Central Engine and Spectral Energy Distribution Properties of High Redshift Gamma Ray Blazars
Abstract
:1. Introduction
2. High-z Blazars
3. Data Set
- 4LAC-DR3 Blazars Catalog: The fourth catalog of AGNs detected by the Fermi-LAT (4LAC), derived from the third data release (DR3) of the 4FGL catalog based on 12 years of -ray data in the energy range above 50 MeV, provides measurements of spectral parameters, SEDs, yearly light curves, and associations for all sources [54,55]. We consider both low and high Galactic latitude sources of blazar type (i.e., BL Lacs, FSRQs, and Blazar Candidates of Uncertain types (BCUs)). Out of 3743 blazar-type sources, only 1811 have redshift measurements. Among 1811 blazars with known z, there are 875 BL Lacs, 792 FSRQs and 144 BCUs.
- Blazar Central Engines Catalog: The central engine properties like black hole mass () and accretion disk luminosity () have been reported in literature [56] for 674 emission line blazars and 346 absorption line blazars observed with the Fermi-LAT. For these 1030 blazars, the values of and are derived using optical spectroscopic line features reported either in the 16th data release of the Sloan Digital Sky Survey (SDSS-DR16) [57]) or from the NASA/IPAC Extragalactic Database (NED) (https://ned.ipac.caltech.edu/, accessed on 6 March 2024) and SIMBAD Astronomical Databases (http://simbad.cfa.harvard.edu/simbad/, accessed on 6 March 2024). It is important to note that since values are derived from the scaling relations with line features, high correlations are expected between and . In our present study, we have ignored 4 blazars whose values are unusually low ( erg ).
- Blazar Emission Regions Catalog: Recently, Fan et al. (2023) [58] have studied the properties of emission zones using the SED fitting results of more than 2700 blazars reported in [59]. This large sample contains 1791 sources with known z (750 FSRQs, 843 BL Lacs and 198 BCUs). The catalog reports derived values of the magnetic field (B) in the emission region, energy density of electrons () and magnetic field energy density () from the SED fitting. For such blazars, we have collected the luminosities of -ray at 1 GeV (log ), X-ray at 1 keV (log ), optical at 2.43 Hz (log ) and radio at 1.4 GHz (log ) from [60].
4. Results and Discussion
4.1. Redshift Distribution
4.2. -ray Spectral Features
4.3. Luminosity Features
4.4. Broadband SED Properties
4.5. Central Engine Properties
4.6. Dynamics of Growth of SMBHs
4.7. Properties of Emission Region
5. Summary
- Redshift distribution study of 4 LAC-DR3 blazars catalog suggests that the FSRQs dominate the high-z blazar population with 62% composition followed by BL Lacs and BCUs with 30% and 8% compositions, respectively. However, in the low-z regime, BL Lacs dominate the total blazar population with 80% composition and FSRQs (13%) along with BCUs (7%) being the minority. The reasons for these anomalies are likely due to observational biases and/or due to hypothesized cosmic blazar evolution theories.
- Observed Fermi-LAT photon spectra for the high redshift blazars are found to be softer with higher curvature compared to low redshift blazars. The histograms of PL index (), LP slope at 1 GeV/(1 + z) () and LP curvature () roughly follow Gaussian distributions with values of , and for high (low) redshift blazars. Also, , and exhibit a positive correlation with log (1 + z). This is likely due to the fact that high-z blazars suffer more EBL attenuation of HE and VHE photons, leading to softer -ray spectra than low-z blazars. Also, different spectral shapes of the underlying energy distribution of emitting particles in low and high-z blazars contribute to the observed Fermi-LAT -ray spectral features.
- Observationally, high-z blazars are the most luminous objects in the -ray Universe. The mean ray, X-ray, optical and radio luminosities (in ) of high (low) redshift blazars are estimated as , , and , respectively. These luminosities have a strong positive correlation with the luminosity distance () with functional dependencies of , , and .
- The investigation of broadband SED properties reveals that a major fraction of high-z blazars are LSP objects. Their HE hump peaks at MeV energies and they have higher Compton dominance than low-z blazars. The logarithmic histogram distributions of rest frame synchrotron peak frequency (), rest frame IC peak frequency (), and Compton dominance (CD) roughly follow a Gaussian profile with values of log , log and log for high (low) redshift blazars. Also, the Pearson correlation study indicates that log and log are in anti-correlation with with log (1 + z). log CD shows a strong positive correlation with log (1 + z). This is in accordance with the blazar sequence. High-z blazars, mostly being FSRQs, are intrinsically more luminous and therefore have high Compton dominance.
- The SMBH mass distribution study of the blazar central black holes suggests that the average mass of SMBHs for high and low-z blazars is the same with . Low-z blazars show a weak anti-correlation with log (1 + z) whereas high-z blazars have a mild positive correlation with log (1 + z). Also, the average accretion disk luminosity and Eddington ratio of high (low) redshift blazars are , with both the parameters showing a positive correlation with log (1 + z).
- We also estimated the masses of black hole seed () required for the formation of currently observed SMBHs in blazars using simple exponential growth theory for the formation of SMBHs from the black hole seed via the accretion process. With and currently observed constant , it is found that 26% (69%) of the total blazar population requires more massive seed progenitors than what the direct collapse models or stellar dynamical processes predict. This implies that low accretion efficiencies and high (sometimes super Eddington) episodes are required to explain the growth of observed SMBHs. It is also noticed that most of the BL Lacs (75% and 92% for = 0.1 and 0.3, respectively) are required to have higher than currently observed to explain the growth of their SMBHs. Therefore, BL Lacs should have had radiatively efficient accretion disk (FSRQ phase) during their lifetime before evolving into BL Lacs having radiatively inefficient accretion disk.
- According to the single zone leptonic emission model, emission zones of high (low) redshift blazars are required to have magnetic fields G and electron energy distributions with values (6.17 ) to explain their broadband SEDs. They are broadly in agreement with the widely used blazar emission models. High-z blazars (mostly FSRQs) contain low-energy photon-rich environments and relativistic electrons quickly lose their energies through IC scattering. Therefore, their distribution has low . On the other hand, low-z blazars (mostly BL Lacs) have a low-energy photon-starved environment surrounding them and relativistic electrons can attain higher . This also contributes to the observed distribution of synchrotron and IC peak frequencies in blazar SEDs.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Urry, C.M.; Padovani, P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803. [Google Scholar] [CrossRef]
- Padovani, P.; Alexander, D.M.; Assef, R.J.; Marco, B.D.; Giommi, P.; Hickox, R.C.; Richards, G.T.; Smolcic, V.; Hatziminaoglou, E.; Mainieri, V.; et al. Active galactic nuclei: What’s in a name? Annu. Rev. Astron. Astrophys. 2017, 25, 2. [Google Scholar] [CrossRef]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef]
- Blandford, R.D.; Payne, D.G. Hydromagnetic flows from accretion disks and the production of radio jets. Mon. Not. R. Astron. Soc. 1982, 199, 883–903. [Google Scholar] [CrossRef]
- Maraschi, L.; Tavecchio, F. The Jet-Disk Connection and Blazar Unification. Astrophys. J. 2003, 594, 667–675. [Google Scholar] [CrossRef]
- Ghisellini, G.; Tavecchio, F.; Foschini, L.; Ghirlanda, G. The transition between BL Lac objects and flat spectrum radio quasars. Mon. Not. R. Astron. Soc. 2011, 414, 2674–2689. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Zhang, X.; Zhang, H.J.; Yu, X.L. Core-dominance parameter, black hole mass and jet-disc connection for Fermi blazars. Mon. Not. R. Astron. Soc. 2015, 451, 4193–4206. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Fan, J. Classification and Jet Power of Fermi Blazars. Astrophys. J. 2003, 594, 667–675. [Google Scholar] [CrossRef]
- Meier, D.L. A Magnetically Switched, Rotating Black Hole Model for the Production of Extragalactic Radio Jets and the Fanaroff and Riley Class Division. Astrophys. J. 1999, 522, 753–766. [Google Scholar] [CrossRef]
- Komissarov, S.; Porth, O. Numerical simulations of jets. New Astron. Rev. 2021, 92, 101610. [Google Scholar] [CrossRef]
- Wagner, S.J.; Witzel, A. Intraday Variability In Quasars and BL Lac Objects. Annu. Rev. Astron. Astrophys. 1995, 33, 163–198. [Google Scholar] [CrossRef]
- Giommi, P.; Perri, M.; Capalbi, M.; D’Elia, V.; de Almeida, U.B.; Brandt, C.H.; Pollock, A.M.T.; Arneodo, F.; Giovanni, A.D.; Chang, Y.L.; et al. X-ray spectra, light curves and SEDs of blazars frequently observed by Swift. Mon. Not. R. Astron. Soc. 2021, 507, 5690–5702. [Google Scholar] [CrossRef]
- Lister, M.L.; Homan, D.C.; Hovatta, T.; Kellermann, K.I.; Kiehlmann, S.; Max-Moerbeck, W.; Pushkarev, A.B.; Readhead, A.C.S.; Ros, E.; Kovalev, Y.Y.; et al. MOJAVE. XVII. Jet Kinematics and Parent Population Properties of Relativistically Beamed Radio-loud Blazars. Astrophys. J. 2019, 874, 43. [Google Scholar] [CrossRef]
- Weaver, Z.R.; Williamson, K.E.; Jorstad, S.G.; Marscher, A.P.; Larionov, V.M.; Raiteri, C.M.; Villata, M.; Acosta-Pulido, J.A.; Bachev, R.; Baida, G.V.; et al. Multiwavelength Variability of BL Lacertae Measured with High Time Resolution. Astrophys. J. 2020, 900, 137. [Google Scholar] [CrossRef]
- Shukla, A.; Mannheim, K. Gamma-ray flares from relativistic magnetic reconnection in the jet of the quasar 3C 279. Nat. Commun. 2020, 11, 4176. [Google Scholar] [CrossRef]
- Singh, K.K.; Meintjes, P.J. Characterization of variability in blazar light curves. Astron. Not. 2020, 341, 713–725. [Google Scholar] [CrossRef]
- Singh, K.K.; Meintjes, P.J.; Bisschoff, B.; Ramamonjisoa, F.A.; van Soelen, B. Gamma-ray and optical properties of the flat spectrum radio quasar 3C 279 flare in June 2015. J. High Energy Astrophys. 2020, 26, 65–76. [Google Scholar] [CrossRef]
- Tolamatti, A.; Ghosal, B.; Singh, K.K.; Bhattacharyya, S.; Bhatt, N.; Yadav, K.K.; Chandra, P.; Das, M.P.; Tickoo, A.K.; Rannot, R.C.; et al. Long-term multi-wavelength study of temporal and spectral properties of 3C 279. Astropart. Phys. 2022, 139, 102687. [Google Scholar] [CrossRef]
- Singh, K.K.; Tolamatti, A.; Godiyal, S.; Pathania, A.; Yadav, K.K. A Machine Learning Approach for Predicting Black Hole Mass in Blazars Using Broadband Emission Model Parameters. Universe 2022, 8, 539. [Google Scholar] [CrossRef]
- Marscher, A.P.; Gear, W.K. Models for high-frequency radio outbursts in extragalactic sources, with application to the early 1983 millimeter-to-infrared flare of 3C 273. Astrophys. J. 1985, 298, 114–127. [Google Scholar] [CrossRef]
- Sikora, M.; Begelman, M.C.; Rees, M.J. Comptonization of Diffuse Ambient Radiation by a Relativistic Jet: The Source of Gamma Rays from Blazars? Astrophys. J. 1994, 421, 153. [Google Scholar] [CrossRef]
- Ghisellini, G.; Tavecchio, F. Canonical high-power blazars. Mon. Not. R. Astron. Soc. 2009, 397, 985–1002. [Google Scholar] [CrossRef]
- Aharonian, F.A. TeV gamma rays from BL Lac objects due to synchrotron radiation of extremely high energy protons. New Astron. 2000, 5, 377–395. [Google Scholar] [CrossRef]
- Bottcher, M.; Reimer, A.; Sweeney, K.; Prakash, A. Leptonic and Hadronic Modeling of Fermi-detected Blazars. Astrophys. J. 2013, 768, 54. [Google Scholar] [CrossRef]
- Petropoulou, M.; Dimitrakoudis, S. Constraints of flat spectrum radio quasars in the hadronic model: The case of 3C 273. Mon. Not. R. Astron. Soc. 2015, 452, 1303–1315. [Google Scholar] [CrossRef]
- Stickel, M.; Padovani, P.; Urry, C.M.; Fried, J.W.; Kuehr, H. The Complete Sample of 1 Jansky BL Lacertae Objects. I. Summary Properties. Astrophys. J. 1991, 374, 431. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Agudo, I.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; et al. The Spectral Energy Distribution of Fermi Bright Blazars. Astrophys. J. 2010, 716, 30–70. [Google Scholar] [CrossRef]
- Padovani, P.; Giommi, P.; Rau, A. The discovery of high-power high synchrotron peak blazars. Mon. Not. R. Astron. Soc. 2012, 422, L48–L52. [Google Scholar] [CrossRef]
- Giommi, P.; Padovani, P.; Polenta, G.; Turriziani, S.; D’Elia, V.; Piranomonte, S. A simplified view of blazars: Clearing the fog around long-standing selection effects. Mon. Not. R. Astron. Soc. 2012, 420, 2899–2911. [Google Scholar] [CrossRef]
- Fossati, G.; Maraschi, L.; Celotti, A.; Comastri, A.; Ghisellini, G. A unifying view of the spectral energy distributions of blazars. Mon. Not. R. Astron. Soc. 1998, 299, 433–448. [Google Scholar] [CrossRef]
- Prandini, E.; Ghisellini, G. The Blazar Sequence and Its Physical Understanding. Galaxies 2022, 10, 35. [Google Scholar] [CrossRef]
- Ghisellini, G. The Blazar Sequence 2.0. Galaxies 2016, 4, 36. [Google Scholar] [CrossRef]
- Ghisellini, G.; Righi, C.; Costamante, L.; Tavecchio, F. The Fermi blazar sequence. Mon. Not. R. Astron. Soc. 2017, 469, 255–266. [Google Scholar] [CrossRef]
- Singh, K.K.; Meintjes, P.J.; Ramamonjisoa, F.A.; Tolamatti, A. Extremely High energy peaked BL Lac nature of the TeV blazar Mrk 501. New Astron. 2019, 73, 101278. [Google Scholar] [CrossRef]
- Ghisellini, G.; Celotti, A.; Fossati, G.; Maraschi, L.; Comastri, A. A theoretical unifying scheme for gamma-ray bright blazars. Mon. Not. R. Astron. Soc. 1998, 301, 451–468. [Google Scholar] [CrossRef]
- Fan, J.H.; Yang, J.H.; Xiao, H.B.; Lin, C.; Constantin, D.; Luo, G.Y.; Pei, Z.Y.; Hao, J.M.; Mao, Y.W. Intrinsic Correlations for Flaring Blazars Detected by Fermi. Astrophys. J. Lett. 2017, 835, L38. [Google Scholar] [CrossRef]
- Paliya, V.S.; Ajello, M.; Cao, H.M.; Giroletti, M.; Kaur, A.; Madejski, G.; Lott, B.; Hartmann, D. Blazars at the Cosmic Dawn. Astrophys. J. 2020, 897, 177. [Google Scholar] [CrossRef]
- Sahakyan, N.; Israyelyan, D.; Harutyunyan, G.; Khachatryan, M.; Gasparyan, S. Multiwavelength study of high-redshift blazars. Mon. Not. R. Astron. Soc. 2020, 498, 2594–2613. [Google Scholar] [CrossRef]
- Stecker, F.W.; Malkan, M.A.; Scully, S.T. Intergalactic Photon Spectra from the Far-IR to the UV Lyman Limit for 0 < z < 6 and the Optical Depth of the Universe to High-Energy Gamma Rays. Astrophys. J. 2006, 648, 774–783. [Google Scholar]
- Singh, K.K.; Meintjes, P.J. Extragalactic background light models and GeV-TeV observation of blazars. NRIAG J. Astron. Geophys. 2020, 9, 309–320. [Google Scholar] [CrossRef]
- Tolamatti, A.; Singh, K.K.; Yadav, K.K. Feasibility study of observing γ-ray emission from high redshift blazars using the MACE telescope. J. Astrophys. Astr. 2022, 43, 49. [Google Scholar] [CrossRef]
- Ajello, M.; Romani, R.W.; Gasparrini, D.; Shaw, M.S.; Bolmer, J.; Cotter, G.; Finke, J.; Greiner, J.; Healey, S.E.; King, O.; et al. The Cosmic Evolution of Fermi BL Lacertae Objects. Astrophys. J. 2014, 780, 73. [Google Scholar] [CrossRef]
- Ghisellini, G. High redshift blazars. Mem. Soc. Astron. Ital. 2013, 84, 719. [Google Scholar]
- Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Gonzalez, J.B.; Bellazzini, R.; Bissaldi, E.; et al. The Third Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope. Astrophys. J. 2015, 810, 14. [Google Scholar] [CrossRef]
- Inayoshi, K.; Visbal, E.; Haiman, Z. The Assembly of the First Massive Black Holes. Annu. Rev. Astron. Astrophys. 2020, 58, 27–97. [Google Scholar] [CrossRef]
- Belladitta, S.; Caccianiga, A.; Diana, A.; Moretti, A.; Severgnini, P.; Pedani, M.; Cassarà, L.P.; Spingola, C.; Ighina, L.; Rossi, A.; et al. Central engine of the highest redshift blazar. Astron. Astrophys. 2022, 660, A74. [Google Scholar] [CrossRef]
- Johnson, J.L.; Haardt, F. The Early Growth of the First Black Holes. Publ. Astron. Soc. Astra. 2016, 33, e007. [Google Scholar] [CrossRef]
- Belladitta, S.; Moretti, A.; Caccianiga, A.; Spingola, C.; Severgnini, P.; Ceca, R.D.; Ghisellini, G.; Dallacasa, D.; Sbarrato, T.; Cicone, C.; et al. The first blazar observed at z>6. Astron. Astrophys. 2020, 635, L7. [Google Scholar] [CrossRef]
- Ajello, M.; Costamante, L.; Sambruna, R.M.; Gehrels, N.; Chiang, J.; Rau, A.; Escala, A.; Greiner, J.; Tueller, J.; Wall, J.V.; et al. The Evolution of Swift/BAT Blazars and the Origin of the MeV Background. Astrophys. J. 2009, 699, 603–625. [Google Scholar] [CrossRef]
- Ghisellini, G.; Della Ceca, R.; Volonteri, M.; Ghirlanda, G.; Tavecchio, F.; Foschini, L.; Tagliaferri, G.; Haardt, F.; Pareschi, G.; Grindlay, J. Chasing the heaviest black holes of jetted active galactic nuclei. Mon. Not. R. Astron. Soc. 2010, 405, 387–400. [Google Scholar] [CrossRef]
- Volonteri, M. Formation of supermassive black holes. Annu. Rev. Astron. Astrophys. 2010, 18, 279–315. [Google Scholar] [CrossRef]
- Volonteri, M.; Haardt, F.; Ghisellini, G.; Della Ceca, R. Blazars in the early Universe. Mon. Not. R. Astron. Soc. 2011, 416, 216–224. [Google Scholar] [CrossRef]
- Sbarrato, T.; Ghisellini, G.; Tagliaferri, G.; Foschini, L.; Nardini, M.; Tavecchio, F.; Gehrels, N. Blazar candidates beyond redshift 4 observed by Swift. Mon. Not. R. Astron. Soc. 2015, 446, 2483–2489. [Google Scholar] [CrossRef]
- Ajello, M.; Baldini, L.; Ballet, J.; Bastieri, D.; Gonzalez, J.B.; Bellazzini, R.; Berretta, A.; Bissaldi, E.; Bonino, R.; Brill, A.; et al. The Fourth Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope: Data Release 3. Astrophys. J. Suppl. 2022, 263, 24. [Google Scholar] [CrossRef]
- Abdollahi, S.; Acero, F.; Baldini, L.; Ballet, J.; Bastieri, D.; Bellazzini, R.; Berenji, B.; Berretta, A.; Bissaldi, E.; Blandford, R.D.; et al. Incremental Fermi Large Area Telescope Fourth Source Catalog. Astrophys. J. Suppl. 2022, 260, 53. [Google Scholar] [CrossRef]
- Paliya, V.S.; Domínguez, A.; Ajello, M.; Olmo-García, A.; Hartmann, D. The Central Engines of Fermi Blazars. Astrophys. J. Suppl. 2021, 253, 46. [Google Scholar] [CrossRef]
- Ahumada, R.; Allende, P.C.; Almeida, A.; Anders, F.; Anderson, S.F.; Andrews, B.H.; Anguiano, B.; Arcodia, R.; Armengaud, E.; Aubert, M.; et al. The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra. Astrophys. J. Suppl. 2020, 249, 3. [Google Scholar] [CrossRef]
- Fan, J.; Xiao, H.; Yang, W.; Zhang, L.; Strigachev, A.A.; Bachev, R.S.; Yang, J. Characterizing the Emission Region Properties of Blazars. Astrophys. J. Suppl. 2023, 268, 23. [Google Scholar] [CrossRef]
- Yang, J.; Fan, J.; Liu, Y.; Tuo, M.; Pei, Z.; Yang, W.; Yuan, Y.; He, S.; Wang, S.; Qu, X.; et al. Estimation of inverse Compton peak frequency for 4FGL Blazars. Sci. China Phys. Mech. Astron. 2023, 66, 249511. [Google Scholar] [CrossRef]
- Yang, J.H.; Fan, J.H.; Liu, Y.; Tuo, M.X.; Pei, Z.Y.; Yang, W.X.; Yuan, Y.H.; He, S.L.; Wang, S.H.; Wang, X.C.; et al. The Spectral Energy Distributions for 4FGL Blazars. Astrophys. J. Suppl. 2022, 262, 18. [Google Scholar] [CrossRef]
- Tolamatti, A.; Singh, K.K.; Yadav, K.K. Classification of the Fermi-LAT blazar candidates of uncertain type using extreme gradient boosting. Mon. Not. R. Astron. Soc. 2023, 523, 5341–5352. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; et al. Bright Active Galactic Nuclei Source List from the First Three Months of the Fermi Large Area Telescope All-Sky Survey. Astrophys. J. 2009, 700, 597–622. [Google Scholar] [CrossRef]
- Bottcher, M.; Dermer, C.D. An Evolutionary Scenario for Blazar Unification. Astrophys. J. 2002, 564, 86–91. [Google Scholar] [CrossRef]
- Paliya, V.S.; Domínguez, A.; Cabello, C.; Cardiel, N.; Gallego, J.; Siana, B.; Ajello, M.; Hartmann, D.; de Paz, A.G.; Stalin, C.S. The First Gamma-Ray Emitting BL Lacertae Object at the Cosmic Dawn. Astrophys. J. Lett. 2020, 903, L8. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Gonzalez, J.B.; Bellazzini, R.; Bissaldi1, E.; Blandford, R.D.; et al. Gamma-Ray Blazars within the First 2 Billion Years. Astrophys. J. Lett. 2017, 837, L5. [Google Scholar] [CrossRef]
- Iyida, E.U.; Odo, F.C.; Chukwude, A.E.; Ubachukwu, A.A. Multi-frequency study of spectral indices of BL Lacertae objects and flat-spectrum radio quasars. New Astron. 2022, 90, 101666. [Google Scholar] [CrossRef]
- Gould, R.J.; Schréder, G. Opacity of the Universe to High-Energy Photons. Phys. Rev. Lett. 1966, 16, 252–254. [Google Scholar] [CrossRef]
- Gould, R.J.; Schréder, G.P. Opacity of the Universe to High-Energy Photons. Phys. Rev. 1967, 155, 1408–1411. [Google Scholar] [CrossRef]
- Singh, K.K.; Sahayanathan, S.; Tickoo, A.K.; Bhatt, N. Intrinsic VHE gamma-ray spectra of blazars as a probe for extragalactic background light. New Astron. 2014, 27, 34–40. [Google Scholar] [CrossRef]
- Finke, J.D.; Razzaque, S.; Dermer, C.D. Modeling the Extragalactic Background Light from Stars and Dust. Astrophys. J. 2010, 712, 238–249. [Google Scholar] [CrossRef]
- Dominguez, A.; Primack, J.R.; Rosario, D.J.; Prada, F.; Gilmore, R.C.; Faber, S.M.; Koo, D.C.; Somerville, R.S.; Perez-Torres, M.A.; Perez-Gonzalez, P.; et al. Extragalactic background light inferred from AEGIS galaxy-SED-type fractions. Mon. Not. R. Astron. Soc. 2011, 410, 2556–2578. [Google Scholar] [CrossRef]
- Mankuzhiyil, N.; Persic, M.; Franceschini, A. Prospects of additional contribution at Optical-NIR band of EBL in the light of VHE spectra. Mon. Not. R. Astron. Soc. 2023, 524, 133–142. [Google Scholar]
- Ghisellini, G.; Tavecchio, F.; Foschini, L.; Ghirlanda, G.; Maraschi, L.; Celotti, A. General physical properties of bright Fermi blazars. Mon. Not. R. Astron. Soc. 2010, 402, 497–518. [Google Scholar] [CrossRef]
- Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 24, 337–355. [Google Scholar]
- Narayan, R.; Garcia, M.R.; McClintock, J.E. Advection-dominated Accretion and Black Hole Event Horizons. Astrophys. J. Lett. 1997, 478, L79–L82. [Google Scholar] [CrossRef]
- Volonteri, M.; Silk, J.; Dubus, G. The Case for Supercritical Accretion onto Massive Black Holes at High Redshift. Astrophys. J. 2015, 804, 148. [Google Scholar] [CrossRef]
- Shapiro, S.L. Spin, Accretion, and the Cosmological Growth of Supermassive Black Holes. Astrophys. J. 2005, 620, 59–68. [Google Scholar] [CrossRef]
- Thorne, K.S.; Disk-Accretion onto a Black Hole. II. Evolution of the Hole. Astrophys. J. 1974, 191, 507–520. [Google Scholar] [CrossRef]
- Bromm, V.; Larson, R.B. The First Stars. Annu. Rev. Astron. Astrophys. 2004, 42, 79–118. [Google Scholar] [CrossRef]
- Bromm, V.; Yoshida, N. The First Galaxies. Annu. Rev. Astron. Astrophys. 2011, 49, 373–407. [Google Scholar] [CrossRef]
- Abel, T.; Bryan, G.L.; Norman, M.L. The Formation and Fragmentation of Primordial Molecular Clouds. Astrophys. J. 2000, 540, 39–44. [Google Scholar] [CrossRef]
- Bond, J.R.; Arnett, W.D.; Carr, B.J. The evolution and fate of Very Massive Objects. Astrophys. J. 1984, 280, 825–847. [Google Scholar] [CrossRef]
- Devecchi, B.; Volonteri, M. Formation of the First Nuclear Clusters and Massive Black Holes at High Redshift. Astrophys. J. 2009, 694, 302–313. [Google Scholar] [CrossRef]
- Lupi, A.; Colpi, M.; Devecchi, B.; Galanti, G.; Volonteri, M. Constraining the high-redshift formation of black hole seeds in nuclear star clusters with gas inflows. Mon. Not. R. Astron. Soc. 2014, 442, 3616–3626. [Google Scholar] [CrossRef]
- Alexander, T.; Natarajan, P. Rapid growth of seed black holes in the early universe by supra-exponential accretion. Science 2014, 345, 1330–1333. [Google Scholar] [CrossRef] [PubMed]
- Volonteri, M.; Dubois, Y.; Pichon, C.; Devriendt, J. The cosmic evolution of massive black holes in the Horizon-AGN simulation. Mon. Not. R. Astron. Soc. 2016, 460, 2979–2996. [Google Scholar] [CrossRef]
- Lupi, A.; Haardt, F.; Dotti, M.; Fiacconi, D.; Mayer, L.; Madau, P. Growing massive black holes through supercritical accretion of stellar-mass seeds. Mon. Not. R. Astron. Soc. 2016, 456, 2993–3003. [Google Scholar] [CrossRef]
- Haehnelt, M.G.; Rees, M.J. The formation of nuclei in newly formed galaxies and the evolution of the quasar population. Mon. Not. R. Astron. Soc. 1993, 263, 168–178. [Google Scholar] [CrossRef]
- Begelman, M.C.; Volonteri, M.; Rees, M.J. Formation of supermassive black holes by direct collapse in pre-galactic haloes. Mon. Not. R. Astron. Soc. 2006, 370, 289–298. [Google Scholar] [CrossRef]
- Onoue, M.; Kashikawa, N.; Matsuoka, Y.; Kato, N.; Izumi, T.; Nagao, T.; Strauss, M.A.; Harikane, Y.; Imanishi, M.; Ito, K.; et al. Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). VI. Black Hole Mass Measurements of Six Quasars at 6.1 ≤ z ≤ 6.7. Astrophys. J. 2019, 880, 77. [Google Scholar] [CrossRef]
- Tang, J.-J.; Goto, T.; Ohyama, Y.; Jin, C.; Done, C.; Lu, T.; Hashimoto, T.; Eser, E.K.; Chiang, C.; Kim, S. Rapid black hole growth at the dawn of the Universe: A super-Eddington quasar at z = 6.6. Mon. Not. R. Astron. Soc. 2019, 484, 2575–2586. [Google Scholar] [CrossRef]
- Kim, Y.; Im, M.; Jeon, Y.; Kim, M.; Choi, C.; Hong, J.; Hyun, M.; Jun, H.D.; Karouzos, M.; Kim, D.; et al. Discovery of a Faint Quasar at z ∼ 6 and Implications for Cosmic Reionization. Astrophys. J. Lett. 2015, 813, L35. [Google Scholar]
- Kubota, A.; Done, C. Modelling the spectral energy distribution of super-Eddington quasars. Mon. Not. R. Astron. Soc. 2019, 489, 524–533. [Google Scholar] [CrossRef]
- Jolley, E.J.D.; Kuncic, Z. Jet-enhanced accretion growth of supermassive black holes. Mon. Not. R. Astron. Soc. 2008, 386, 989–994. [Google Scholar] [CrossRef]
- Jolley, E.J.D.; Kuncic, Z.; Bicknell, G.V.; Wagner, S. Accretion discs in blazars. Mon. Not. R. Astron. Soc. 2009, 400, 1521–1526. [Google Scholar] [CrossRef]
- Alexander, D.M.; Hickox, R.C. What drives the growth of black holes? New Astron. Rev 2012, 56, 93–121. [Google Scholar] [CrossRef]
- Feng, Y.; Di Matteo, T.; Croft, R.; Khandai, N. High-redshift supermassive black holes: Accretion through cold flows. Mon. Not. R. Astron. Soc. 2014, 440, 1865–1879. [Google Scholar] [CrossRef]
- Shen, Y.; Richards, G.T.; Strauss, M.A.; Hall, P.B.; Schneider, D.P.; Snedden, S.; Bizyaev, D.; Brewington, H.; Malanushenko, V.; Malanushenko, E.; et al. A Catalog of Quasar Properties from Sloan Digital Sky Survey Data Release 7. Astrophys. J. Suppl. Ser. 2011, 194, 45. [Google Scholar] [CrossRef]
- Peterson, B.M. Reverberation Mapping of Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1993, 105, 247. [Google Scholar] [CrossRef]
- Merloni, A.; Predehl, P.; Becker, W.; Böhringer, H.; Boller, T.; Brunner, H.; Brusa, M.; Dennerl, K.; Freyberg, M.; Friedrich, P.; et al. eROSITA Science Book: Mapping the Structure of the Energetic Universe. arXiv 2012, arXiv:1209.3114. [Google Scholar]
- Bai, X.; Bi, B.Y.; Bi, X.J.; Cao, Z.; Chen, S.Z.; Chen, Y.; Chiavassa, A.; Cui, X.H.; Dai, Z.G.; della Volpe, D.; et al. The Large High Altitude Air Shower Observatory (LHAASO) Science White Paper—2021 Edition. arXiv 2019, arXiv:1905.02773. [Google Scholar]
- Albert, A.; Alfaro, R.; Ashkar, H.; Alvarez, C.; Álvarez, J.; Arteaga-Velázquez, J.C.; Solares, H.A.; Arceo, R.; Bellido, J.A.; BenZvi, S.; et al. Science Case for a Wide Field-of-View Very-High-Energy Gamma-Ray Observatory in the Southern Hemisphere. arXiv 2019, arXiv:1902.08429. [Google Scholar]
- Cherenkov Telescope Array Consortium. Science with the Cherenkov Telescope Array. World Scientific. 2019. Available online: https://www.worldscientific.com/doi/pdf/10.1142/10986 (accessed on 5 December 2021).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tolamatti, A.; Singh, K.K.; Yadav, K.K. Central Engine and Spectral Energy Distribution Properties of High Redshift Gamma Ray Blazars. Galaxies 2024, 12, 10. https://doi.org/10.3390/galaxies12020010
Tolamatti A, Singh KK, Yadav KK. Central Engine and Spectral Energy Distribution Properties of High Redshift Gamma Ray Blazars. Galaxies. 2024; 12(2):10. https://doi.org/10.3390/galaxies12020010
Chicago/Turabian StyleTolamatti, Anilkumar, Krishna Kumar Singh, and Kuldeep Kumar Yadav. 2024. "Central Engine and Spectral Energy Distribution Properties of High Redshift Gamma Ray Blazars" Galaxies 12, no. 2: 10. https://doi.org/10.3390/galaxies12020010
APA StyleTolamatti, A., Singh, K. K., & Yadav, K. K. (2024). Central Engine and Spectral Energy Distribution Properties of High Redshift Gamma Ray Blazars. Galaxies, 12(2), 10. https://doi.org/10.3390/galaxies12020010