Propagation Times and Energy Losses of Cosmic Protons and Antiprotons in Interplanetary Space
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Key Parameters of the Modulation Domain
2.2. CR Diffusion and Drift
2.3. Local Interstellar Spectra
3. Methodology
3.1. The Stochastic Method
3.2. Modeling the Time Dependence
3.3. Determination of the Heliospheric Parameters
3.4. Determination of the Transport Parameters
4. Results and Discussions
4.1. Propagation Times
4.2. Energy Losses
4.3. Particles and Antiparticles
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Potgieter, M.S. Solar Modulation of Cosmic Rays. Living Rev. Sol. Phys. 2013, 10, 3. [Google Scholar] [CrossRef]
- Cucinotta, F.A.; Alp, M.; Rowedder, B.; Kim, M.Y. Safe days in space with acceptable uncertainty from space radiation exposure. Life Sci. Space Res. 2015, 5, 31–38. [Google Scholar] [CrossRef]
- Norbury, J.W.; Whitman, K.; Lee, K.; Slaba, T.C.; Badavi, F.F. Comparison of space radiation GCR models to recent AMS data. Life Sci. Space Res. 2018, 18, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Hathaway, D.H. The Solar Cycle. Living Rev. Solar Phys. 2015, 12, 4. [Google Scholar] [CrossRef]
- Usoskin, I.G.; Kananen, H.; Mursula, K.; Tanskanen, P.; Kovaltsov, G.A. Correlative study of solar activity and cosmic ray intensity. J. Geophys. Res. Space Phys. 1998, 103, 9567. [Google Scholar] [CrossRef]
- Aguilar, M.; Ali Cavasonza, L.; Ambrosi, G.; Arruda, L.; Attig, N.; Barao, F.; Barrin, L.; Bartoloni, A.; Basegmez-du Pree, S.; Bates, J.; et al. The Alpha Magnetic Spectrometer (AMS) on the international space station: Part II — Results from the first seven years. Phys. Rep. 2021, 894, 1–116. [Google Scholar] [CrossRef]
- Aguilar, M.; Ali Cavasonza, L.; Ambrosi, G.; Arruda, L.; Attig, N.; Barao, F.; Barrin, J.; Bartolini, A.; Basegmez-du Pree, S. Periodicities in the Daily Proton Fluxes from 2011 to 2019 Measured by the Alpha Magnetic Spectrometer on the International Space Station from 1 to 100 GV. Phys. Rev. Lett. 2021, 127, 271102. [Google Scholar] [CrossRef]
- Aguilar, M.; Ali Cavasonza, L.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A. Observation of Fine Time Structures in the Cosmic Proton and Helium Fluxes with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2018, 121, 051101. [Google Scholar] [CrossRef]
- Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Boezio, M.; Bogomolov, E.A.; Bongi, M.; Bonvinci, V.; Borisov, S.; Bottai, S. Time dependence of the proton flux measured by PAMELA during the 2006 July–2009 December solar minimum. Astrophys. J. 2013, 765, 91. [Google Scholar] [CrossRef]
- Martucci, M.; Munini, R.; Boezio, M.; Di Felice, V.; Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Bongi, M.; Bonvinci, V. Proton Fluxes Measured by the PAMELA Experiment from the Minimum to the Maximum Solar Activity for Solar Cycle 24. Astrophys. J. Lett. 2018, 854, L2. [Google Scholar] [CrossRef]
- Kühl, P.; Gómez-Herrero, R.; Heber, B. Annual Cosmic Ray Spectra from 250 MeV up to 1.6 GeV from 1995–2014 Measured with the Electron Proton Helium Instrument onboard SOHO. Sol. Phys. 2016, 291, 965–974. [Google Scholar] [CrossRef]
- Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; Kim, C.; Kumazawa, T.; Kusomoto, A. Measurements of cosmic-ray proton and helium spectra from the BESS-Polar long-duration balloon flights over Antartica. Astrophys. J. 2016, 822, 65. [Google Scholar] [CrossRef]
- Shikaze, Y.; Haino, S.; Abe, K.; Fuke, H.; Hams, T.; Kim, K.C.; Makida, Y.; Matsuda, S.; Mitchell, J.W.; Moiseev, A.A.; et al. Measurements of 0.2 20 GeV/n cosmic-ray proton and helium spectra from 1997 through 2002 with the BESS spectrometer. Astropart. Phys. 2007, 28, 154–167. [Google Scholar] [CrossRef]
- Cummings, A.C.; Stone, E.C.; Heikkila, B.C.; Lal, N.; Webber, W.R.; Johannesson, G.; Moskalenko, I.V.; Orlando, E.; Porter, T.A. Galactic cosmic rays in the local interstellar medium: Voyager 1 observations and model results. Astrophys. J. 2016, 831, 18. [Google Scholar] [CrossRef]
- Engelbrecht, N.E.; Effenberger, F.; Florinski, V.; Potgieter, M.S.; Ruffolo, D.; Chhiber, R.; Usmanov, A.V.; Rankin, J.S.; Els, P.L. Theory of Cosmic Ray Transport in the Heliosphere. Space Sci. Rev. 2022, 218, 33. [Google Scholar] [CrossRef]
- Aslam, O.P.M.; Luo, X.; Potgieter, M.S.; Ngobeni, M.D.; Song, X. Unfolding Drift Effects for Cosmic Rays over the Period of the Sun’s Magnetic Field Reversal. Astrophys. J. 2023, 947, 72. [Google Scholar] [CrossRef]
- Boschini, M.J.; Della Torre, S.; Gervasi, M.; La Vacca, G.; Rancoita, P.G. Propagation of cosmic rays in heliosphere: The HELMOD model. Adv. Space Res. 2018, 62, 2859–2879. [Google Scholar] [CrossRef]
- Corti, C.; Potgieter, M.S.; Bindi, V.; Consolandi, C.; Light, C.; Palermo, M.; Popkow, A. Numerical modeling of galactic cosmic ray proton and helium observed by AMS-02 during the solar maximum of Solar Cycle 24. Astrophys. J. 2019, 871, 253. [Google Scholar] [CrossRef]
- Fiandrini, E.; Tomassetti, N.; Bertucci, B.; Donnini, F.; Graziani, M.; Khiali, B. Numerical modeling of cosmic rays in the heliosphere: Analysis of proton data from AMS-02 and PAMELA. Phys. Rev. D 2021, 104, 023012. [Google Scholar] [CrossRef]
- Manuel, R.; Ferreira, S.E.S.; Potgieter, M.S. Time-Dependent Modulation of Cosmic Rays in the Heliosphere. Sol. Phys. 2014, 289, 2207–2231. [Google Scholar] [CrossRef]
- Potgieter, M.S. The global modulation of cosmic rays during a quiet heliosphere: A modeling perspective. Adv. Space Res. 2017, 60, 848–864. [Google Scholar] [CrossRef]
- Song, X.; Luo, X.; Potgieter, M.S.; Liu, X.M.; Geng, Z. A Numerical Study of the Solar Modulation of Galactic Protons and Helium from 2006 to 2017. Astrophys. J. Suppl. Ser. 2021, 257, 48. [Google Scholar] [CrossRef]
- Tomassetti, N.; Barão, F.; Bertucci, B.; Fiandrini, E.; Orcinha, M. Numerical modeling of cosmic-ray transport in the heliosphere and interpretation of the proton-to-helium ratio in Solar Cycle 24. Adv. Space Res. 2019, 64, 2477–2489. [Google Scholar] [CrossRef]
- Tomassetti, N.; Barão, F.; Bertucci, B.; Fiandrini, E.; Figueiredo, J.L.; Lousada, J.B.; Orcinha, M. Testing Diffusion of Cosmic Rays in the Heliosphere with Proton and Helium Data from AMS. Phys. Rev. Lett. 2018, 121, 251104. [Google Scholar] [CrossRef]
- Wang, B.B.; Bi, X.J.; Fang, K.; Lin, S.; Yin, P.F. Solar modulation of cosmic proton and helium with AMS-02. arXiv 2020, arXiv:2011.12531. [Google Scholar] [CrossRef]
- Jokipii, J.R.; Parker, E.N. Energy changes of cosmic rays in the solar system. Planet. Space Sci. 1967, 15, 1375–1386. [Google Scholar] [CrossRef]
- O’Gallagher, J.J. A time-dependent diffusion-convection model for the long-term modulation of cosmic rays. Astrophys. J. 1975, 197, 495–507. Available online: http://adsabs.harvard.edu/full/1975ApJ...197..495O (accessed on 7 November 2024). [CrossRef]
- Parker, E.N. The effect of adiabatic deceleration on the cosmic rayspectrum in the solar system. Planet. Space Sci. 1966, 14, 371–380. [Google Scholar] [CrossRef]
- Moloto, K.D.; Engelbrecht, N.E.; Strauss, R.D.; Diedericks, C. The Southern African neutron monitor program: A regional network to study global cosmic ray modulation. Adv. Space Res. 2023, 72, 830–843. [Google Scholar] [CrossRef]
- Strauss, R.D.; Potgieter, M.S.; Ferreira, S.E.S. Modelling and observing Jovian electron propagation times in the inner heliosphere. Adv. Space. Res. 2013, 51, 339–349. [Google Scholar] [CrossRef]
- Strauss, R.D.; Potgieter, M.S.; Büsching, I.; Kopp, A. On the propagation times and energy losses of cosmic rays in the heliosphere. J. Geophys. Res. 2011, 116, A12105. [Google Scholar] [CrossRef]
- Vogt, A.; Engelbrecht, N.E.; Heber, B.; Kopp, A.; Herbst, K. Numerical and experimental evidence for a new interpretation of residence times in space. Astron. Astrophys. 2022, 657, A39. [Google Scholar] [CrossRef]
- Tomassetti, N.; Bertucci, B.; Donnini, F.; Graziani, M.; Fiandrini, E.; Khiali, B.; Reina Conde, A. Data driven analysis of cosmic rays in the heliosphere: Diffusion of cosmic protons. Rend. Lincei Sci. Fis. Nat. 2023, 34, 333–338. [Google Scholar] [CrossRef]
- Heber, B.; Potgieter, M.S. Cosmic Rays at High Heliolatitudes. Space Sci. Rev. 2006, 127, 117–194. [Google Scholar] [CrossRef]
- Potgieter, M.S.; Vos, E.E.; Boezio, M.; De Simone, N.; Di Felice, V.; Formato, V. Modulation of galactic protons in the heliosphere during the unusual solar minimum of 2006 to 2009. Sol. Phys. 2014, 289, 391. [Google Scholar] [CrossRef]
- Jokipii, J.R.; Kota, J. The polar heliospheric magnetic field. Geophys. Res. Lett. 1989, 16, 1. [Google Scholar] [CrossRef]
- Zank, G.P.; Matthaeus, W.H.; Bieber, J.W.; Moraal, H. The radial and latitudinal dependence of the cosmic ray diffusion tensor in the heliosphere. Grophys. Res. Lett. 1998, 103, 2085. [Google Scholar] [CrossRef]
- Teufel, A.; Schlickeiser, R. Analytic calculation of the parallel mean free path of heliospheric cosmic rays—I. Dynamical magnetic slab turbulence and random sweeping slab turbulence. Astron. Astrophys. 2002, 393, 703–715. [Google Scholar] [CrossRef]
- Giacalone, J.; Jokipii, J.R. The Transport of Cosmic Rays across a Turbulent Magnetic Field. Astrophys. J. 1999, 520, 204. [Google Scholar] [CrossRef]
- Jiang, J.; Lin, S.; Yang, L. A New Scenario of Solar Modulation Model during the Polarity Reversing. arXiv 2023, arXiv:2303.04460. [Google Scholar] [CrossRef]
- Feng, J.; Tomassetti, N.; Oliva, A. Bayesian analysis of spatial-dependent cosmic-ray propagation: Astrophysical background of antiprotons and positrons. Phys. Rev. D 2016, 94, 123007. [Google Scholar] [CrossRef]
- Tomassetti, N. Cosmic-ray protons, nuclei, electrons, and antiparticles under a two-halo scenario of diffusive propagation. Phys. Rev. D 2015, 92, 081301(R). [Google Scholar] [CrossRef]
- Tomassetti, N. Origin of the Cosmic Ray Spectral Hardening. Astrophys. J. Lett. 2012, 752, L13. [Google Scholar] [CrossRef]
- Tomassetti, N. Solar and Nuclear Physics Uncertainties in Cosmic Ray Propagation. Phys. Rev. D 2017, 96, 103005. [Google Scholar] [CrossRef]
- Tomassetti, N. Examination of uncertainties in nuclear data for cosmic ray physics with the AMS experiment. Phys. Rev. C 2015, 92, 045808. [Google Scholar] [CrossRef]
- Florinski, V.; Pogorelov, N.V. Four-dimensional transport of galactic cosmic rays in the outer heliosphere and heliosheath. Astrophys. J. 2009, 701, 642. [Google Scholar] [CrossRef]
- Kappl, R. Solarprop: Charge-sign dependent solar modulation for everyone. Comp. Phys. Comm. 2016, 207, 386–399. [Google Scholar] [CrossRef]
- Kopp, A.; Büsching, I.; Strauss, R.D.; Potgieter, M.S. A stochastic differential equation code for multidimensional Fokker–Planck type problems. Comp. Phys. Comm. 2012, 183, 530–542. [Google Scholar] [CrossRef]
- Pei, C.; Bieber, J.W.; Burger, R.A.; Clem, J. A general time-dependent stochastic method for solving Parker’s transport equation in spherical coordinates. Space Phys. 2010, 115, A1412107. [Google Scholar] [CrossRef]
- Yamada, Y.; Yanagita, S.; Yoshida, T. A stochastic view of the solar modulation phenomena of cosmic rays. Geophys. Res. Lett. 1998, 25, 2353–2356. [Google Scholar] [CrossRef]
- Zhang, M. A Markov Stochastic Process Theory of Cosmic-Ray Modulation. Astrophys. J. 1999, 513, 409–420. [Google Scholar] [CrossRef]
- Strauss, R.D.; Effenberger, F. A Hitch-hiker’s Guide to Stochastic Differential Equations. Space Sci. Rev. 2017, 212, 151–192. [Google Scholar] [CrossRef]
- Smith, C.W.; L’Heureux, H.; Ness, N.F.; Acunã, M.H.; Burlaga, L.F.; Scheifele, J. The ACE Magnetic Fields Experiment. Space Sci. Rev. 1998, 86, 613–632. [Google Scholar] [CrossRef]
- Hoeksema, J.T. The Large-Scale Structure of the Heliospheric Current Sheet During the ULYSSES Epoch. Space Sci. Rev. 1995, 72, 137–148. [Google Scholar] [CrossRef]
- Sun, X.; Hoeksema, J.T.; Liu, Y.; Zhao, J. On polar magnetic field reversal and surface flux transport during solar cycle 24. Astrophys. J. 2015, 798, 114. [Google Scholar] [CrossRef]
- Vaisanen, P.; Usoskin, I.; Mursula, K. Long-Term and Solar Cycle Variation of Galactic Cosmic Rays: Evidence for Variable Heliospheric Turbulence. JGR Space Phys. 2019, 124, 804–811. [Google Scholar] [CrossRef]
- Palmer, I.D. Transport coefficients of low-energy cosmic rays in interplanetary space. Rev. Geophys. Space Phys. 1982, 20, 335. [Google Scholar] [CrossRef]
- Potgieter, M.S.; Aslam, O.P.M.; Bisschoff, D.; Ngobeni, M.D. A Perspective on the Solar Modulation of Cosmic Anti-Matter. Physics 2021, 3, 1190–1225. [Google Scholar] [CrossRef]
- Tomassetti, N.; Orcinha, M.; Bertucci, B.; Barão, F. Evidence for a Time Lag in Solar Modulation of Galactic Cosmic Rays. Astrophys. J. Lett. 2017, 849, L32. [Google Scholar] [CrossRef]
- Koldobskiy, S.A.; Kähkönen, R.; Hofer, B.; Krivova, N.A.; Kovaltsov, G.A.; Usoskin, I.G. Time Lag Between Cosmic-Ray and Solar Variability: Sunspot Numbers and Open Solar Magnetic Flux. Sol. Phys. 2022, 297, 38. [Google Scholar] [CrossRef]
- Shen, Z.N.; Qin, G.; Pingbing, Z.; Wei, F.; Xu, X. A Study of Variations of Galactic Cosmic-Ray Intensity Based on a Hybrid Data- processing Method. Astrophys. J. 2020, 900, 143. [Google Scholar] [CrossRef]
- Tomassetti, N.; Bertucci, B.; Fiandrini, F. Temporal evolution and rigidity dependence of the solar modulation lag of Galactic cosmic rays. Phys. Rev. D 2022, 106, 103022. [Google Scholar] [CrossRef]
- Langner, U.W.; Potgieter, M.S.; Fichtner, H.; Borrmann, T. Modulation of anomalous protons: Effects of different solar wind speed profiles in the heliosheath. J. Geophys. Res. 2006, 111, 01106. [Google Scholar] [CrossRef]
- Boschini, M.J.; Della Torre, S.; Gervasi, M.; La Vacca, G.; Rancoita, P.G. The HelMod Model in the Works for Inner and Outer Heliosphere: From AMS to Voyager Probes Observations. Adv. Space Res. 2019, 64, 2459–2476. [Google Scholar] [CrossRef]
- Dialynas, K.; Krimigis, S.M.; Mitchell, D.G.; Decker, R.B.; Roelof, E.C. The bubble-like shape of the heliosphere observed by Voyager and Cassini. Nat. Astron. 2017, 1, 0115. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, K.; Shi, Q.; Tian, A.; Yao, F. The Shape of the Heliosphere Derived from the IBEX Ribbon. Astrophys. J. Lett. 2024, 977, L39. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomassetti, N.; Bertucci, B.; Fiandrini, E.; Khiali, B. Propagation Times and Energy Losses of Cosmic Protons and Antiprotons in Interplanetary Space. Galaxies 2025, 13, 23. https://doi.org/10.3390/galaxies13020023
Tomassetti N, Bertucci B, Fiandrini E, Khiali B. Propagation Times and Energy Losses of Cosmic Protons and Antiprotons in Interplanetary Space. Galaxies. 2025; 13(2):23. https://doi.org/10.3390/galaxies13020023
Chicago/Turabian StyleTomassetti, Nicola, Bruna Bertucci, Emanuele Fiandrini, and Behrouz Khiali. 2025. "Propagation Times and Energy Losses of Cosmic Protons and Antiprotons in Interplanetary Space" Galaxies 13, no. 2: 23. https://doi.org/10.3390/galaxies13020023
APA StyleTomassetti, N., Bertucci, B., Fiandrini, E., & Khiali, B. (2025). Propagation Times and Energy Losses of Cosmic Protons and Antiprotons in Interplanetary Space. Galaxies, 13(2), 23. https://doi.org/10.3390/galaxies13020023