Long-Term Effects of COVID-19 on Optic Disc and Retinal Microvasculature Assessed by Optical Coherence Tomography Angiography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. OCTA Assessments
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, Y.; Yang, H.; Ji, W.; Wu, W.; Chen, S.; Zhang, W.; Duan, G. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses 2020, 12, 372. [Google Scholar] [CrossRef] [PubMed]
- Fernández-de-las-Peñas, C. Long COVID: Current definition. Infection 2022, 50, 285–286. [Google Scholar] [CrossRef]
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J.V. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 2022, 22, e102–e107. [Google Scholar] [CrossRef] [PubMed]
- Hayes, L.D.; Ingram, J.; Sculthorpe, N.F. More Than 100 Persistent Symptoms of SARS-CoV-2 (Long COVID): A Scoping Review. Front. Med. 2021, 8, 750378. [Google Scholar] [CrossRef]
- Magro, C.; Mulvey, J.J.; Berlin, D.; Nuovo, G.; Salvatore, S.; Harp, J.; Baxter-Stoltzfus, A.; Laurence, J. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl. Res. 2020, 220, 1–13. [Google Scholar] [CrossRef] [PubMed]
- González-Zamora, J.; Bilbao-Malavé, V.; Gándara, E.; Casablanca-Piñera, A.; Boquera-Ventosa, C.; Landecho, M.F.; Zarranz-Ventura, J.; García-Layana, A. Retinal Microvascular Impairment in COVID-19 Bilateral Pneumonia Assessed by Optical Coherence Tomography Angiography. Biomedicines 2021, 9, 247. [Google Scholar] [CrossRef]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef] [PubMed]
- Shagdarsuren, E.; Wellner, M.; Braesen, J.H.; Park, J.K.; Fiebeler, A.; Henke, N.; Dechend, R.; Gratze, P.; Luft, F.C.; Muller, D.N. Complement activation in angiotensin II-induced organ damage. Circ. Res. 2005, 97, 716–724. [Google Scholar] [CrossRef]
- Forrester, S.J.; Booz, G.W.; Sigmund, C.D.; Coffman, T.M.; Kawai, T.; Rizzo, V.; Scalia, R.; Eguchi, S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol. Rev. 2018, 98, 1627–1738. [Google Scholar] [CrossRef]
- Casagrande, M.; Fitzek, A.; Püschel, K.; Aleshcheva, G.; Schultheiss, H.-P.; Berneking, L.; Spitzer, M.S.; Schultheiss, M. Detection of SARS-CoV-2 in Human Retinal Biopsies of Deceased COVID-19 Patients. Ocul. Immunol. Inflamm. 2020, 28, 721–725. [Google Scholar] [CrossRef]
- Choudhary, R.; Kapoor, M.S.; Singh, A.; Bodakhe, S.H. Therapeutic targets of renin-angiotensin system in ocular disorders. J. Curr. Ophthalmol. 2017, 29, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Senanayake, P.; Drazba, J.; Shadrach, K.; Milsted, A.; Rungger-Brandle, E.; Nishiyama, K.; Miura, S.; Karnik, S.; Sears, J.E.; Hollyfield, J.G. Angiotensin II and its receptor subtypes in the human retina. Invest. Ophthalmol. Vis. Sci. 2007, 48, 3301–3311. [Google Scholar] [CrossRef] [PubMed]
- Leonardo Amarante, P.; Larissa Caroline Mansano, S.; Priscila Alves, N.; Luciano Rabello Netto, C.; Hebert Toshiaki, S.; da Veiga, G.L.; Fernando Luiz Afonso, F.; Vagner Loduca, L.; Julio Zaki, A.-N. Retinal findings in hospitalised patients with severe COVID-19. Br. J. Ophthalmol. 2022, 106, 102. [Google Scholar] [CrossRef]
- Marinho, P.M.; Marcos, A.A.A.; Romano, A.C.; Nascimento, H.; Belfort, R., Jr. Retinal findings in patients with COVID-19. Lancet 2020, 395, 1610. [Google Scholar] [CrossRef]
- Landecho, M.F.; Yuste, J.R.; Gándara, E.; Sunsundegui, P.; Quiroga, J.; Alcaide, A.B.; García-Layana, A. COVID-19 retinal microangiopathy as an in vivo biomarker of systemic vascular disease? J. Intern. Med. 2021, 289, 116–120. [Google Scholar] [CrossRef]
- Lam, W.Y.; Au, S.C.L. Interpretating retinal microvascular changes in patients recovered from COVID-19 compared to healthy controls: A meta-analysis. Photodiagn. Photodyn. Ther. 2023, 44, 103824. [Google Scholar] [CrossRef]
- Au, S.C.L. The optical coherence tomography angiography study on paediatric COVID-19 cases. Photodiagn. Photodyn. Ther. 2022, 37, 102710. [Google Scholar] [CrossRef]
- Cennamo, G.; Reibaldi, M.; Montorio, D.; D’Andrea, L.; Fallico, M.; Triassi, M. Optical Coherence Tomography Angiography Features in Post-COVID-19 Pneumonia Patients: A Pilot Study. Am. J. Ophthalmol. 2021, 227, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Turker, I.C.; Dogan, C.U.; Guven, D.; Kutucu, O.K.; Gul, C. Optical coherence tomography angiography findings in patients with COVID-19. Can. J. Ophthalmol. 2021, 56, 83–87. [Google Scholar] [CrossRef]
- Abrishami, M.; Emamverdian, Z.; Shoeibi, N.; Omidtabrizi, A.; Daneshvar, R.; Saeidi Rezvani, T.; Saeedian, N.; Eslami, S.; Mazloumi, M.; Sadda, S.; et al. Optical coherence tomography angiography analysis of the retina in patients recovered from COVID-19: A case-control study. Can. J. Ophthalmol. 2021, 56, 24–30. [Google Scholar] [CrossRef]
- Hazar, L.; Karahan, M.; Vural, E.; Ava, S.; Erdem, S.; Dursun, M.E.; Keklikçi, U. Macular vessel density in patients recovered from COVID 19. Photodiagn. Photodyn. Ther. 2021, 34, 102267. [Google Scholar] [CrossRef]
- Naderi Beni, A.; Dehghani, A.; Kianersi, F.; Ghanbari, H.; Habibidastenae, Z.; Memarzadeh, S.E.; Naderi Beni, Z. Retinal findings of COVID-19 patients using ocular coherence tomography angiography two to three months after infection: Ocular appearance recovered COVID-19 patient. Photodiagn. Photodyn. Ther. 2022, 38, 102726. [Google Scholar] [CrossRef] [PubMed]
- Guemes-Villahoz, N.; Burgos-Blasco, B.; Vidal-Villegas, B.; Donate-López, J.; de la Muela, M.H.; López-Guajardo, L.; Martín-Sánchez, F.J.; García-Feijoó, J. Reduced macular vessel density in COVID-19 patients with and without associated thrombotic events using optical coherence tomography angiography. Graefes Arch. Clin. Exp. Ophthalmol. 2021, 259, 2243–2249. [Google Scholar] [CrossRef]
- Erogul, O.; Gobeka, H.H.; Dogan, M.; Akdogan, M.; Balci, A.; Kasikci, M. Retinal microvascular morphology versus COVID-19: What to anticipate? Photodiagn. Photodyn. Ther. 2022, 39, 102920. [Google Scholar] [CrossRef]
- Brantl, V.; Schworm, B.; Weber, G.; Schiefelbein, J.; Kreutzer, T.C.; Michalakis, S.; Siedlecki, J.; Priglinger, S.G. Long-term ocular damage after recovery from COVID-19: Lack of evidence at three months. BMC Ophthalmol. 2021, 21, 421. [Google Scholar] [CrossRef] [PubMed]
- Szkodny, D.; Wylęgała, E.; Sujka-Franczak, P.; Chlasta-Twardzik, E.; Fiolka, R.; Tomczyk, T.; Wylęgała, A. Retinal OCT Findings in Patients after COVID Infection. J. Clin. Med. 2021, 10, 3233. [Google Scholar] [CrossRef]
- Zapata, M.; Banderas García, S.; Sánchez-Moltalvá, A.; Falcó, A.; Otero-Romero, S.; Arcos, G.; Velazquez-Villoria, D.; García-Arumí, J. Retinal microvascular abnormalities in patients after COVID-19 depending on disease severity. Br. J. Ophthalmol. 2022, 106, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Banderas García, S.; Aragón, D.; Azarfane, B.; Trejo, F.; Garrell-Salat, X.; Sánchez-Montalvá, A.; Otero-Romero, S.; Garcia-Arumi, J.; Zapata, M.A. Persistent reduction of retinal microvascular vessel density in patients with moderate and severe COVID-19 disease. BMJ Open Ophthalmol. 2022, 7, e000867. [Google Scholar] [CrossRef]
- Turker, I.C.; Dogan, C.U.; Dirim, A.B.; Guven, D.; Kutucu, O.K. Evaluation of early and late COVID-19-induced vascular changes with OCTA. Can. J. Ophthalmol. 2022, 57, 236–241. [Google Scholar] [CrossRef]
- Bajka, A.; Muth, D.R.; Wiest, M.R.J.; Said, S.; Rejdak, M.; Sidhu, S.; Foa, N.; Blaser, F.; Barthelmes, D.; Toro, M.D.; et al. Analysis of Optical Coherence Tomography (OCT) and Optical Coherence Tomography Angiography (OCTA) Parameters in Young Adults after SARS-CoV-2 Infection (COVID-19) Compared with Healthy Young Controls. Diagnostics 2023, 13, 1283. [Google Scholar] [CrossRef] [PubMed]
- Noor, M.; McGrath, O.; Drira, I.; Aslam, T. Retinal Microvasculature Image Analysis Using Optical Coherence Tomography Angiography in Patients with Post-COVID-19 Syndrome. J. Imaging 2023, 9, 234. [Google Scholar] [CrossRef] [PubMed]
- Jevnikar, K.; Meglic, A.; Lapajne, L.; Logar, M.; Vidovic Valentincic, N.; Globocnik Petrovic, M.; Jaki Mekjavic, P. The Comparison of Retinal Microvascular Findings in Acute COVID-19 and 1-Year after Hospital Discharge Assessed with Multimodal Imaging-A Prospective Longitudinal Cohort Study. Int. J. Mol. Sci. 2023, 24, 4032. [Google Scholar] [CrossRef]
- Oren, B.; Aksoy Aydemır, G.; Aydemır, E.; Atesoglu, H.I.; Goker, Y.S.; Kızıltoprak, H.; Ozcelık, K.C. Quantitative assessment of retinal changes in COVID-19 patients. Clin. Exp. Optom. 2021, 104, 717–722. [Google Scholar] [CrossRef]
- Burgos-Blasco, B.; Güemes-Villahoz, N.; Vidal-Villegas, B.; Martinez-de-la-Casa, J.M.; Donate-Lopez, J.; Martín-Sánchez, F.J.; González-Armengol, J.J.; Porta-Etessam, J.; Martin, J.L.R.; Garcia-Feijoo, J. Optic nerve and macular optical coherence tomography in recovered COVID-19 patients. Eur. J. Ophthalmol. 2022, 32, 628–636. [Google Scholar] [CrossRef] [PubMed]
- McGavern, D.B.; Kang, S.S. Illuminating viral infections in the nervous system. Nat. Rev. Immunol. 2011, 11, 318–329. [Google Scholar] [CrossRef]
- Moriguchi, T.; Harii, N.; Goto, J.; Harada, D.; Sugawara, H.; Takamino, J.; Ueno, M.; Sakata, H.; Kondo, K.; Myose, N.; et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int. J. Infect. Dis. 2020, 94, 55–58. [Google Scholar] [CrossRef]
- Sawalha, K.; Adeodokun, S.; Kamoga, G.R. COVID-19-Induced Acute Bilateral Optic Neuritis. J. Investig. Med. High. Impact Case Rep. 2020, 8, 2324709620976018. [Google Scholar] [CrossRef]
- Eldaly, Z.; Soliman, W.; Sharaf, M.; Reyad, A.N. Morphological Characteristics of Normal Foveal Avascular Zone by Optical Coherence Tomography Angiography. J. Ophthalmol. 2020, 2020, 8281459. [Google Scholar] [CrossRef]
- Kur, J.; Newman, E.A.; Chan-Ling, T. Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog. Retin. Eye Res. 2012, 31, 377–406. [Google Scholar] [CrossRef] [PubMed]
- Hagag, A.M.; Pechauer, A.D.; Liu, L.; Wang, J.; Zhang, M.; Jia, Y.; Huang, D. OCT Angiography Changes in the 3 Parafoveal Retinal Plexuses in Response to Hyperoxia. Ophthalmol. Retin. 2018, 2, 329–336. [Google Scholar] [CrossRef]
- Xu, H.; Deng, G.; Jiang, C.; Kong, X.; Yu, J.; Sun, X. Microcirculatory Responses to Hyperoxia in Macular and Peripapillary Regions. Invest. Ophthalmol. Vis. Sci. 2016, 57, 4464–4468. [Google Scholar] [CrossRef]
- Sousa, D.C.; Leal, I.; Moreira, S.; Dionísio, P.; Abegão Pinto, L.; Marques-Neves, C. Hypoxia challenge test and retinal circulation changes—A study using ocular coherence tomography angiography. Acta Ophthalmol. 2018, 96, e315–e319. [Google Scholar] [CrossRef] [PubMed]
Control Group (n = 40) | COVID-19 Group (n = 40) | p | ||
---|---|---|---|---|
Sex n (%) | Female | 16 (40%) | 16 (40%) | 1.000 |
Male | 24 (60%) | 24 (60%) | ||
Age (y) mean ± SD (Min-Max) | 40.1 ± 11.2 (21–58) | 42.9 ± 10.9 (18–58) | 0.053 |
Control Group (n = 40) | COVID-19 Group (n = 40) | |||
---|---|---|---|---|
Mean ± SD | Mean ± SD | p | ||
RNFL thickness—Average (µm) | 1st month | 113.9 ± 10.7 | 118.9 ± 11.9 | 0.014 * |
4th month | 114.1 ± 12.2 | 118.9 ± 12.3 | 0.020 | |
12th month | 114.8 ± 11.2 | 116.3 ± 12.1 | 0.213 * | |
pa | 0.45 | 0.01 | ||
RNFL thickness—Superior (µm) | 1st month | 133.1 ± 13.8 | 141.4 ± 13.4 | 0.001 # |
4th month | 133.8 ± 13.9 | 141.0 ± 14.3 | 0.003 # | |
12th month | 133.6 ± 14.1 | 136.1 ± 14.0 | 0.057 # | |
pa | 0.79 | 0.008 | ||
RNFL thickness—inferior (µm) | 1st month | 143.0 ± 15.8 | 150.8 ± 21.2 | 0.021 * |
4th month | 143.5 ± 16.3 | 150.3 ± 20.9 | 0.024 * | |
12th month | 144.1 ± 16.8 | 147.3 ± 24.2 | 0.074 * | |
pa | 0.86 | 0.012 | ||
RNFL thickness—nasal (µm) | 1st month | 103.7 ± 14.4 | 108.2 ± 17.2 | 0.122 |
4th month | 104.5 ± 14.8 | 109.2 ± 17.7 | 0.433 * | |
12th month | 104.1 ± 15.0 | 106.0 ± 17.9 | 0.613 * | |
pa | 0.75 | 0.52 | ||
RNFL thickness—temporal (µm) | 1st month | 76.1 ± 9.5 | 77.9 ± 9.5 | 0.307 # |
4th month | 76.5 ± 9.4 | 77.2 ± 9.6 | 0.543 # | |
12th month | 76.4 ± 9.5 | 76.9 ± 9.4 | 0.642 # | |
pa | 0.83 | 0.69 | ||
RPC SV VD (%)—whole image- | 1st month | 49.5 ± 2.2 | 50.2 ± 2.2 | 0.121 # |
4th month | 49.8 ± 2.3 | 50.2 ± 2.0 | 0.075 # | |
12th month | 50.0 ± 2.4 | 50.2 ± 2.6 | 0.118 # | |
pa | 0.67 | 0.88 | ||
RPC SV VD (%)—inside disc | 1st month | 51.6 ± 3.4 | 51.1 ± 3.1 | 0.356 # |
4th month | 51.5 ± 3.5 | 51.3 ± 3.5 | 0.595 # | |
12th month | 51.1 ± 3.6 | 50.5 ± 3.4 | 0.078 # | |
pa | 0.87 | 0.63 | ||
RPC SV VD (%)—peripapillary | 1st month | 51.5 ± 2.3 | 52.2 ± 2.6 | 0.147 # |
4th month | 51.9 ± 2.5 | 52.3 ± 2.7 | 0.097 # | |
12th month | 51.8 ± 2.6 | 52.2 ± 3.1 | 0.195 # | |
pa | 0.84 | 0.81 | ||
RPC SV VD (%)—Superior | 1st month | 51.7 ± 3.3 | 52.6 ± 3.9 | 0.161 # |
4th month | 51.9 ± 3.4 | 52.8 ± 3.6 | 0.121 * | |
12th month | 52.0 ± 3.5 | 52.6 ± 3.8 | 0.179 * | |
pa | 0.71 | 0.92 | ||
RPC SV VD (%)—Inferior | 1st month | 52.5 ± 3.7 | 52.7 ± 3.8 | 0.846 * |
4th month | 52.7 ± 4.0 | 53.0 ± 4.2 | 0.471 * | |
12th month | 52.6 ± 4.2 | 52.4 ± 5.5 | 0.867 * | |
pa | 0.76 | 0.79 | ||
RPC SV VD (%)—Nasal | 1st month | 49.6 ± 2.9 | 49.2 ± 3.5 | 0.390 * |
4th month | 49.5 ± 3.1 | 49.4 ± 3.8 | 0.687 * | |
12th month | 49.5 ± 3.3 | 49.4 ± 3.9 | 0.948 * | |
pa | 0.91 | 0.89 | ||
RPC SV VD (%)—Temporal | 1st month | 53.7 ± 4.4 | 54.9 ± 2.8 | 0.003 * |
4th month | 53.3 ± 3.1 | 54.8 ± 2.8 | 0.003 * | |
12th month | 53.6 ± 3.9 | 55.7 ± 3.9 | <0.001 * | |
pa | 0.88 | 0.62 |
Control Group (n = 40) | COVID-19 Group (n = 40) | |||
---|---|---|---|---|
Mean ± SD | Mean ± SD | p | ||
Foveal avascular zone (FAZ) parameters and central macular thickness (CMT) | ||||
FAZ area (mm2) | 1st month | 0.24 ± 0.10 | 0.29 ± 0.09 | 0.002 # |
4th month | 0.25 ± 0.10 | 0.32 ± 0.35 | 0.002 * | |
12th month | 0.24 ± 0.21 | 0.30 ±0.11 | 0.002 * | |
pa | 0.85 | 0.78 | ||
FAZ perimeter (mm) | 1st month | 1.84 ± 0.44 | 2.07 ± 0.36 | 0.002 # |
4th month | 1.85 ± 0.41 | 2.08 ± 0.37 | 0.003 # | |
12th month | 1.86 ± 0.42 | 2.07 ± 0.40 | 0.005 # | |
pa | 0.75 | 0.89 | ||
CMT (μm) | 1st month | 256.2 ± 22.1 | 241.4 ± 20.9 | <0.001 # |
4th month | 258.5 ± 21.0 | 242.5 ± 20.4 | 0.001 # | |
12th month | 255.0 ± 21.5 | 243.0 ± 21.6 | 0.001 # | |
pa | 0.88 | 0.69 | ||
Microvascular flow parameters | ||||
Outer retinal flow area (mm2) | 1st month | 0.48 ± 0.30 | 0.58 ± 0.42 | 0.315 * |
4th month | 0.47 ± 0.33 | 0.49 ± 0.37 | 0.675 * | |
12th month | 0.49 ± 0.35 | 0.50 ± 0.39 | 0.619 * | |
pa | 0.47 | 0.16 | ||
Choriocapillaris flow area (mm2) | 1st month | 2.13 ± 0.11 | 2.11 ± 0.11 | 0.397 # |
4th month | 2.12 ± 0.12 | 2.13 ± 0.11 | 0.878 # | |
12th month | 2.12 ± 0.12 | 2.10 ± 0.11 | 0.119 # | |
pa | 0.77 | 0.54 |
Control Group (n = 40) | COVID-19 Group (n = 40) | |||
---|---|---|---|---|
Vessel Density; SCP Flow (%) | Mean ± SD | Mean ± SD | p | |
Whole image | 1st month | 51.4 ± 2.1 | 50.6 ± 2.9 | 0.085 |
4th month | 51.2 ± 2.3 | 50.8 ± 2.8 | 0.464 * | |
12th month | 51.1 ± 2.4 | 50.7 ± 3.2 | 0.233 # | |
pa | 0.69 | 0.77 | ||
Fovea | 1st month | 24.9 ± 7.5 | 20.0 ± 5.7 | <0.001 # |
4th month | 24.5 ± 6.8 | 19.8 ± 5.9 | <0.001 # | |
12th month | 24.2 ± 7.0 | 20.0 ± 6.1 | <0.001 # | |
pa | 0.62 | 0.83 | ||
Parafoveal whole density | 1st month | 53.8 ± 2.3 | 52.8 ± 3.8 | 0.071 |
4th month | 53.5 ± 2.8 | 53.4 ± 3.0 | 0.775 * | |
12th month | 53.3 ± 2.9 | 53.2 ± 3.3 | 0.273 # | |
pa | 0.81 | 0.56 | ||
* Temporal | 1st month | 53.3 ± 2.2 | 52.4 ± 3.8 | 0.097 # |
4th month | 53.2 ± 3.1 | 52.9 ± 3.3 | 0.959 * | |
12th month | 53.0 ± 3.2 | 53.1 ± 3.7 | 0.878 * | |
pa | 0.86 | 0.74 | ||
* Superior | 1st month | 54.4 ± 2.7 | 53.7 ± 3.9 | 0.252 # |
4th month | 54.2 ± 2.9 | 54.3 ± 3.2 | 0.791 # | |
12th month | 54.0 ± 3.1 | 54.1 ± 3.3 | 0.517 # | |
pa | 0.77 | 0.62 | ||
* Nasal | 1st month | 53.4 ± 2.9 | 51.7 ± 3.7 | 0.009 # |
4th month | 52.9 ± 3.0 | 52.3 ± 2.8 | 0.047 # | |
12th month | 52.7 ± 3.1 | 52.2 ± 3.2 | 0.042 # | |
pa | 0.82 | 0.45 | ||
* Inferior | 1st month | 54.2 ± 2.5 | 53.3 ± 4.9 | 0.895 * |
4th month | 54.0 ± 3.4 | 54.1 ± 4.2 | 0.879 # | |
12th month | 53.8 ± 3.5 | 53.6 ± 4.3 | 0.726 * | |
pa | 0.63 | 0.66 | ||
Perifoveal whole density | 1st month | 52.1 ± 2.2 | 51.2 ± 2.9 | 0.067 # |
4th month | 51.9 ± 2.7 | 51.5 ± 3.0 | 0.477 * | |
12th month | 51.8 ± 2.8 | 51.5 ± 3.4 | 0.308 # | |
pa | 0.61 | 0.89 | ||
* Temporal | 1st month | 48.7 ± 2.5 | 47.6 ± 3.3 | 0.078 # |
4th month | 48.5 ± 2.9 | 47.5 ± 3.1 | 0.041 # | |
12th month | 48.4 ± 3.1 | 47.7 ± 3.6 | 0.342 * | |
pa | 0.58 | 0.35 | ||
* Superior | 1st month | 51.7 ± 2.8 | 51.0 ± 3.3 | 0.237 # |
4th month | 51.5 ± 3.2 | 51.2 ± 3.4 | 0.410 # | |
12th month | 51.4 ± 3.4 | 51.1 ± 3.9 | 0.587 # | |
pa | 0.85 | 0.86 | ||
* Nasal | 1st month | 55.5 ± 2.0 | 54.8 ± 2.5 | 0.125 # |
4th month | 55.3 ± 2.4 | 55.3 ± 2.7 | 0.735 # | |
12th month | 55.2 ± 2.6 | 55.5 ± 2.9 | 0.661 # | |
pa | 0.76 | 0.88 | ||
* Inferior | 1st month | 52.0 ± 3.4 | 51.5 ± 3.5 | 0.453 * |
4th month | 51.9 ± 3.7 | 51.9 ± 3.8 | 0.921 * | |
12th month | 51.8 ± 4.0 | 51.7 ± 4.3 | 0.874 * | |
pa | 0.81 | 0.78 |
Control Group (n = 40) | COVID-19 Group (n = 40) | |||
---|---|---|---|---|
Vessel Density; DCP Flow (%) | Mean ± SD | Mean ± SD | p | |
Whole image | 1st month | 54.1 ± 5.5 | 53.6 ± 4.7 | 0.544 # |
4th month | 54.0 ± 5.0 | 53.5 ± 4.3 | 0.458 # | |
12th month | 53.7 ± 5.4 | 52.4 ± 5.6 | 0.083 # | |
pa | 0.34 | 0.42 | ||
Fovea | 1st month | 41.6 ± 7.6 | 37.7 ± 7.4 | 0.005 # |
4th month | 41.2 ± 7.2 | 36.9 ± 6.9 | 0.001 # | |
12th month | 40.8 ± 7.4 | 36.6 ± 7.8 | 0.001 # | |
pa | 0.29 | 0.58 | ||
Parafoveal whole density | 1st month | 56.4 ± 4.2 | 56.3 ± 3.4 | 0.832 * |
4th month | 56.2 ± 3.8 | 56.1 ± 3.3 | 0.525 * | |
12th month | 55.7 ± 4.0 | 55.1 ± 4.1 | 0.105 # | |
pa | 0.85 | 0.72 | ||
* Temporal | 1st month | 57.2 ± 4.3 | 57.0 ± 3.8 | 0.541 * |
4th month | 57.0 ± 3.6 | 57.1 ± 3.2 | 0.808 # | |
12th month | 56.8± 3.9 | 56.3 ± 4.0 | 0.162 # | |
pa | 0.56 | 0.29 | ||
* Superior | 1st month | 55.8 ± 4.5 | 55.9 ± 3.9 | 0.923 * |
4th month | 55.4 ± 4.1 | 55.6 ± 3.9 | 0.706 # | |
12th month | 55.3 ± 4.4 | 54.5 ± 4.2 | 0.124 * | |
pa | 0.73 | 0.31 | ||
* Nasal | 1st month | 56.8 ± 4.2 | 56.9 ± 3.4 | 0.887 * |
4th month | 56.5 ± 3.6 | 56.7 ± 3.2 | 0.649 * | |
12th month | 55.9 ± 4.0 | 55.8 ± 4.1 | 0.156 * | |
pa | 0.62 | 0.33 | ||
* Inferior | 1st month | 55.5 ± 4.7 | 55.3 ± 3.8 | 0.887 * |
4th month | 55.3 ± 4.0 | 55.1 ± 3.9 | 0.617 # | |
12th month | 55.1 ± 4.5 | 53.8 ± 4.6 | 0.090 # | |
pa | 0.53 | 0.12 | ||
Perifoveal whole density | 1st month | 55.7 ± 5.7 | 55.2 ± 5.1 | 0.522 * |
4th month | 55.5 ± 5.0 | 55.2 ± 4.6 | 0.567 # | |
12th month | 55.1 ± 5.5 | 54.0 ± 6.0 | 0.107 # | |
pa | 0.74 | 0.17 | ||
* Temporal | 1st month | 57.3 ± 4.5 | 57.4 ± 4.3 | 0.964 * |
4th month | 57.0 ± 4.0 | 56.7 ± 4.0 | 0.407 # | |
12th month | 56.9 ± 4.6 | 55.9 ± 5.2 | 0.176 * | |
pa | 0.65 | 0.25 | ||
* Superior | 1st month | 55.3 ± 6.4 | 54.1 ± 5.5 | 0.275 # |
4th month | 54.79± 5.5 | 54.4 ± 5.3 | 0.384 # | |
12th month | 55.1 ± 6.1 | 52.4 ± 6.6 | 0.014 # | |
pa | 0.58 | 0.023 | ||
* Nasal | 1st month | 54.3 ± 6.3 | 53.5 ± 5.5 | 0.450 # |
4th month | 54.1 ± 5.5 | 54.0 ± 5.3 | 0.785 # | |
12th month | 54.2 ± 6.2 | 53.0 ± 6.5 | 0.310 # | |
pa | 0.58 | 0.65 | ||
* Inferior | 1st month | 56.0 ± 6.5 | 55.7 ± 6.6 | 0.749 * |
4th month | 55.9 ± 5.9 | 55.7 ± 5.8 | 0.741 * | |
12th month | 55.8 ± 6.1 | 54.4 ± 7.2 | 0.216 * | |
pa | 0.66 | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozturk, M.; Kumova Guler, D.; Oskan, E.E.; Onder, F. Long-Term Effects of COVID-19 on Optic Disc and Retinal Microvasculature Assessed by Optical Coherence Tomography Angiography. Diagnostics 2025, 15, 114. https://doi.org/10.3390/diagnostics15010114
Ozturk M, Kumova Guler D, Oskan EE, Onder F. Long-Term Effects of COVID-19 on Optic Disc and Retinal Microvasculature Assessed by Optical Coherence Tomography Angiography. Diagnostics. 2025; 15(1):114. https://doi.org/10.3390/diagnostics15010114
Chicago/Turabian StyleOzturk, Mine, Deniz Kumova Guler, Ekin Ece Oskan, and Feyza Onder. 2025. "Long-Term Effects of COVID-19 on Optic Disc and Retinal Microvasculature Assessed by Optical Coherence Tomography Angiography" Diagnostics 15, no. 1: 114. https://doi.org/10.3390/diagnostics15010114
APA StyleOzturk, M., Kumova Guler, D., Oskan, E. E., & Onder, F. (2025). Long-Term Effects of COVID-19 on Optic Disc and Retinal Microvasculature Assessed by Optical Coherence Tomography Angiography. Diagnostics, 15(1), 114. https://doi.org/10.3390/diagnostics15010114