Orbital Precession in Janis–Newman–Winicour Spacetime
Abstract
:1. Introduction
2. Geodesic Motion in JNW Spacetime
2.1. Massive Particle Motion:
2.2. Massless Particle Motion:
3. Orbital Precession
4. Epicyclic Precession
5. Constraining Mass and Range of ‘’ from Twin-Peak QPOs
5.1. A Detailed Analysis of Monte Carlo Markov Chain (MCMC)
5.2. Results of MCMC Simulation
6. Conclusions
- In the initial stages of our investigation, we focused on the circular motion of a massive particle in the JNW spacetime. To streamline our analysis, we initially disregarded the potential interaction between the massive particle and an external scalar field. It is noteworthy that the JNW spacetime is characterized by two key parameters, namely, the mass, represented by M, and the scalar parameter, denoted as n. Our examination specifically concentrated on the motion of the particle within the equatorial plane, and determined how the ISCO position depends on those two parameters. Intriguingly, our investigation shows that the ISCO position of the test particle increases up to a specific value of the scalar field parameter initially. There is an ascent in this position as it attains a specific value; however, beyond this critical threshold, a subsequent decline occurs for larger values of the scalar field parameter. This is one of main differences of the JNW spacetime from the Schwarzschild one.
- Using a null geodesic equation, we consider photon motion orbiting the gravitational compact object described by the JNW metric. We have derived the analytical expressions for the radii of the photon sphere and shadow of the object in terms of the scalar field parameter. In the JNW spacetime, an intriguing phenomenon unfolds as the photon sphere undergoes expansion, even as the shadow it casts diminishes in size. This captivating occurrence can be attributed to the influence of the external scalar field, adding an additional layer of complexity to the interplay of forces within this unique spacetime framework. We have demonstrated that the gravitational bending of light rays around a compact object, as characterized by the JNW spacetime, remains unaffected by variations in the scalar field parameter. Remarkably, the expression for the deflection angle of light remains consistent with predictions made by general relativity.
- The perihelion precession for a massive particle orbiting around a gravitational object has been extensively investigated. The explicit formulation describing the trajectory of a test particle orbiting a central object within the context of JNW spacetime has been derived. An in-depth analysis of the relationship between the shape of the trajectory of a massive particle and its eccentricity has been explicitly conducted. It has been revealed that as the eccentricity increases, the perihelion of the particle approaches the central object. This study establishes that the particle follows an elliptic trajectory around the gravitational object, yet uniquely experiences a perihelion shift with each orbit, a phenomenon initially predicted by the general theory of relativity. Furthermore, it is demonstrated that the perihelion shift of the massive particle can be expressed in terms of the specific energy of the particle in the JNW spacetime unlike in the Schwarzschild spacetime. However, this mathematical representation does not provide insights into the perihelion shift of a particle orbiting a gravitational object.
- Finally, we have studied the oscillatory motion of a massive particle in the JNW spacetime; in particular, we have derived an equation for the orbital and epicyclic motion of the test particle. Using the perturbation method, we obtained a linear oscillator equation for the radial and angular displacement near the stable orbit. We have derived the exact analytical expressions for the epicyclic frequencies of the oscillations along the radial and vertical directions. In order to constrain the parameters in the JNW spacetime with observations, we used a promising statistical method, the so-called MCMC analysis.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pound, R.V.; Snider, J.L. Effect of Gravity on Nuclear Resonance. Phys. Rev. Lett. 1964, 13, 539–540. [Google Scholar] [CrossRef]
- Einstein, A. Lens-Like Action of a Star by the Deviation of Light in the Gravitational Field. Science 1936, 84, 506–507. [Google Scholar] [CrossRef] [PubMed]
- Clemence, G.M. The Relativity Effect in Planetary Motions. Rev. Mod. Phys. 1947, 19, 361–364. [Google Scholar] [CrossRef]
- Janis, A.I.; Newman, E.T.; Winicour, J. Reality of the Schwarzschild Singularity. Phys. Rev. Lett. 1968, 20, 878–880. [Google Scholar] [CrossRef]
- Pal, K.; Pal, K.; Shaikh, R.; Sarkar, T. A rotating modified JNW spacetime as a Kerr black hole mimicker. arXiv 2023, arXiv:2305.07518. [Google Scholar] [CrossRef]
- Patel, V.; Acharya, K.; Bambhaniya, P.; Joshi, P.S. Energy extraction from Janis-Newman-Winicour naked singularity. Phys. Rev. D 2023, 107, 064036. [Google Scholar] [CrossRef]
- Pal, K.; Pal, K.; Roy, P.; Sarkar, T. Regularizing the JNW and JMN naked singularities. Eur. Phys. J. C 2023, 83, 397. [Google Scholar] [CrossRef]
- Chauvineau, B. Lensing by a Fisher-Janis-Newman-Winicour naked singularity: Observational issues related to the existence of caustic bending in the strongly scalarized case. Phys. Rev. D 2022, 105, 024071, Erratum in Phys. Rev. D 2022, 106, 129901. [Google Scholar] [CrossRef]
- Solanki, D.N.; Bambhaniya, P.; Dey, D.; Joshi, P.S.; Pathak, K.N. Shadows and precession of orbits in rotating Janis–Newman–Winicour spacetime. Eur. Phys. J. C 2022, 82, 77. [Google Scholar] [CrossRef]
- Aratore, F.; Bozza, V. Decoding a black hole metric from the interferometric pattern of the relativistic images of a compact source. J. Cosmol. Astropart. Phys. 2021, 10, 054. [Google Scholar] [CrossRef]
- Babar, G.Z.; Atamurotov, F.; Babar, A.Z.; Lim, Y.K. Retrolensing by a spherically symmetric naked singularity. arXiv 2021, arXiv:2104.01340. [Google Scholar]
- Chowdhury, A.; Banerjee, N. Echoes from a singularity. Phys. Rev. D 2020, 102, 124051. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, X. Quantum geometry and effective dynamics of Janis-Newman-Winicour singularities. Phys. Rev. D 2020, 101, 086002. [Google Scholar] [CrossRef]
- Joshi, A.B.; Bambhaniya, P.; Dey, D.; Joshi, P.S. Timelike Geodesics in Naked Singularity and Black Hole Spacetimes II. arXiv 2019, arXiv:1909.08873. [Google Scholar]
- Liu, H.; Zhou, M.; Bambi, C. Distinguishing black holes and naked singularities with iron line spectroscopy. J. Cosmol. Astropart. Phys. 2018, 2018, 044. [Google Scholar] [CrossRef]
- Chakrabarty, H.; Benavides-Gallego, C.A.; Bambi, C.; Modesto, L. Unattainable extended spacetime regions in conformal gravity. J. High Energy Phys. 2018, 2018, 13. [Google Scholar] [CrossRef]
- Karmakar, T.; Sarkar, T. Distinguishing between Kerr and rotating JNW space-times via frame dragging and tidal effects. Gen. Rel. Grav. 2018, 50, 85. [Google Scholar] [CrossRef]
- Ghosh, S.; Sarkar, T.; Bhadra, A. Newtonian analogue of static general relativistic spacetimes: An extension to naked singularities. Phys. Rev. D 2015, 92, 083010. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, R.; Chen, J.; Wang, Y. Geodesic Structure of Janis-Newman-Winicour Space-time. Int. J. Theor. Phys. 2015, 54, 2905–2920. [Google Scholar] [CrossRef]
- Dey, A.; Roy, P.; Sarkar, T. Scalar Radiation in the Background of a Naked Singularity. arXiv 2013, arXiv:1303.6824. [Google Scholar]
- Chowdhury, A.N.; Patil, M.; Malafarina, D.; Joshi, P.S. Circular geodesics and accretion disks in Janis-Newman-Winicour and Gamma metric. Phys. Rev. D 2012, 85, 104031. [Google Scholar] [CrossRef]
- Patil, M.; Joshi, P.S. Acceleration of particles in Janis-Newman-Winicour singularities. Phys. Rev. D 2012, 85, 104014. [Google Scholar] [CrossRef]
- Dey, T.K.; Sen, S. Gravitational lensing by wormholes. Mod. Phys. Lett. A 2008, 23, 953–962. [Google Scholar] [CrossRef]
- Chen, D.; Chen, Y.; Wang, P.; Wu, T.; Wu, H. Gravitational lensing by transparent Janis–Newman–Winicour naked singularities. Eur. Phys. J. C 2024, 84, 584. [Google Scholar] [CrossRef]
- Alvarez, E.; Anero, J. Quantum gravity in JNW spacetime. arXiv 2023, arXiv:2309.14750. [Google Scholar]
- Chen, Y.; Wang, P.; Yang, H. Observations of Orbiting Hot Spots around Naked Singularities. arXiv 2023, arXiv:2309.04157. [Google Scholar] [CrossRef]
- Ghaffarnejad, H.; Faghani, H.R. Particles creation from JNW quantum perturbed black holes by minimally coupled Klein Gordon scalar free fields. J. Cosmol. Astropart. Phys. 2023, 11, 10. [Google Scholar] [CrossRef]
- Izmailov, R.N.; Karimov, R.K.; Potapov, A.A.; Nandi, K.K. Vacuum Brans-Dicke theory in the Jordan and Einstein frames: Can they be distinguished by lensing? Mod. Phys. Lett. A 2020, 35, 2050308. [Google Scholar] [CrossRef]
- Nandi, K.K.; Bhattacharjee, B.; Alam, S.M.K.; Evans, J. Brans-Dicke wormholes in the Jordan and Einstein frames. Phys. Rev. D 1998, 57, 823–828. [Google Scholar] [CrossRef]
- Nandi, K.K.; Zhang, Y.Z. Traversable Lorentzian wormholes in the vacuum low energy effective string theory in Einstein and Jordan frames. Phys. Rev. D 2004, 70, 044040. [Google Scholar] [CrossRef]
- Liao, P.; Chen, J.; Huang, H.; Wang, Y. Absorption and scattering of scalar wave by naked singularity. Gen. Rel. Grav. 2014, 46, 1752. [Google Scholar] [CrossRef]
- Babar, G.Z.; Babar, A.Z.; Lim, Y.K. Periodic orbits around a spherically symmetric naked singularity. Phys. Rev. D 2017, 96, 084052. [Google Scholar] [CrossRef]
- Jusufi, K.; Banerjee, A.; Gyulchev, G.; Amir, M. Distinguishing rotating naked singularities from Kerr-like wormholes by their deflection angles of massive particles. Eur. Phys. J. C 2019, 79, 28. [Google Scholar] [CrossRef]
- Virbhadra, K.S. Janis-Newman-Winicour and Wyman solutions are the same. Int. J. Mod. Phys. A 1997, 12, 4831–4836. [Google Scholar] [CrossRef]
- Deng, X.M. Periodic orbits around brane-world black holes. Eur. Phys. J. C 2020, 80, 489. [Google Scholar] [CrossRef]
- Lin, H.Y.; Deng, X.M. Rational orbits around 4 Einstein–Lovelock black holes. Phys. Dark Universe 2021, 31, 100745. [Google Scholar] [CrossRef]
- Gao, B.; Deng, X.M. Dynamics of charged test particles around quantum-corrected Schwarzschild black holes. Eur. Phys. J. C 2021, 81, 983. [Google Scholar] [CrossRef]
- Gao, B.; Deng, X.M. Bound orbits around modified Hayward black holes. Mod. Phys. Lett. A 2021, 36, 2150237. [Google Scholar] [CrossRef]
- Lin, H.Y.; Deng, X.M. Precessing and periodic orbits around Lee–Wick black holes. Eur. Phys. J. Plus 2022, 137, 176. [Google Scholar] [CrossRef]
- Lin, H.Y.; Deng, X.M. Bound Orbits and Epicyclic Motions around Renormalization Group Improved Schwarzschild Black Holes. Universe 2022, 8, 278. [Google Scholar] [CrossRef]
- Lin, H.Y.; Deng, X.M. Precessing and periodic orbits around hairy black holes in Horndeski’s Theory. Eur. Phys. J. C 2023, 83, 311. [Google Scholar] [CrossRef]
- Lin, H.Y.; Deng, X.M. Dynamics of test particles around hairy black holes in Horndeski’s theory. Ann. Phys. 2023, 455, 169360. [Google Scholar] [CrossRef]
- Huang, L.; Deng, X.M. Can a particle’s motion distinguish scale-dependent Planck stars from renormalization group improved Schwarzschild black holes? Phys. Rev. D 2024, 109, 124005. [Google Scholar] [CrossRef]
- Huang, L.; Deng, X.M. On the (un)testability of the general free scalar–tensor gravity for the Solar System tests. Eur. Phys. J. C 2024, 84, 615. [Google Scholar] [CrossRef]
- Papapetrou, A. Eine Theorie des Gravitationsfeldes mit einer Feldfunktion. Z. Phys. 1954, 139, 518–532. [Google Scholar] [CrossRef]
- Turimov, B.; Turaev, Y.; Ahmedov, B.; Stuchlík, Z. Circular motion of test particles around wormhole represented by exponential metric. Phys. Dark Universe 2022, 35, 100946. [Google Scholar] [CrossRef]
- Zipoy, D.M. Topology of Some Spheroidal Metrics. J. Math. Phys. 1966, 7, 1137–1143. [Google Scholar] [CrossRef]
- Voorhees, B.H. Static Axially Symmetric Gravitational Fields. Phys. Rev. D 1970, 2, 2119–2122. [Google Scholar] [CrossRef]
- Turimov, B.; Ahmedov, B. Observable Properties of Thin Accretion Disk in the γ Spacetime. Symmetry 2023, 15, 1858. [Google Scholar] [CrossRef]
- Bisnovatyi-Kogan, G.S.; Tsupko, O.Y. Gravitational lensing in a non-uniform plasma. Mon. Not. R. Astron. Soc. 2010, 404, 1790–1800. [Google Scholar] [CrossRef]
- Turimov, B.; Rahimov, O. The Orbital and Epicyclic Frequencies in Axially Symmetric and Stationary Spacetime. Universe 2022, 8, 507. [Google Scholar] [CrossRef]
- Ghez, A.M.; Salim, S.; Weinberg, N.N.; Lu, J.R.; Do, T.; Dunn, J.K.; Matthews, K.; Morris, M.R.; Yelda, S.; Becklin, E.E.; et al. Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits. Astrophys. J. 2008, 689, 1044–1062. [Google Scholar] [CrossRef]
- Stuchlík, Z.; Kološ, M. Mass of intermediate black hole in the source M82 X-1 restricted by models of twin high-frequency quasi-periodic oscillations. Mon. Not. R. Astron. Soc. 2015, 451, 2575–2588. [Google Scholar] [CrossRef]
- Strohmayer, T.E. Discovery of a 450 HZ Quasi-periodic Oscillation from the Microquasar GRO J1655-40 with the Rossi X-Ray Timing Explorer. Astrophys. J. 2001, 552, L49–L53. [Google Scholar] [CrossRef]
- Foreman-Mackey, D.; Hogg, D.W.; Lang, D.; Goodman, J. emcee: The MCMC Hammer. Publ. Astron. Soc. Pac. 2013, 125, 306. [Google Scholar] [CrossRef]
- Mitra, S.; Vrba, J.; Rayimbaev, J.; Stuchlik, Z.; Ahmedov, B. Charged particles and quasiperiodic oscillations in Black–bounce–Reissner–Nordström geometry in braneworlds. Phys. Dark Universe 2024, 46, 101561. [Google Scholar] [CrossRef]
Source (a) | [Hz] | [Hz] | [Hz] | [Hz] | Mass (b) [ ] |
---|---|---|---|---|---|
GRO J1655–40 (sMBH) | 441 | ±2 | 298 | ±4 | |
Sgr A* (SMBH) | 1.445 | mHz | 0.886 | mHz | (4.1 ± 0.6) |
M82-X1 (IMBH) | 3.32 | ±0.06 | 5.07 | ±0.06 |
Parameter | GRO J1655-40 | Sgr-A* | M82-X1 | |||
---|---|---|---|---|---|---|
0.16 | 0.012 | 414 | 5.19 | |||
n | 0.70 | 0.05 | 0.675 | 0.03 | 0.16 | |
0.17 | 0.07 | 0.17 |
Parameter | GRO J1655-40 | Sgr-A* | M82-X1 |
---|---|---|---|
n | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turimov, B.; Karshiboev, K.; Abdujabbarov, A.; Mitra, S.; Karshiboev, S. Orbital Precession in Janis–Newman–Winicour Spacetime. Galaxies 2024, 12, 58. https://doi.org/10.3390/galaxies12050058
Turimov B, Karshiboev K, Abdujabbarov A, Mitra S, Karshiboev S. Orbital Precession in Janis–Newman–Winicour Spacetime. Galaxies. 2024; 12(5):58. https://doi.org/10.3390/galaxies12050058
Chicago/Turabian StyleTurimov, Bobur, Khurshid Karshiboev, Ahmadjon Abdujabbarov, Samik Mitra, and Shavkat Karshiboev. 2024. "Orbital Precession in Janis–Newman–Winicour Spacetime" Galaxies 12, no. 5: 58. https://doi.org/10.3390/galaxies12050058
APA StyleTurimov, B., Karshiboev, K., Abdujabbarov, A., Mitra, S., & Karshiboev, S. (2024). Orbital Precession in Janis–Newman–Winicour Spacetime. Galaxies, 12(5), 58. https://doi.org/10.3390/galaxies12050058