3.3). In general, may serve as an additional indicator of the bar viewing angle, with smaller values corresponding to a bar rotated closer to the LoS.
4.1. X-Structure Angles and B/PS Bulge Sizes
4.2. B/PS Bulge and Disk
4.3. B/PS Bulge Intensity Contribution
5. Discussion
5.1. X-Structure Angles: Physics or Projection Effects?
5.2. B/PS Bulges in TNG50
5.3. B/PS Bulge as a Part of Composite Bulges
6. Conclusions
- The X-structure angles are mostly distributed between and 40 for real galaxies, whereas for TNG50 galaxies the angles span a range from about to , depending on the bar orientation with respect to the line of sight (smaller angles correspond to bars oriented perpendicular to the LoS); see Table 1. The values obtained for real galaxies are consistent with the results of previous observational and numerical studies. However, the very flat X-structures observed for TNG50 galaxies are inconsistent with the findings of previous numerical works. Further orbital studies of B/PS bulge in TNG50 galaxies are required to explain how such flat X-structures are formed.
- The X-structure angles show a significant anti-correlation with the B/PS bulge size, that is, larger B/PS bulges tend to host more flattened X-structures (Table 2 and Figure 7). Comparing the B/PS bulges arising from bars viewed at different angles between the LoS and the bar major axis in the TNG50 models, we show that this effect is partially due to projection effects.
- However, when examining the B/PS bulge sizes and X-structure angles against the absolute magnitudes and galaxy masses of real galaxies, quantities that are independent of the bar viewing angle, we found that both larger B/PS bulges and more flattened X-structures tend to reside in more massive galaxies (Figure 11). This suggests that the observed negative correlation between B/PS bulge size and X-structure angle is not solely a projection effect but also has a physical origin. The trend of larger bulges residing in more massive galaxies is consistent with previous findings that larger bars are found in more massive galaxies. The trend of more flattened X-structures residing in larger B/PS bulges (and, thus, in larger bars) is a new finding of the present work. These results should be further tested with a larger sample of galaxies with B/PS bulges.
- The measured contributions of the B/PS bulge and other bulges to total intensity are consistent with the results of previous studies where automatic decomposition was employed. At the same time, larger B/PS bulges are typically found in larger disks, and generally have larger the bulge-to-total intensity ratio, (Figure 10).
- When studying the dependence of X-structure angles on disk parameters and the contribution of other bulges, , we did not find any significant correlations (Table 2)
- Comparing the B/PS bulges between EGIPS galaxies and the TNG50 models, we find that the B/PS bulges of real galaxies are considerably larger (see parameter values in Table 1), both in absolute terms and relative to the disk scale. This is consistent with previous studies of TNG50 bars, which have shown that they are shorter than the bars of real galaxies. At the same time, we find that B/PS bulges in TNG50 are generally less prominent in terms of their intensity-to-total ratio, , compared to real galaxies (see Table 1).
- Comparing the results between a simple bulge + disk decomposition and our multicomponent decomposition, we find that accounting for the B/PS bulge separately is essential for obtaining realistic estimates of the bulge-to-total ratio, . We also found that the bulges extracted by the two-component model tend to have smaller Sérsic indices compared to the case where the B/PS bulge is properly accounted for (Figure 12).
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Broken Disk in the Framework of 2D Decomposition
Appendix B. X-Shaped Bulge Model Additional Notes
References
- Shaw, M.A. The nature of ’box’ and ’peanut’ shaped galactic bulges. Mon. Not. R. Astron. Soc. 1987, 229, 691–706. [Google Scholar] [CrossRef][Green Version]
- de Souza, R.E.; Dos Anjos, S. Box-shaped galaxies: A complete list. Astron. Astrophys. Suppl. Ser. 1987, 70, 465–480. [Google Scholar]
- Lütticke, R.; Dettmar, R.J.; Pohlen, M. Box- and peanut-shaped bulges. I. Statistics. Astron. Astrophys. Suppl. Ser. 2000, 145, 405–414. [Google Scholar] [CrossRef]
- Erwin, P.; Debattista, V.P. Peanuts at an angle: Detecting and measuring the three-dimensional structure of bars in moderately inclined galaxies. Mon. Not. R. Astron. Soc. 2013, 431, 3060–3086. [Google Scholar] [CrossRef]
- Yoshino, A.; Yamauchi, C. Box/peanut and bar structures in edge-on and face-on nearby galaxies in the Sloan Digital Sky Survey—I. Catalogue. Mon. Not. R. Astron. Soc. 2015, 446, 3749–3767. [Google Scholar] [CrossRef]
- Erwin, P.; Debattista, V.P. The frequency and stellar-mass dependence of boxy/peanut-shaped bulges in barred galaxies. Mon. Not. R. Astron. Soc. 2017, 468, 2058–2080. [Google Scholar] [CrossRef]
- Marchuk, A.A.; Smirnov, A.A.; Sotnikova, N.Y.; Bunakalya, D.A.; Savchenko, S.S.; Reshetnikov, V.P.; Usachev, P.A.; Tikhonenko, I.S.; Zozulia, V.D.; Zakharova, D.A. B/PS bulges in DESI Legacy edge-on galaxies—I. Sample building. Mon. Not. R. Astron. Soc. 2022, 512, 1371–1390. [Google Scholar] [CrossRef]
- Pfenniger, D.; Friedli, D. Structure and dynamics of 3D N-body barred galaxies. Astron. Astrophys. 1991, 252, 75–93. [Google Scholar]
- Skokos, C.; Patsis, P.A.; Athanassoula, E. Orbital dynamics of three-dimensional bars—I. The backbone of three-dimensional bars. A fiducial case. Mon. Not. R. Astron. Soc. 2002, 333, 847–860. [Google Scholar] [CrossRef]
- Combes, F.; Sanders, R.H. Formation and properties of persisting stellar bars. Astron. Astrophys. 1981, 96, 164–173. [Google Scholar]
- Raha, N.; Sellwood, J.A.; James, R.A.; Kahn, F.D. A dynamical instability of bars in disk galaxies. Nature 1991, 352, 411. [Google Scholar] [CrossRef]
- Athanassoula, E.; Misiriotis, A. Morphology, photometry and kinematics of N-body bars—I. Three models with different halo central concentrations. Mon. Not. R. Astron. Soc. 2002, 330, 35–52. [Google Scholar] [CrossRef]
- O’Neill, J.K.; Dubinski, J. Detailed comparison of the structures and kinematics of simulated and observed barred galaxies. Mon. Not. R. Astron. Soc. 2003, 346, 251–264. [Google Scholar] [CrossRef]
- Athanassoula, E. On the nature of bulges in general and of box/peanut bulges in particular: Input from N-body simulations. Mon. Not. R. Astron. Soc. 2005, 358, 1477–1488. [Google Scholar] [CrossRef]
- Martinez-Valpuesta, I.; Shlosman, I.; Heller, C. Evolution of Stellar Bars in Live Axisymmetric Halos: Recurrent Buckling and Secular Growth. Astrophys. J. 2006, 637, 214–226. [Google Scholar] [CrossRef]
- Debattista, V.P.; Mayer, L.; Carollo, C.M.; Moore, B.; Wadsley, J.; Quinn, T. The Secular Evolution of Disk Structural Parameters. Astrophys. J. 2006, 645, 209–227. [Google Scholar] [CrossRef]
- Wozniak, H.; Michel-Dansac, L. Formation of young boxy/peanut bulges in ringed barred galaxies. Astron. Astrophys. 2009, 494, 11–20. [Google Scholar] [CrossRef]
- Saha, K.; Gerhard, O. Secular evolution and cylindrical rotation in boxy/peanut bulges: Impact of initially rotating classical bulges. Mon. Not. R. Astron. Soc. 2013, 430, 2039–2046. [Google Scholar] [CrossRef]
- Fragkoudi, F.; Di Matteo, P.; Haywood, M.; Gómez, A.; Combes, F.; Katz, D.; Semelin, B. Bars and boxy/peanut bulges in thin and thick discs. I. Morphology and line-of-sight velocities of a fiducial model. Astron. Astrophys. 2017, 606, A47. [Google Scholar] [CrossRef]
- Smirnov, A.A.; Sotnikova, N.Y. What determines the flatness of X-shaped structures in edge-on galaxies? Mon. Not. R. Astron. Soc. 2018, 481, 4058–4076. [Google Scholar] [CrossRef]
- Sellwood, J.A.; Gerhard, O. Three mechanisms for bar thickening. Mon. Not. R. Astron. Soc. 2020, 495, 3175–3191. [Google Scholar] [CrossRef]
- Bureau, M.; Freeman, K.C. The Nature of Boxy/Peanut-Shaped Bulges in Spiral Galaxies. Astron. J. 1999, 118, 126–138. [Google Scholar] [CrossRef]
- Chung, A.; Bureau, M. Stellar Kinematics of Boxy Bulges: Large-Scale Bars and Inner Disks. Astron. J. 2004, 127, 3192–3212. [Google Scholar] [CrossRef]
- Kruk, S.J.; Erwin, P.; Debattista, V.P.; Lintott, C. Revealing the cosmic evolution of boxy/peanut-shaped bulges from HST COSMOS and SDSS. Mon. Not. R. Astron. Soc. 2019, 490, 4721–4739. [Google Scholar] [CrossRef]
- Patsis, P.A.; Xilouris, E.M.; Alikakos, J.; Athanassoula, E. Edge-on boxes with X-features as parts of galactic bars. NGC 352: A direct piece of observational evidence. Astron. Astrophys. 2021, 647, A20. [Google Scholar] [CrossRef]
- Patsis, P.A.; Katsanikas, M. The phase space of boxy-peanut and X-shaped bulges in galaxies—I. Properties of non-periodic orbits. Mon. Not. R. Astron. Soc. 2014, 445, 3525–3545. [Google Scholar] [CrossRef]
- Portail, M.; Wegg, C.; Gerhard, O. Peanuts, brezels and bananas: Food for thought on the orbital structure of the Galactic bulge. Mon. Not. R. Astron. Soc. 2015, 450, L66–L70. [Google Scholar] [CrossRef]
- Parul, H.D.; Smirnov, A.A.; Sotnikova, N.Y. Orbital Ingredients for Cooking X-structures in Edge-on Galaxies. Astrophys. J. 2020, 895, 12. [Google Scholar] [CrossRef]
- Kormendy, J.; Kennicutt, R.C., Jr. Secular Evolution and the Formation of Pseudobulges in Disk Galaxies. Annu. Rev. Astron. Astrophys. 2004, 42, 603–683. [Google Scholar] [CrossRef]
- Kormendy, J.; Barentine, J.C. Detection of a Pseudobulge Hidden Inside the “Box-shaped Bulge” of NGC 4565. Astrophys. J. Lett. 2010, 715, L176–L179. [Google Scholar] [CrossRef]
- Erwin, P.; Seth, A.; Debattista, V.P.; Seidel, M.; Mehrgan, K.; Thomas, J.; Saglia, R.; de Lorenzo-Cáceres, A.; Maciejewski, W.; Fabricius, M.; et al. Composite bulges—II. Classical bulges and nuclear discs in barred galaxies: The contrasting cases of NGC 4608 and NGC 4643. Mon. Not. R. Astron. Soc. 2021, 502, 2446–2473. [Google Scholar] [CrossRef]
- Ciambur, B.C.; Graham, A.W. Quantifying the (X/peanut)-shaped structure in edge-on disc galaxies: Length, strength, and nested peanuts. Mon. Not. R. Astron. Soc. 2016, 459, 1276–1292. [Google Scholar] [CrossRef]
- Laurikainen, E.; Salo, H. Barlenses and X-shaped features compared: Two manifestations of boxy/peanut bulges. Astron. Astrophys. 2017, 598, A10. [Google Scholar] [CrossRef]
- Savchenko, S.S.; Sotnikova, N.Y.; Mosenkov, A.V.; Reshetnikov, V.P.; Bizyaev, D.V. Measuring the X-shaped structures in edge-on galaxies. Mon. Not. R. Astron. Soc. 2017, 471, 3261–3272. [Google Scholar] [CrossRef]
- Smirnov, A.A.; Savchenko, S.S. New X-shaped bulge photometric model as a tool for measuring B/PS bulges and their X-structures in photometric studies. Mon. Not. R. Astron. Soc. 2020, 499, 462–481. [Google Scholar] [CrossRef]
- Simard, L.; Mendel, J.T.; Patton, D.R.; Ellison, S.L.; McConnachie, A.W. A Catalog of Bulge+disk Decompositions and Updated Photometry for 1.12 Million Galaxies in the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 2011, 196, 11. [Google Scholar] [CrossRef]
- Bizyaev, D.V.; Kautsch, S.J.; Mosenkov, A.V.; Reshetnikov, V.P.; Sotnikova, N.Y.; Yablokova, N.V.; Hillyer, R.W. The Catalog of Edge-on Disk Galaxies from SDSS. I. The Catalog and the Structural Parameters of Stellar Disks. Astrophys. J. 2014, 787, 24. [Google Scholar] [CrossRef]
- Baes, M.; Verstappen, J.; De Looze, I.; Fritz, J.; Saftly, W.; Vidal Pérez, E.; Stalevski, M.; Valcke, S. Efficient Three-dimensional NLTE Dust Radiative Transfer with SKIRT. Astrophys. J. Suppl. Ser. 2011, 196, 22. [Google Scholar] [CrossRef]
- Camps, P.; Baes, M. SKIRT: An advanced dust radiative transfer code with a user-friendly architecture. Astron. Comput. 2015, 9, 20–33. [Google Scholar] [CrossRef]
- Makarov, D.; Savchenko, S.; Mosenkov, A.; Bizyaev, D.; Reshetnikov, V.; Antipova, A.; Tikhonenko, I.; Usachev, P.; Borisov, S.; Makarova, L.; et al. The edge-on Galaxies in the Pan-STARRS survey (EGIPS). Mon. Not. R. Astron. Soc. 2022, 511, 3063–3075. [Google Scholar] [CrossRef]
- Dey, A.; Schlegel, D.J.; Lang, D.; Blum, R.; Burleigh, K.; Fan, X.; Findlay, J.R.; Finkbeiner, D.; Herrera, D.; Juneau, S.; et al. Overview of the DESI Legacy Imaging Surveys. Astron. J. 2019, 157, 168. [Google Scholar] [CrossRef]
- Makarov, D.; Prugniel, P.; Terekhova, N.; Courtois, H.; Vauglin, I. HyperLEDA. III. The catalogue of extragalactic distances. Astron. Astrophys. 2014, 570, A13. [Google Scholar] [CrossRef]
- Schlafly, E.F.; Finkbeiner, D.P. Measuring Reddening with Sloan Digital Sky Survey Stellar Spectra and Recalibrating SFD. Astrophys. J. 2011, 737, 103. [Google Scholar] [CrossRef]
- Pillepich, A.; Sotillo-Ramos, D.; Ramesh, R.; Nelson, D.; Engler, C.; Rodriguez-Gomez, V.; Fournier, M.; Donnari, M.; Springel, V.; Hernquist, L. Milky Way and Andromeda analogues from the TNG50 simulation. Mon. Not. R. Astron. Soc. 2024, 535, 1721–1762. [Google Scholar] [CrossRef]
- Pillepich, A.; Nelson, D.; Springel, V.; Pakmor, R.; Torrey, P.; Weinberger, R.; Vogelsberger, M.; Marinacci, F.; Genel, S.; van der Wel, A.; et al. First results from the TNG50 simulation: The evolution of stellar and gaseous discs across cosmic time. Mon. Not. R. Astron. Soc. 2019, 490, 3196–3233. [Google Scholar] [CrossRef]
- Springel, V. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Not. R. Astron. Soc. 2010, 401, 791–851. [Google Scholar] [CrossRef]
- Anderson, S.R.; Gough-Kelly, S.; Debattista, V.P.; Du, M.; Erwin, P.; Cuomo, V.; Caruana, J.; Hernquist, L.; Vogelsberger, M. The interplay between accretion, downsizing, and the formation of box/peanut bulges in TNG50. Mon. Not. R. Astron. Soc. 2024, 527, 2919–2939. [Google Scholar] [CrossRef]
- Chabrier, G. Galactic Stellar and Substellar Initial Mass Function. Publ. Astron. Soc. Pac. 2003, 115, 763–795. [Google Scholar] [CrossRef]
- Bruzual, G.; Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 2003, 344, 1000–1028. [Google Scholar] [CrossRef]
- Torrey, P.; Snyder, G.F.; Vogelsberger, M.; Hayward, C.C.; Genel, S.; Sijacki, D.; Springel, V.; Hernquist, L.; Nelson, D.; Kriek, M.; et al. Synthetic galaxy images and spectra from the Illustris simulation. Mon. Not. R. Astron. Soc. 2015, 447, 2753–2771. [Google Scholar] [CrossRef]
- Bertin, E.; Arnouts, S. SExtractor: Software for source extraction. Astron. Astrophys. Suppl. Ser. 1996, 117, 393–404. [Google Scholar] [CrossRef]
- Bertin, E. Automated Morphometry with SExtractor and PSFEx. In Proceedings of the Astronomical Data Analysis Software and Systems XX, Boston, MA, USA, 7–11 November 2010; Evans, I.N., Accomazzi, A., Mink, D.J., Rots, A.H., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2011; Volume 442, p. 435. [Google Scholar]
- Gadotti, D.A.; Baes, M.; Falony, S. Radiative transfer in disc galaxies—IV. The effects of dust attenuation on bulge and disc structural parameters. Mon. Not. R. Astron. Soc. 2010, 403, 2053–2062. [Google Scholar] [CrossRef]
- Savchenko, S.S.; Poliakov, D.M.; Mosenkov, A.V.; Smirnov, A.A.; Marchuk, A.A.; Il’in, V.B.; Gontcharov, G.A.; Seguine, J.; Baes, M. The problem of dust attenuation in photometric decomposition of edge-on galaxies and possible solutions. Mon. Not. R. Astron. Soc. 2023, 524, 4729–4745. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar] [CrossRef]
- Erwin, P. IMFIT: A Fast, Flexible New Program for Astronomical Image Fitting. Astrophys. J. 2015, 799, 226. [Google Scholar] [CrossRef]
- Moré, J.J. The Levenberg-Marquardt algorithm: Implementation and theory. In Numerical Analysis, Proceedings of the Biennial Conference, Dundee, UK, 28 June–1 July 1977; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1978; Volume 630, pp. 105–116. [Google Scholar] [CrossRef]
- Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Sersic, L.J. Atlas de Galaxias Australes; Observatorio Astronomico: Cordoba, Spain, 1968. [Google Scholar]
- Caon, N.; Capaccioli, M.; D’Onofrio, M. On the shape of the light profiles of early-type galaxies. Mon. Not. R. Astron. Soc. 1993, 265, 1013–1021. [Google Scholar] [CrossRef]
- Méndez-Abreu, J.; Ruiz-Lara, T.; Sánchez-Menguiano, L.; de Lorenzo-Cáceres, A.; Costantin, L.; Catalán-Torrecilla, C.; Florido, E.; Aguerri, J.A.L.; Bland-Hawthorn, J.; Corsini, E.M.; et al. Two-dimensional multi-component photometric decomposition of CALIFA galaxies. Astron. Astrophys. 2017, 598, A32. [Google Scholar] [CrossRef]
- Mosenkov, A.V.; Sotnikova, N.Y.; Reshetnikov, V.P.; Bizyaev, D.V.; Kautsch, S.J. Does the stellar disc flattening depend on the galaxy type? Mon. Not. R. Astron. Soc. 2015, 451, 2376–2389. [Google Scholar] [CrossRef]
- Gargiulo, I.D.; Monachesi, A.; Gómez, F.A.; Nelson, D.; Pillepich, A.; Pakmor, R.; Grand, R.J.J.; Fragkoudi, F.; Hernquist, L.; Lovell, M.; et al. High and low Sérsic index bulges in Milky Way- and M31-like galaxies: Origin and connection to the bar with TNG50. Mon. Not. R. Astron. Soc. 2022, 512, 2537–2555. [Google Scholar] [CrossRef]
- Erwin, P. What determines the sizes of bars in spiral galaxies? Mon. Not. R. Astron. Soc. 2019, 489, 3553–3564. [Google Scholar] [CrossRef]
- Ebrová, I.; Bílek, M.; Eliášek, J. Photometric stellar masses for galaxies in DESI Legacy Imaging Surveys. arXiv 2025, arXiv:2510.02257. [Google Scholar] [CrossRef]
- Smirnov, A.A.; Sotnikova, N.Y. Is the late buckling stage inevitable in the bar life? Mon. Not. R. Astron. Soc. 2019, 485, 1900–1905. [Google Scholar] [CrossRef]
- Frankel, N.; Pillepich, A.; Rix, H.W.; Rodriguez-Gomez, V.; Sanders, J.; Bovy, J.; Kollmeier, J.; Murray, N.; Mackereth, T. Simulated Bars May Be Shorter but Are Not Slower Than Those Observed: TNG50 versus MaNGA. Astrophys. J. 2022, 940, 61. [Google Scholar] [CrossRef]
- Bundy, K.; Bershady, M.A.; Law, D.R.; Yan, R.; Drory, N.; MacDonald, N.; Wake, D.A.; Cherinka, B.; Sánchez-Gallego, J.R.; Weijmans, A.M.; et al. Overview of the SDSS-IV MaNGA Survey: Mapping nearby Galaxies at Apache Point Observatory. Astrophys. J. 2015, 798, 7. [Google Scholar] [CrossRef]
- Habibi, A.; Roshan, M.; Hosseinirad, M.; Khosroshahi, H.; Aguerri, J.A.L.; Cuomo, V.; Abbassi, S. The redshift evolution of galactic bar pattern speed in TNG50. Astron. Astrophys. 2024, 691, A122. [Google Scholar] [CrossRef]











| Parameter | EGIPS | TNG50 Bar | Bar | Bar |
|---|---|---|---|---|
| , deg | ||||
| , kpc | ||||
| , kpc | ||||
| , kpc | ||||
| Parameter | EGIPS | EGIPS (Cut) | TNG50 | Qualitive Expectations from Smirnov & Sotnikova (2018, [20]) |
|---|---|---|---|---|
Strongly negative due to
| ||||
| , kpc | Same as for but should additionally reflect the systematic trend of larger bars residing in more massive (larger) galaxies, see [64] | |||
| Positive, see Figure 16 in [20] | ||||
| Negative due to the bar growth, ideally should be independent from the bar viewing angle | ||||
| – | Positive, see Figure 16 in [20] and Figure 9 in [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Smirnov, A.; Marchuk, A.; Zozulia, V.; Sotnikova, N.; Savchenko, S. Boxy/Peanut Bulges: Comparative Analysis of EGIPS Galaxies and TNG50 Models. Galaxies 2026, 14, 4. https://doi.org/10.3390/galaxies14010004
Smirnov A, Marchuk A, Zozulia V, Sotnikova N, Savchenko S. Boxy/Peanut Bulges: Comparative Analysis of EGIPS Galaxies and TNG50 Models. Galaxies. 2026; 14(1):4. https://doi.org/10.3390/galaxies14010004
Chicago/Turabian StyleSmirnov, Anton, Alexander Marchuk, Viktor Zozulia, Natalia Sotnikova, and Sergey Savchenko. 2026. "Boxy/Peanut Bulges: Comparative Analysis of EGIPS Galaxies and TNG50 Models" Galaxies 14, no. 1: 4. https://doi.org/10.3390/galaxies14010004
APA StyleSmirnov, A., Marchuk, A., Zozulia, V., Sotnikova, N., & Savchenko, S. (2026). Boxy/Peanut Bulges: Comparative Analysis of EGIPS Galaxies and TNG50 Models. Galaxies, 14(1), 4. https://doi.org/10.3390/galaxies14010004

