Stellar Evolution Through the Red Supergiant Phase
Abstract
1. Introduction
: | O Of/WNL LBV WNL WC WO | WR |
: | O BSG LBV WNL (WNE) WC (WO) | |
: | O BSG RSG WNE WCE | |
: | O (BSG) RSG (YSG? LBV?) | RSG |
: | O/B RSG (Ceph. loop for ) RSG |
- 1
- Stars that become RSGs quickly after the end of the MS, and that undergo a blue loop before going back to the red and ending their life there;
- 2
- Stars that cross the Hertzsprung gap and remain RSGs until the end of their life;
- 3
- Stars that go to the RSG phase after the MS but evolve back to the blue and end their life there.
2. Structure Change After the Main Sequence
3. Structure and Evolution in the RSG Phase
3.1. A Structure Dominated by Convection
3.2. Radius Increase and Binary Interactions
3.3. Mass-Loss Regime
3.4. Late Stages
4. Blueward Evolution and Loops
4.1. Cepheids and Blue Loops
4.2. Blueward Excursion as the Final Evolution
5. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BH(s) | Black hole(s) |
CSM | Circumstellar medium |
HRD | Hertzsprung–Russell diagram |
ICZ | Intermediate convective zone |
IMF | Initial mass function |
MS | Main sequence |
RSG(s) | Red supergiant(s) |
SN(e) | Supernova(e) |
WR | Wolf–Rayet |
References
- Conti, P.S. On the relationship between Of and WR stars. Mem. Société R. Des Sci. Liège 1975, 9, 193. [Google Scholar]
- Chiosi, C.; Maeder, A. The evolution of massive stars with mass loss. Annu. Rev. Astron. Astrophys. 1986, 24, 329. [Google Scholar] [CrossRef]
- Podsiadlowski, P.; Joss, P.C.; Hsu, J.J.L. Presupernova evolution in massive interacting binaries. Astrophys. J. 1992, 391, 246–264. [Google Scholar] [CrossRef]
- Vanbeveren, D.; Van Bever, J.; Belkus, H. The Wolf-Rayet Population Predicted by Massive Single Star and Massive Binary Evolution. Astrophys. J. Lett. 2007, 662, L107–L110. [Google Scholar] [CrossRef]
- Eldridge, J.J.; Izzard, R.G.; Tout, C.A. The effect of massive binaries on stellar populations and supernova progenitors. Mon. Not. R. Astron. Soc. 2008, 384, 1109–1118. [Google Scholar] [CrossRef]
- Eldridge, J.J.; Stanway, E.R.; Xiao, L.; McClelland, L.A.S.; Taylor, G.; Ng, M.; Greis, S.M.L.; Bray, J.C. Binary Population and Spectral Synthesis Version 2.1: Construction, Observational Verification, and New Results. Publ. Astron. Soc. Aust. 2017, 34, e058. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, C.; Lü, G.; Li, L.; Liu, H.; Guo, S.; Yu, J.; Lu, X. The Population Synthesis of Wolf–Rayet Stars Involving Binary Merger Channels. Astrophys. J. 2024, 969, 160. [Google Scholar] [CrossRef]
- Marchant, P.; Bodensteiner, J. The Evolution of Massive Binary Stars. Annu. Rev. Astron. Astrophys. 2024, 62, 21–61. [Google Scholar] [CrossRef]
- Salpeter, E.E. The Luminosity Function and Stellar Evolution. Astrophys. J. 1955, 121, 161. [Google Scholar] [CrossRef]
- Ekström, S.; Georgy, C.; Eggenberger, P.; Meynet, G.; Mowlavi, N.; Wyttenbach, A.; Granada, A.; Decressin, T.; Hirschi, R.; Frischknecht, U.; et al. Grids of stellar models with rotation. I. Models from 0.8 to 120 M⊙ at solar metallicity (Z = 0.014). Astron. Astrophys. 2012, 537, A146. [Google Scholar] [CrossRef]
- Anderson, R.I.; Saio, H.; Ekström, S.; Georgy, C.; Meynet, G. On the effect of rotation on populations of classical Cepheids. II. Pulsation analysis for metallicities 0.014, 0.006, and 0.002. Astron. Astrophys. 2016, 591, A8. [Google Scholar] [CrossRef]
- Sandage, A.; Tammann, G.A. Steps toward the Hubble constant. II. The brightest stars in late-type spiral galaxies. Astrophys. J. 1974, 191, 603–621. [Google Scholar] [CrossRef]
- Glass, I.S. Infrared observations of late-type supergiants in the Magellanic Clouds. Mon. Not. R. Astron. Soc. 1979, 186, 317. [Google Scholar] [CrossRef]
- Jurcevic, J.S.; Pierce, M.J.; Jacoby, G.H. Period-luminosity relations for red supergiant variables—II. The distance to M101. Mon. Not. R. Astron. Soc. 2000, 313, 868. [Google Scholar] [CrossRef]
- Chatys, F.W.; Bedding, T.R.; Murphy, S.J.; Kiss, L.L.; Dobie, D.; Grindlay, J.E. The period-luminosity relation of red supergiants with Gaia DR2. Mon. Not. R. Astron. Soc. 2019, 487, 4832. [Google Scholar] [CrossRef]
- Wang, C.; Patrick, L.; Schootemeijer, A.; de Mink, S.E.; Langer, N.; Britavskiy, N.; Xu, X.T.; Bodensteiner, J.; Laplace, E.; Valli, R.; et al. Using Detailed Single-star and Binary-evolution Models to Probe the Large Observed Luminosity Spread of Red Supergiants in Young Open Star Clusters. Astrophys. J. Lett. 2025, 981, L16. [Google Scholar] [CrossRef]
- Davies, B.; Kudritzki, R.P.; Figer, D.F. The potential of red supergiants as extragalactic abundance probes at low spectral resolution. Mon. Not. R. Astron. Soc. 2010, 407, 1203. [Google Scholar] [CrossRef]
- Bergemann, M.; Kudritzki, R.P.; Plez, B.; Davies, B.; Lind, K.; Gazak, Z. Red Supergiant Stars as Cosmic Abundance Probes: NLTE Effects in J-band Iron and Titanium Lines. Astrophys. J. 2012, 751, 156. [Google Scholar] [CrossRef]
- Massey, P.; Plez, B.; Levesque, E.M.; Olsen, K.A.G.; Clayton, G.C.; Josselin, E. The Reddening of Red Supergiants: When Smoke Gets in Your Eyes. Astrophys. J. 2005, 634, 1286. [Google Scholar] [CrossRef]
- Srinivasan, S.; Boyer, M.L.; Kemper, F.; Meixner, M.; Sargent, B.A.; Riebel, D. The evolved-star dust budget of the Small Magellanic Cloud: The critical role of a few key players. Mon. Not. R. Astron. Soc. 2016, 457, 2814. [Google Scholar] [CrossRef]
- Nozawa, T.; Yoon, S.C.; Maeda, K.; Kozasa, T.; Nomoto, K.; Langer, N. Dust Production Factories in the Early Universe: Formation of Carbon Grains in Red-supergiant Winds of Very Massive Population III Stars. Astrophys. J. Lett. 2014, 787, L17. [Google Scholar] [CrossRef]
- Slavin, J.D.; Dwek, E.; Mac Low, M.M.; Hill, A.S. The Dynamics, Destruction, and Survival of Supernova-formed Dust Grains. Astrophys. J. 2020, 902, 135. [Google Scholar] [CrossRef]
- Akins, H.B.; Casey, C.M.; Allen, N.; Bagley, M.B.; Dickinson, M.; Finkelstein, S.L.; Franco, M.; Harish, S.; Arrabal Haro, P.; Ilbert, O.; et al. Two Massive, Compact, and Dust-obscured Candidate z≃8 Galaxies Discovered by JWST. Astrophys. J. 2023, 956, 61. [Google Scholar] [CrossRef]
- Yahil, A.; van den Horn, L. Why do giants puff up? Astrophys. J. 1985, 296, 554. [Google Scholar] [CrossRef]
- Applegate, J.H. Why Stars Become Red Giants. Astrophys. J. 1988, 329, 803. [Google Scholar] [CrossRef]
- Bhaskar, R.; Nigam, A. Qualitative Explanations of Red Giant Formation. Astrophys. J. 1991, 372, 592. [Google Scholar] [CrossRef]
- Padmanabhan, T. Theoretical Astrophysics, Volume 2: Stars and Stellar Systems; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Sugimoto, D.; Fujimoto, M.Y. Why Stars Become Red Giants. Astrophys. J. 2000, 538, 837. [Google Scholar] [CrossRef]
- Sibony, Y.; Georgy, C.; Ekström, S.; Meynet, G. The impact of convective criteria on the properties of massive stars. Astron. Astrophys. 2023, 680, A101. [Google Scholar] [CrossRef]
- Maeder, A.; Meynet, G. Stellar evolution with rotation. VII. Low metallicity models and the blue to red supergiant ratio in the SMC. Astron. Astrophys. 2001, 373, 555. [Google Scholar] [CrossRef]
- Ledoux, P. Stellar Models with Convection and with Discontinuity of the Mean Molecular Weight. Astrophys. J. 1947, 105, 305. [Google Scholar] [CrossRef]
- Schwarzschild, M. Structure and Evolution of the Stars; Princeton University Press: Princeton, NJ, USA, 1958. [Google Scholar]
- Farrell, E.J.; Groh, J.H.; Meynet, G.; Eldridge, J.J.; Ekström, S.; Georgy, C. SNAPSHOT: Connections between internal and surface properties of massive stars. Mon. Not. R. Astron. Soc. 2020, 495, 4659. [Google Scholar] [CrossRef]
- Humphreys, R.M.; Davidson, K. Studies of luminous stars in nearby galaxies. III—Comments on the evolution of the most massive stars in the Milky Way and the Large Magellanic Cloud. Astrophys. J. 1979, 232, 409. [Google Scholar] [CrossRef]
- Davies, B.; Crowther, P.A.; Beasor, E.R. The luminosities of cool supergiants in the Magellanic Clouds, and the Humphreys-Davidson limit revisited. Mon. Not. R. Astron. Soc. 2018, 478, 3138. [Google Scholar] [CrossRef]
- Massey, P.; Neugent, K.F.; Levesque, E.M.; Drout, M.R.; Courteau, S. The Red Supergiant Content of M31 and M33. Astron. J. 2021, 161, 79. [Google Scholar] [CrossRef]
- Eggenberger, P.; Ekström, S.; Georgy, C.; Martinet, S.; Pezzotti, C.; Nandal, D.; Meynet, G.; Buldgen, G.; Salmon, S.; Haemmerlé, L.; et al. Grids of stellar models with rotation. VI. Models from 0.8 to 120 M⊙ at a metallicity Z = 0.006. Astron. Astrophys. 2021, 652, A137. [Google Scholar] [CrossRef]
- Choi, J.; Dotter, A.; Conroy, C.; Cantiello, M.; Paxton, B.; Johnson, B.D. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled Models. Astrophys. J. 2016, 823, 102. [Google Scholar] [CrossRef]
- Iben, I., Jr. The Surface Ratio of N14 to C12 during Helium Burning. Astrophys. J. 1964, 140, 1631. [Google Scholar] [CrossRef]
- Davies, B.; Origlia, L.; Kudritzki, R.P.; Figer, D.F.; Rich, R.M.; Najarro, F.; Negueruela, I.; Clark, J.S. Chemical Abundance Patterns in the Inner Galaxy: The Scutum Red Supergiant Clusters. Astrophys. J. 2009, 696, 2014–2025. [Google Scholar] [CrossRef]
- Davies, B.; Origlia, L.; Kudritzki, R.P.; Figer, D.F.; Rich, R.M.; Najarro, F. The Chemical Abundances in the Galactic Center from the Atmospheres of Red Supergiants. Astrophys. J. 2009, 694, 46–55. [Google Scholar] [CrossRef]
- Griffiths, A.; Aloy, M.Á.; Hirschi, R.; Reichert, M.; Obergaulinger, M.; Whitehead, E.E.; Martinet, S.; Sciarini, L.; Ekström, S.; Meynet, G. Evolving massive stars to core collapse with GENEC: Extension of equation of state, opacities and effective nuclear network. Astron. Astrophys. 2025, 693, A93. [Google Scholar] [CrossRef]
- Gilliland, R.L.; Dupree, A.K. First Image of the Surface of a Star with the Hubble Space Telescope. Astrophys. J. Lett. 1996, 463, L29. [Google Scholar] [CrossRef]
- Tatebe, K.; Chandler, A.A.; Wishnow, E.H.; Hale, D.D.S.; Townes, C.H. The Nonspherical Shape of Betelgeuse in the Mid-Infrared. Astrophys. J. Lett. 2007, 670, L21. [Google Scholar] [CrossRef]
- Haubois, X.; Perrin, G.; Lacour, S.; Verhoelst, T.; Meimon, S.; Mugnier, L.; Thiébaut, E.; Berger, J.P.; Ridgway, S.T.; Monnier, J.D.; et al. Imaging the spotty surface of Betelgeuse in the H band. Astron. Astrophys. 2009, 508, 923. [Google Scholar] [CrossRef]
- Chiavassa, A.; Plez, B.; Josselin, E.; Freytag, B. Radiative hydrodynamics simulations of red supergiant stars. I. Interpretation of interferometric observations. Astron. Astrophys. 2009, 506, 1351. [Google Scholar] [CrossRef]
- Chiavassa, A.; Haubois, X.; Young, J.S.; Plez, B.; Josselin, E.; Perrin, G.; Freytag, B. Radiative hydrodynamics simulations of red supergiant stars. II. Simulations of convection on Betelgeuse match interferometric observations. Astron. Astrophys. 2010, 515, A12. [Google Scholar] [CrossRef]
- Freytag, B.; Holweger, H.; Steffen, M.; Ludwig, H.G. On the Scale of Photospheric Convection. In Proceedings of the Science with the VLT Interferometer; Paresce, F., Ed.; Springer: Berlin, Germany; New York, NY, USA, 1997; p. 316. [Google Scholar]
- Gustafsson, B.; Edvardsson, B.; Eriksson, K.; Jørgensen, U.G.; Nordlund, Å.; Plez, B. A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties. Astron. Astrophys. 2008, 486, 951. [Google Scholar] [CrossRef]
- Norris, R.P.; Baron, F.R.; Monnier, J.D.; Paladini, C.; Anderson, M.D.; Martinez, A.O.; Schaefer, G.H.; Che, X.; Chiavassa, A.; Connelley, M.S.; et al. Long Term Evolution of Surface Features on the Red Supergiant AZ Cyg. Astrophys. J. 2021, 919, 124. [Google Scholar] [CrossRef]
- Chiavassa, A.; Pasquato, E.; Jorissen, A.; Sacuto, S.; Babusiaux, C.; Freytag, B.; Ludwig, H.G.; Cruzalèbes, P.; Rabbia, Y.; Spang, A.; et al. Radiative hydrodynamic simulations of red supergiant stars. III. Spectro-photocentric variability, photometric variability, and consequences on Gaia measurements. Astron. Astrophys. 2011, 528, A120. [Google Scholar] [CrossRef]
- Chiavassa, A.; Kudritzki, R.; Davies, B.; Freytag, B.; de Mink, S.E. Probing red supergiant dynamics through photo-center displacements measured by Gaia. Astron. Astrophys. 2022, 661, L1. [Google Scholar] [CrossRef]
- Kochanek, C.S. A non-detection of red supergiant convection in Gaia. Mon. Not. R. Astron. Soc. 2023, 520, 3510. [Google Scholar] [CrossRef]
- Kiss, L.L.; Szabó, G.M.; Bedding, T.R. Variability in red supergiant stars: Pulsations, long secondary periods and convection noise. Mon. Not. R. Astron. Soc. 2006, 372, 1721–1734. [Google Scholar] [CrossRef]
- Sana, H.; de Koter, A.; de Mink, S.E.; Dunstall, P.R.; Evans, C.J.; Hénault-Brunet, V.; Maíz Apellániz, J.; Ramírez-Agudelo, O.H.; Taylor, W.D.; Walborn, N.R.; et al. The VLT-FLAMES Tarantula Survey. VIII. Multiplicity properties of the O-type star population. Astron. Astrophys. 2013, 550, A107. [Google Scholar] [CrossRef]
- Patrick, L.R.; Lennon, D.J.; Evans, C.J.; Sana, H.; Bodensteiner, J.; Britavskiy, N.; Dorda, R.; Herrero, A.; Negueruela, I.; de Koter, A. Multiplicity of the red supergiant population in the young massive cluster NGC 330. Astron. Astrophys. 2020, 635, A29. [Google Scholar] [CrossRef]
- Neugent, K.F. The Red Supergiant Binary Fraction as a Function of Metallicity in M31 and M33. Astrophys. J. 2021, 908, 87. [Google Scholar] [CrossRef]
- Dai, M.; Wang, S.; Jiang, B.; Li, Y. The Samples and Binary Fractions of Red Supergiant in M31 and M33 by the HST. arXiv 2025, arXiv:2505.24559. [Google Scholar] [CrossRef]
- Patrick, L.R.; Thilker, D.; Lennon, D.J.; Bianchi, L.; Schootemeijer, A.; Dorda, R.; Langer, N.; Negueruela, I. Red supergiant stars in binary systems. I. Identification and characterization in the small magellanic cloud from the UVIT ultraviolet imaging survey. Mon. Not. R. Astron. Soc. 2022, 513, 5847. [Google Scholar]
- Wittkowski, M.; Hauschildt, P.H.; Arroyo-Torres, B.; Marcaide, J.M. Fundamental properties and atmospheric structure of the red supergiant VY Canis Majoris based on VLTI/AMBER spectro-interferometry. Astron. Astrophys. 2012, 540, L12. [Google Scholar] [CrossRef]
- Britavskiy, N.; Lennon, D.J.; Patrick, L.R.; Evans, C.J.; Herrero, A.; Langer, N.; van Loon, J.T.; Clark, J.S.; Schneider, F.R.N.; Almeida, L.A.; et al. The VLT-FLAMES Tarantula Survey. XXX. Red stragglers in the clusters Hodge 301 and SL 639. Astron. Astrophys. 2019, 624, A128. [Google Scholar] [CrossRef]
- Podsiadlowski, P.; Joss, P.C.; Rappaport, S. A merger model for SN 1987A. Astron. Astrophys. 1990, 227, L9. [Google Scholar]
- Zapartas, E.; de Mink, S.E.; Justham, S.; Smith, N.; de Koter, A.; Renzo, M.; Arcavi, I.; Farmer, R.; Götberg, Y.; Toonen, S. The diverse lives of progenitors of hydrogen-rich core-collapse supernovae: The role of binary interaction. Astron. Astrophys. 2019, 631, A5. [Google Scholar] [CrossRef]
- Schneider, F.R.N.; Podsiadlowski, P.; Laplace, E. Pre-supernova evolution and final fate of stellar mergers and accretors of binary mass transfer. Astron. Astrophys. 2024, 686, A45. [Google Scholar] [CrossRef]
- Renzo, M.; Zapartas, E.; de Mink, S.E.; Götberg, Y.; Justham, S.; Farmer, R.J.; Izzard, R.G.; Toonen, S.; Sana, H. Massive runaway and walkaway stars. A study of the kinematical imprints of the physical processes governing the evolution and explosion of their binary progenitors. Astron. Astrophys. 2019, 624, A66. [Google Scholar] [CrossRef]
- Harper, G.M.; Brown, A.; Guinan, E.F. A New VLA-Hipparcos Distance to Betelgeuse and its Implications. Astron. J. 2008, 135, 1430. [Google Scholar] [CrossRef]
- Pantaleoni González, M.; Maíz Apellániz, J.; Barbá, R.H.; Negueruela, I. A Catalog of Galactic Multiple Systems with a Red Supergiant and a B Star. Res. Notes Am. Astron. Soc. 2020, 4, 12. [Google Scholar] [CrossRef]
- López Ariste, A.; Wavasseur, M.; Mathias, P.; Lèbre, A.; Tessore, B.; Georgiev, S. The height of convective plumes in the red supergiant μ Cep. Astron. Astrophys. 2023, 670, A62. [Google Scholar] [CrossRef]
- Smith, N.; Humphreys, R.M.; Davidson, K.; Gehrz, R.D.; Schuster, M.T.; Krautter, J. The Asymmetric Nebula Surrounding the Extreme Red Supergiant VY Canis Majoris. Astron. J. 2001, 121, 1111. [Google Scholar] [CrossRef]
- Montargès, M.; Cannon, E.; Lagadec, E.; de Koter, A.; Kervella, P.; Sanchez-Bermudez, J.; Paladini, C.; Cantalloube, F.; Decin, L.; Scicluna, P.; et al. A dusty veil shading Betelgeuse during its Great Dimming. Nature 2021, 594, 365. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, R.M.; Jones, T.J. Episodic Gaseous Outflows and Mass Loss from Red Supergiants. Astron. J. 2022, 163, 103. [Google Scholar] [CrossRef]
- Mauron, N.; Josselin, E. The mass-loss rates of red supergiants and the de Jager prescription. Astron. Astrophys. 2011, 526, A156. [Google Scholar] [CrossRef]
- Beasor, E.R.; Davies, B. The evolution of red supergiant mass-loss rates. Mon. Not. R. Astron. Soc. 2018, 475, 55. [Google Scholar] [CrossRef]
- Humphreys, R.M.; Helmel, G.; Jones, T.J.; Gordon, M.S. Exploring the Mass-loss Histories of the Red Supergiants. Astron. J. 2020, 160, 145. [Google Scholar] [CrossRef]
- Yang, M.; Bonanos, A.Z.; Jiang, B.; Zapartas, E.; Gao, J.; Ren, Y.; Lam, M.I.; Wang, T.; Maravelias, G.; Gavras, P.; et al. Evolved massive stars at low-metallicity. V. Mass-loss rate of red supergiant stars in the Small Magellanic Cloud. Astron. Astrophys. 2023, 676, A84. [Google Scholar] [CrossRef]
- Antoniadis, K.; Bonanos, A.Z.; de Wit, S.; Zapartas, E.; Munoz-Sanchez, G.; Maravelias, G. Establishing a mass-loss rate relation for red supergiants in the Large Magellanic Cloud. Astron. Astrophys. 2024, 686, A88. [Google Scholar] [CrossRef]
- Moriya, T.J. Constraining red supergiant mass-loss prescriptions through supernova radio properties. Mon. Not. R. Astron. Soc. 2021, 503, L28. [Google Scholar] [CrossRef]
- Massey, P.; Neugent, K.F.; Ekström, S.; Georgy, C.; Meynet, G. The Time-averaged Mass-loss Rates of Red Supergiants as Revealed by Their Luminosity Functions in M31 and M33. Astrophys. J. 2023, 942, 69. [Google Scholar] [CrossRef]
- Antoniadis, K.; Zapartas, E.; Bonanos, A.Z.; Maravelias, G.; Vlassis, S.; Munoz-Sanchez, G.; Nally, C.; Meixner, M.; Jones, O.C.; Lenkic, L.; et al. Investigating the metallicity dependence of the mass-loss rate relation of red supergiants. arXiv 2025. [Google Scholar] [CrossRef]
- Zapartas, E.; de Wit, S.; Antoniadis, K.; Muñoz-Sanchez, G.; Souropanis, D.; Bonanos, A.Z.; Maravelias, G.; Kovlakas, K.; Kruckow, M.U.; Fragos, T.; et al. The effect of mass loss in models of red supergiants in the Small Magellanic Cloud. Astron. Astrophys. 2025, 697, A167. [Google Scholar] [CrossRef]
- Cheng, S.J.; Goldberg, J.A.; Cantiello, M.; Bauer, E.B.; Renzo, M.; Conroy, C. A Model for Eruptive Mass Loss in Massive Stars. Astrophys. J. 2024, 974, 270. [Google Scholar] [CrossRef]
- Munoz-Sanchez, G.; de Wit, S.; Bonanos, A.Z.; Antoniadis, K.; Boutsia, K.; Boumis, P.; Christodoulou, E.; Kalitsounaki, M.; Udalski, A. Episodic mass loss in the very luminous red supergiant [W60] B90 in the Large Magellanic Cloud. Astron. Astrophys. 2024, 690, A99. [Google Scholar] [CrossRef]
- Munoz-Sanchez, G.; Kalitsounaki, M.; de Wit, S.; Antoniadis, K.; Bonanos, A.Z.; Zapartas, E.; Boutsia, K.; Christodoulou, E.; Maravelias, G.; Soszynski, I.; et al. The dramatic transition of the extreme Red Supergiant WOH G64 to a Yellow Hypergiant. arXiv 2024. [Google Scholar] [CrossRef]
- Morozova, V.; Piro, A.L.; Valenti, S. Measuring the Progenitor Masses and Dense Circumstellar Material of Type II Supernovae. Astrophys. J. 2018, 858, 15. [Google Scholar] [CrossRef]
- Davies, B.; Plez, B.; Petrault, M. Explosion imminent: The appearance of red supergiants at the point of core-collapse. Mon. Not. R. Astron. Soc. 2022, 517, 1483. [Google Scholar] [CrossRef]
- Hiramatsu, D.; Tsuna, D.; Berger, E.; Itagaki, K.; Goldberg, J.A.; Gomez, S.; De, K.; Hosseinzadeh, G.; Bostroem, K.A.; Brown, P.J.; et al. From Discovery to the First Month of the Type II Supernova 2023ixf: High and Variable Mass Loss in the Final Year before Explosion. Astrophys. J. Lett. 2023, 955, L8. [Google Scholar] [CrossRef]
- Smith, N.; Mauerhan, J.C.; Cenko, S.B.; Kasliwal, M.M.; Silverman, J.M.; Filippenko, A.V.; Gal-Yam, A.; Clubb, K.I.; Graham, M.L.; Leonard, D.C.; et al. PTF11iqb: Cool supergiant mass-loss that bridges the gap between Type IIn and normal supernovae. Mon. Not. R. Astron. Soc. 2015, 449, 1876. [Google Scholar] [CrossRef]
- Kilpatrick, C.D.; Foley, R.J.; Jacobson-Galán, W.V.; Piro, A.L.; Smartt, S.J.; Drout, M.R.; Gagliano, A.; Gall, C.; Hjorth, J.; Jones, D.O.; et al. SN 2023ixf in Messier 101: A Variable Red Supergiant as the Progenitor Candidate to a Type II Supernova. Astrophys. J. Lett. 2023, 952, L23. [Google Scholar] [CrossRef]
- Xiang, D.; Mo, J.; Wang, X.; Wang, L.; Zhang, J.; Lin, H.; Chen, L.; Song, C.; Liu, L.D.; Wang, Z.; et al. The Red Supergiant Progenitor of Type II Supernova 2024ggi. Astrophys. J. Lett. 2024, 969, L15. [Google Scholar] [CrossRef]
- Sandage, A.; Tammann, G.A. Absolute Magnitudes of Cepheids. III. Amplitude as a Function of Position in the Instability Strip: A Period-Luminosity Relation. Astrophys. J. 1971, 167, 293. [Google Scholar] [CrossRef]
- Gautschy, A.; Saio, H. Stellar Pulsations Across The HR Diagram: Part 1. Annu. Rev. Astron. Astrophys. 1995, 33, 75. [Google Scholar] [CrossRef]
- Bono, G.; Marconi, M.; Stellingwerf, R.F. Classical Cepheid Pulsation Models. I. Physical Structure. Astrophys. J. Suppl. Ser. 1999, 122, 167. [Google Scholar] [CrossRef]
- Kippenhahn, R.; Weigert, A. Stellar Structure and Evolution; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1990. [Google Scholar]
- Lauterborn, D.; Refsdal, S.; Weigert, A. Stars with Central Helium Burning and the Occurrence of Loops in the H-R Diagram. Astron. Astrophys. 1971, 10, 97. [Google Scholar]
- Fricke, K.J.; Strittmatter, P.A. Evolutionary aspects of the Cepheid stage. Mon. Not. R. Astron. Soc. 1972, 156, 129. [Google Scholar] [CrossRef]
- Schlesinger, B.M. The hydrogen profile, previous mixing, and loops in the H-R diagram during core helium burning. Astrophys. J. 1977, 212, 507–512. [Google Scholar] [CrossRef]
- Walmswell, J.J.; Tout, C.A.; Eldridge, J.J. On the blue loops of intermediate-mass stars. Mon. Not. R. Astron. Soc. 2015, 447, 2951. [Google Scholar] [CrossRef]
- Tang, J.; Bressan, A.; Rosenfield, P.; Slemer, A.; Marigo, P.; Girardi, L.; Bianchi, L. New PARSEC evolutionary tracks of massive stars at low metallicity: Testing canonical stellar evolution in nearby star-forming dwarf galaxies. Mon. Not. R. Astron. Soc. 2014, 445, 4287. [Google Scholar] [CrossRef]
- Zhao, L.; Song, H.; Meynet, G.; Maeder, A.; Ekström, S.; Zhang, R.; Qin, Y.; Qi, S.; Zhan, Q. The evolutionary properties of the blue loop under the influence of rapid rotation and low metallicity. Astron. Astrophys. 2023, 674, A92. [Google Scholar] [CrossRef]
- de Jager, C.; Nieuwenhuijzen, H.; van der Hucht, K.A. Mass loss rates in the Hertzsprung-Russell diagram. Astron. Astrophys. Suppl. Ser. 1988, 72, 259–289. [Google Scholar]
- Beasor, E.R.; Davies, B.; Smith, N.; van Loon, J.T.; Gehrz, R.D.; Figer, D.F. A new mass-loss rate prescription for red supergiants. Mon. Not. R. Astron. Soc. 2020, 492, 5994–6006. [Google Scholar] [CrossRef]
- van Loon, J.T.; Cioni, M.R.L.; Zijlstra, A.A.; Loup, C. An empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich Asymptotic Giant Branch stars. Astron. Astrophys. 2005, 438, 273–289. [Google Scholar] [CrossRef]
- Meynet, G.; Chomienne, V.; Ekström, S.; Georgy, C.; Granada, A.; Groh, J.; Maeder, A.; Eggenberger, P.; Levesque, E.; Massey, P. Impact of mass-loss on the evolution and pre-supernova properties of red supergiants. Astron. Astrophys. 2015, 575, A60. [Google Scholar] [CrossRef]
- Giannone, P. Sequences of Inhomogeneous Models for Helium-Burning Stars. Z. Astrophys. 1967, 65, 226. [Google Scholar]
- Georgy, C. Yellow supergiants as supernova progenitors: An indication of strong mass loss for red supergiants? Astron. Astrophys. 2012, 538, L8. [Google Scholar] [CrossRef]
- Beasor, E.R.; Davies, B.; Smith, N. The Impact of Realistic Red Supergiant Mass Loss on Stellar Evolution. Astrophys. J. 2021, 922, 55. [Google Scholar] [CrossRef]
- Fryer, C.L. Mass Limits For Black Hole Formation. Astrophys. J. 1999, 522, 413. [Google Scholar] [CrossRef]
- Georgy, C.; Ekström, S.; Meynet, G.; Massey, P.; Levesque, E.M.; Hirschi, R.; Eggenberger, P.; Maeder, A. Grids of stellar models with rotation. II. WR populations and supernovae/GRB progenitors at Z = 0.014. Astron. Astrophys. 2012, 542, A29. [Google Scholar] [CrossRef]
- Smartt, S.J.; Eldridge, J.J.; Crockett, R.M.; Maund, J.R. The death of massive stars—I. Observational constraints on the progenitors of Type II-P supernovae. Mon. Not. R. Astron. Soc. 2009, 395, 1409–1437. [Google Scholar] [CrossRef]
- Smartt, S.J. Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars. Publ. Astron. Soc. Aust. 2015, 32, e016. [Google Scholar] [CrossRef]
- Kochanek, C.S.; Beacom, J.F.; Kistler, M.D.; Prieto, J.L.; Stanek, K.Z.; Thompson, T.A.; Yüksel, H. A Survey About Nothing: Monitoring a Million Supergiants for Failed Supernovae. Astrophys. J. 2008, 684, 1336. [Google Scholar] [CrossRef]
- Lovegrove, E.; Woosley, S.E. Very Low Energy Supernovae from Neutrino Mass Loss. Astrophys. J. 2013, 769, 109. [Google Scholar] [CrossRef]
- Reynolds, T.M.; Fraser, M.; Gilmore, G. Gone without a bang: An archival HST survey for disappearing massive stars. Mon. Not. R. Astron. Soc. 2015, 453, 2885. [Google Scholar] [CrossRef]
- Gerke, J.R.; Kochanek, C.S.; Stanek, K.Z. The search for failed supernovae with the Large Binocular Telescope: First candidates. Mon. Not. R. Astron. Soc. 2015, 450, 3289. [Google Scholar] [CrossRef]
- Kochanek, C.S. Constraints on core collapse from the black hole mass function. Mon. Not. R. Astron. Soc. 2015, 446, 1213. [Google Scholar] [CrossRef]
- Davies, B.; Beasor, E.R. ’On the red supergiant problem’: A rebuttal, and a consensus on the upper mass cut-off for II-P progenitors. Mon. Not. R. Astron. Soc. 2020, 496, L142–L146. [Google Scholar] [CrossRef]
- Farrell, E.J.; Groh, J.H.; Meynet, G.; Eldridge, J.J. The uncertain masses of progenitors of core-collapse supernovae and direct-collapse black holes. Mon. Not. R. Astron. Soc. 2020, 494, L53. [Google Scholar] [CrossRef]
- Saio, H.; Georgy, C.; Meynet, G. Evolution of blue supergiants and α Cygni variables: Puzzling CNO surface abundances. Mon. Not. R. Astron. Soc. 2013, 433, 1246–1257. [Google Scholar] [CrossRef]
- Georgy, C.; Saio, H.; Meynet, G. The puzzle of the CNO abundances of α Cygni variables resolved by the Ledoux criterion. Mon. Not. R. Astron. Soc. 2014, 439, L6–L10. [Google Scholar] [CrossRef]
- Smith, N.; Li, W.; Filippenko, A.V.; Chornock, R. Observed fractions of core-collapse supernova types and initial masses of their single and binary progenitor stars. Mon. Not. R. Astron. Soc. 2011, 412, 1522–1538. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekström, S.; Georgy, C. Stellar Evolution Through the Red Supergiant Phase. Galaxies 2025, 13, 81. https://doi.org/10.3390/galaxies13040081
Ekström S, Georgy C. Stellar Evolution Through the Red Supergiant Phase. Galaxies. 2025; 13(4):81. https://doi.org/10.3390/galaxies13040081
Chicago/Turabian StyleEkström, Sylvia, and Cyril Georgy. 2025. "Stellar Evolution Through the Red Supergiant Phase" Galaxies 13, no. 4: 81. https://doi.org/10.3390/galaxies13040081
APA StyleEkström, S., & Georgy, C. (2025). Stellar Evolution Through the Red Supergiant Phase. Galaxies, 13(4), 81. https://doi.org/10.3390/galaxies13040081